What is transcription? What is translation?
What is a gene? What are codons? What steps happen to reduce the
length of RNA before it leaves the nucleus?
What do we call RNA after these steps have been

Answers

Answer 1

Transcription is the process in which genetic information encoded in DNA is converted into a complementary RNA sequence. Translation, on the other hand, is the process where the RNA sequence is used to synthesize proteins. A gene is a segment of DNA that contains the instructions for building a specific protein.

Codons are three-letter sequences of nucleotides in mRNA that specify particular amino acids or signaling functions. Before leaving the nucleus, RNA undergoes processing steps including capping, polyadenylation, and splicing. After these steps, the processed RNA is called mature mRNA.

1. Transcription:

Transcription is the first step in gene expression, where the DNA sequence is used as a template to produce a complementary RNA molecule. During transcription, an enzyme called RNA polymerase binds to the DNA at the promoter region and synthesizes a single-stranded RNA molecule, known as the primary transcript or pre-mRNA. The RNA molecule is synthesized in the 5' to 3' direction and is complementary to the DNA template strand.

2. Translation:

Translation is the process by which the information in mRNA is used to synthesize proteins. It occurs in the cytoplasm, specifically on ribosomes. Ribosomes read the mRNA sequence in sets of three nucleotides called codons. Each codon corresponds to a specific amino acid or a stop signal. Transfer RNA (tRNA) molecules carry the corresponding amino acids to the ribosome, where they are linked together to form a protein chain according to the mRNA sequence.

3. Gene:

A gene is a segment of DNA that contains the instructions for building a specific protein or performing a specific function. Genes are located on chromosomes and are made up of coding regions called exons and non-coding regions called introns. Genes play a crucial role in determining an organism's traits and functions.

4. Codons:

Codons are three-letter sequences of nucleotides in mRNA that encode specific amino acids or act as signaling sequences. There are 64 possible codons, including 61 codons that code for amino acids and 3 codons that serve as stop signals to terminate protein synthesis. The genetic code, known as the genetic code, specifies the relationship between codons and amino acids.

5. Steps to Reduce RNA Length:

Before leaving the nucleus, the primary transcript undergoes processing steps to produce mature mRNA. These steps include:

- Capping: The addition of a modified guanine nucleotide (5' cap) to the 5' end of the mRNA molecule. This cap helps protect the mRNA from degradation and is involved in mRNA export from the nucleus.

- Polyadenylation: The addition of a string of adenine nucleotides (poly-A tail) to the 3' end of the mRNA molecule. This tail aids in mRNA stability and export from the nucleus.

- Splicing: The removal of introns, non-coding regions, from the primary transcript. The exons, coding regions, are joined together to form a continuous mRNA sequence.

6. Mature mRNA:

After the processing steps, the mRNA molecule is referred to as mature mRNA. It is shorter in length than the primary transcript and contains only the exons that code for proteins. Mature mRNA is transported out of the nucleus and serves as a template for protein synthesis during translation in the cytoplasm.

To know more about Transcription refer here:

https://brainly.com/question/32921071#

#SPJ11


Related Questions

Innate forms of behavior:
A) Unconditioned reflexes and their
classification,significance
B) Instincts, their types: phase origin of instinctive
activity, significance
C) The motivations, their phy

Answers

Innate forms of behavior: A) Unconditioned reflexes are the automatic response of an animal to a stimulus and their classification are autonomic reflexes, somatic reflexes, and complex reflexes, B) Instincts behaviors that are present in animals from birth. There are two types of instincts: fixed action patterns and innate releasing mechanisms. C) The motivations are internal factors that cause an animal to act in a certain way. There are three types of motivations: hunger, thirst, and sex,

Innate forms of behavior refer to natural behaviors that animals are born with, these behaviors are independent of any previous experience. There are three types of innate behaviors: unconditioned reflexes, instincts, and motivations. Unconditioned reflexes are the automatic response of an animal to a stimulus, these reflexes are classified into three categories: autonomic reflexes, somatic reflexes, and complex reflexes. Autonomic reflexes include heart rate and digestive system. Somatic reflexes involve skeletal muscles.

Complex reflexes are more complicated and involve a combination of autonomic and somatic reflexes. The significance of unconditioned reflexes is that they help animals react to stimuli in their environment, allowing them to survive and reproduce. Instincts are behaviors that are present in animals from birth. There are two types of instincts: fixed action patterns and innate releasing mechanisms. Fixed action patterns are behaviors that are unchangeable and are triggered by a specific stimulus. Innate releasing mechanisms are neural circuits that detect the presence of a specific stimulus and cause an animal to perform a specific behavior.

The phase origin of instinctive activity refers to the sequence of behaviors that make up a specific instinct. The significance of instincts is that they help animals survive and reproduce by providing them with the ability to perform specific behaviors without having to learn them. Motivations are internal factors that cause an animal to act in a certain way, there are three types of motivations: hunger, thirst, and sex. Hunger is the motivation to eat, thirst is the motivation to drink, and sex is the motivation to mate, the physiological mechanisms behind these motivations are regulated by the hypothalamus in the brain. So therefore these innate form of behavior form unconditioned reflexes, instincts, and motivations.

Learn more about innate at:

https://brainly.com/question/906706

#SPJ11

Label the veins of the head and neck as seen from an anterior view. Subclavian v. Left brachiocephalic V. 111 Zoom External jugular v. ne Azygos v. Internal jugular v. Reset

Answers

When viewed from the front, the veins of the head and neck can be identified as follows: the subclavian vein, left brachiocephalic vein, external jugular vein, azygos vein, and internal jugular vein. These veins play a crucial role in draining blood from the upper limbs, head, face, and neck.

From an anterior view, the veins of the head and neck can be labeled as follows:

1. Subclavian vein: The subclavian vein is located on both sides of the neck and forms a continuation of the axillary vein.

It receives blood from the upper limbs and combines with the internal jugular vein to form the brachiocephalic vein.

2. Left brachiocephalic vein: The left brachiocephalic vein is a large vein formed by the union of the left subclavian vein and the left internal jugular vein.

It is located on the left side of the neck and carries deoxygenated blood from the upper limbs and head.

3. External jugular vein: The external jugular vein is a superficial vein that can be seen on the side of the neck. It drains blood from the scalp and face and typically joins the subclavian vein.

4. Azygos vein: The azygos vein is a major vein located in the posterior mediastinum (chest region). While it is not visible from an anterior view, it is still an important vein to mention.

It receives blood from the thoracic and abdominal walls and contributes to the drainage of the upper body.

5. Internal jugular vein: The internal jugular vein is a large vein located deep within the neck. It receives blood from the brain, face, and neck, and combines with the subclavian vein to form the brachiocephalic vein.

It's worth noting that labeling the veins accurately requires a detailed understanding of human anatomy and the ability to visualize the specific structures.

It is always recommended to consult an anatomical diagram or seek professional guidance when studying or identifying veins.

To know more about veins refer here:

https://brainly.com/question/30550272#

#SPJ11

The 16S rRNA is the backbone of the 30S subunit true or false?

Answers

The given statement "The 16S rRNA is the backbone of the 30S subunit" is True. Explanation:Ribosomal RNA (rRNA) is an integral component of ribosomes. Ribosomes are the cellular organelles that synthesize proteins by translating messenger RNA (mRNA) into a sequence of amino acids.

The bacterial ribosome consists of two subunits that join during protein synthesis. The smaller subunit, the 30S subunit, contains 21 proteins and a single 16S rRNA molecule. The 16S rRNA molecule serves as a scaffold for the assembly of ribosomal proteins and is required for the recognition of the Shine-Dalgarno sequence, which is essential for initiating protein synthesis. The larger subunit, the 50S subunit, contains two rRNA molecules, the 23S and 5S rRNA molecules, and 34 proteins.

To know more about organelles visit:

https://brainly.com/question/2135497

#SPJ11

A synapomorphy that unites the Magnoliophyta clade is the... a. presence of wood. b. interactions with fungi. c. presence of flowers. d. leaf shape and size. e. absence of cones.

Answers

The correct answer for the above question is c. presence of flowers.

A synapomorphy is a shared derived characteristic that evolved in a common ancestor and is present in all its descendants. In the case of the Magnoliophyta clade, which consists of flowering plants (angiosperms), the presence of flowers is a synapomorphy that unites this group. Flowers are reproductive structures unique to angiosperms and play a crucial role in the sexual reproduction of these plants. They are responsible for attracting pollinators and facilitating the fertilization of ovules by pollen, leading to the formation of seeds. Therefore, the presence of flowers is a defining characteristic of the Magnoliophyta clade.

To learn more about synapomorphy, click here:

https://brainly.com/question/31959788

#SPJ11

A 2-year-old boy is diagnosed with staphylococcal scalded skin syndrome. In vitro studies show the causal organism to be resistant to penicillin. Which of the following mechanisms of action is most likely involved in this resistance? a. Mutation of the 30S ribosomal subunit b. Active efflux of the antibiotic from the bacteria c. Production of B-lactamase by the bacteria d. Decreased uptake of the antibiotic into the bacteria Oe. Mutation of the 50S ribosomal subunit

Answers

The most likely mechanism of resistance to penicillin in the staphylococcal scalded skin syndrome case is the production of β-lactamase by the bacteria.

The correct option is c. Production of β-lactamase by the bacteria

Staphylococcal scalded skin syndrome is caused by Staphylococcus aureus, and in this case, the organism is resistant to penicillin. Penicillin is a β-lactam antibiotic that targets the bacterial cell wall synthesis by inhibiting the enzymes involved in peptidoglycan cross-linking. One common mechanism of resistance to penicillin is the production of β-lactamase, an enzyme that breaks down the β-lactam ring in the antibiotic, rendering it inactive.

The production of β-lactamase by the bacteria, is the most likely mechanism involved in the resistance. The production of β-lactamase allows the bacteria to inactivate penicillin and other β-lactam antibiotics, providing them with a survival advantage in the presence of these drugs. This mechanism is a common resistance mechanism observed in many bacterial species.

Learn more about bacteria here:

https://brainly.com/question/15490180

#SPJ11

Which of the following can produce GTP or ATP? citric acid cycle but not oxidative phosphorylation neither oxidative phosphorylation nor citric acid cycle oxidative phosphorylation but not citric acid cycle both citric acid cycle and oxidative phosphorylation Question 4 Fatty acid is a substrate for 1) both respiration and glycolysis 2) respiration and not glycolysis 3) glycolysis and not respiration 4) neither respiration nor glycolysis Question 5 Pyruvate dehydrogenase, isocitrate dehydrogenase, and alpha-ketoglutarate dehydrogenase all catalyze which of the following types of reactions? 1) oxidative decarboxylation 2) citric acid cycle 3) substrate level phosphorylation 4) endergonic

Answers

The citric acid cycle and oxidative phosphorylation can produce GTP or ATP. The citric acid cycle (also known as the Krebs cycle or tricarboxylic acid cycle) is a metabolic pathway that is used to break down the acetyl-CoA into carbon dioxide (CO2) and energy-rich molecules.

These energy-rich molecules include GTP or ATP, NADH, and FADH2, which is later utilized by the electron transport chain to produce additional ATP. Therefore, both the citric acid cycle and oxidative phosphorylation are capable of producing GTP or ATP. Fatty acid can be used as a substrate for respiration and not glycolysis.

When fats are utilized to generate energy, they are first broken down into fatty acids, which are then transported to the mitochondria's matrix. Fatty acid molecules are then broken down via a process known as beta-oxidation, resulting in the formation of acetyl-CoA, which can enter the citric acid cycle. Pyruvate dehydrogenase, isocitrate dehydrogenase, and alpha-ketoglutarate dehydrogenase all catalyze oxidative decarboxylation reactions.

To know more about phosphorylation visit:

https://brainly.com/question/30278433?

#SPJ11

A_____________-- is a chemical or combination of chemicals that keeps a pH within a given range.

Answers

A buffer is a chemical or combination of chemicals that keeps a pH within a given range.What is a buffer?A buffer is a solution that contains a weak acid and its corresponding base.

A buffer is used to keep the pH of a solution relatively stable when small amounts of acid or base are added. A buffer can also be defined as a substance that helps regulate the pH of a solution by accepting or releasing hydrogen ions, thus keeping the pH stable.Chemical is any substance that has a defined composition. In other words, a chemical is always made up of the same "stuff." Some chemicals occur in nature, such as water. Other chemicals are manufactured, such as chlorine (used for bleaching fabrics or in swimming pools).

To know more about range visit:

https://brainly.com/question/28135761

#SPJ11

there is suposed to be a fourth answer? what is it
v. The intestinal enzymes (choose the correct ones) a. Are secreted into the lumen b. Are embedded on the luminal membrane c. Digest within luminal cells not in the lumen d. Digest carbohydrates e. Di

Answers

v. The intestinal enzymes: a. Are secreted into the lumen b. Are embedded on the luminal membrane c. Digest within luminal cells, not in the lumen d. Digest carbohydrates e. Digest proteins and lipids.

Enzymes are biological molecules, typically proteins, that act as catalysts in biochemical reactions. They facilitate and speed up chemical reactions within cells by lowering the activation energy required for the reaction to occur. Enzymes are highly specific or typically work on a particular substrate. They can be involved in various biological processes, such as digestion, metabolism, DNA replication, and cellular signaling. Enzymes are essential for maintaining homeostasis and proper functioning of cells and organisms. Factors like temperature, pH, and substrate concentration can affect enzyme activity.

Learn more about enzymes here:

https://brainly.com/question/17698798

#SPJ11

Gleason's "individualistic" hypothesis simply means: a. Species sharing the same habitat are bound to be together. b. Similar biotic components means that species occur in a given area. c. Species requiring the same factors live in a community. d. Species live in the same area because they require similar surroundings.

Answers

The correct answer is c. Species requiring the same factors live in a community.

Gleason's "individualistic" hypothesis, proposed by Henry Gleason, suggests that species co-occur in a given area based on their individual responses to environmental factors. According to this hypothesis, species in a community are not necessarily bound together or determined by similar biotic components. Instead, they are present because they individually respond to the specific abiotic (non-living) factors and requirements of the environment.

Option c. "Species requiring the same factors live in a community" aligns with Gleason's individualistic hypothesis, as it emphasizes that species coexist in a community based on their shared ecological needs and responses to environmental conditions.

Learn more about biotic components.

https://brainly.com/question/1162547

#SPJ11

Which technique is best used to count isolated colonies? Serial dilution Streak plate Pour plate

Answers

The stack plate method is commonly used to measure isolated colonies. A known volume of a diluted sample is added to a sterile Petri dish, followed by liquefied agar medium. The mixture is gently swirled to ensure even distribution of bacteria. As the agar solidifies, bacteria get trapped inside, allowing isolated colonies to form. This method is effective for samples with low bacterial counts and when measuring viable bacterial quantities.

El método de pila es el método más utilizado para medir colonias aisladas. En esta técnica, se agrega un volumen conocido de una muestra diluida an un recipiente de Petri sterile, luego se agrega un medio de agar liquefiado. La mezcla se agita suavemente para garantizar que las bacterias se distribuyan por todo el agar. As the agar solidifies, the bacteria become trapped inside the medium, allowing isolated colonies to form. It is easier to count individual colonies accurately because the colonies are distributed both on the surface and within the agar. Cuando se trata de muestras con números de bacterias bajos y cuando es necesario medir la cantidad de bacterias viables, el método de pila es particularmente efectivo.

LEARN MORE ABOUT method HERE:

https://brainly.com/question/32647607

#SPJ11

The Pour plate technique is the best technique used to count isolated colonies. The Pour plate technique is an effective laboratory technique that is used to isolate and count bacterial colonies on agar plates.

It is a dilution method that is used to measure the number of bacteria present in a solution. In this technique, a series of dilutions of a liquid culture of bacteria are prepared by adding a small amount of the culture to a series of sterile diluent tubes. Then, each dilution is plated onto an agar plate, and the plate is poured with melted agar, and it is rotated gently to mix the वand agar properly. When the agar cools and solidifies, the colonies grow both on the surface of the agar and throughout the depth of the agar.The Pour plate technique is useful in counting isolated colonies, because it allows the cells to distribute evenly and grow both in the depth and on the surface of the agar. As a result, it is easier to count isolated colonies using this technique because the colonies are more evenly distributed.

Learn more about laboratory here:

https://brainly.com/question/13251272

#SPJ11

(a) Mutations in two different genes (b) Mutations in the same gene 同 1 P AA bb Х aa BB P AA bb X AA bb II ਨੂੰ II 1 Complementation J] Noncomplementation 同 F1 F Aa Bb Genetic mechanism of AA bb complementation Genetic mechanism of noncomplementation Figure 2.21 Locus heterogeneity: Mutations in any one of many genes can cause deafness. (a) Two deaf parents can have hearing offspring if the mother and father are homozygous for recessive mutations in different genes. (b) Two deaf parents with mutations in the same gene may produce all deaf children.

Answers

When a set of parents that are homozygous for recessive mutations in different genes reproduce, two deaf parents can have hearing offspring. Two deaf parents with mutations in the same gene can produce all deaf children. This is due to the locus heterogeneity mechanism where mutations in any one of many genes can cause deafness.

Deafness is a disease that affects hearing. The genetic cause of deafness can be due to mutations in different genes, which can lead to deafness through locus heterogeneity, which is a mechanism where mutations in any one of many genes can cause deafness. When two homozygous recessive parents have mutations in different genes, the cross between them can result in hearing offspring. This is because the mutations are in different genes and therefore are not responsible for the same phenotype, which means there is no complementation between the genes.

The deafness caused by mutations in the same gene leads to the inability to produce a functional protein, resulting in deafness. This is the result of non-complementation because the genes are not able to interact with each other when they are in the same functional pathway. As a result, two deaf parents with mutations in the same gene will produce all deaf children.Therefore, the locus heterogeneity mechanism is responsible for the phenomenon where two deaf parents can have hearing children if the mutations are in different genes.

However, if the mutations are in the same gene, non-complementation occurs, leading to all deaf children. This indicates that the genetic mechanism of complementation and non-complementation can be used to determine whether deafness is caused by mutations in different genes or the same gene.

Deafness is caused by mutations in different genes or the same gene. The genetic mechanism of complementation and non-complementation can be used to determine whether deafness is caused by mutations in different genes or the same gene. When two homozygous recessive parents have mutations in different genes, they can still produce hearing offspring. On the other hand, two deaf parents with mutations in the same gene will produce all deaf children. Therefore, locus heterogeneity is responsible for the former, and non-complementation is responsible for the latter.

To know more about homozygous visit:

brainly.com/question/32552807

#SPJ11

Sphingolipids have which of the following chemical groups? Choose all that apply. A. sphingosine tail B. fatty acid tail C. polar head group
D. ringed structures

Answers

Sphingolipids are a class of lipids with an unusual structure composed of a long chain sphingoid base, a fatty acid, and a polar head group. So, options A, B, and C are correct.

Sphingolipids have a unique role in the body, contributing to membrane architecture and signalling. Sphingosine, a long-chain amino alcohol, is a critical component of sphingolipids, and it is a precursor to many sphingolipid metabolites.

Sphingolipids are named after their structure, which includes a long-chain sphingoid base backbone instead of a glycerol backbone like other membrane lipids. Sphingoid bases, the backbone of sphingolipids, are long-chain amino alcohols, such as sphingosine, which includes a long, unsaturated hydrocarbon chain with a trans-double bond near the middle of the molecule and a primary amino group at one end.

Sphingolipids have a hydrophobic tail with a single fatty acid molecule attached to the backbone, as well as a hydrophilic head group that protrudes from the membrane. The polar head groups are diverse, including sugars, phosphates, choline, and ethanolamine, among other things.

Sphingolipids have a sphingosine tail, a fatty acid tail, and a polar head group. Both A and B are correct as sphingosine tail and fatty acid tail are present. The polar head group is also present, and it can be composed of a variety of different molecules. Ringed structures are not one of the chemical groups of sphingolipids.

Learn more about Sphingolipids here:

https://brainly.com/question/31662027

#SPJ11

The common bug has a haploid number of 4 consisting of 3 long chromosomes (one metacentric, one acrocentric, and one telocentric) and 1 short metacentric chromosome. a) Draw and FULLY LABELLED typical primary spermatocyte in Metaphase I. Include chromosome labels. (6) b) Draw the resultant spermatozoa after Telophase II. (2)

Answers

a. The chromosome move to opposite poles in two cells each with half the diploid number. b. Each spermatozoon will have a complete set of the four types of chromosomes, maintaining the haploid number of 4.  

In primary spermatocytes during Metaphase I, the chromosomes undergo specific arrangements and alignments. In Telophase II, the final stage of meiosis, the spermatocytes complete the process of cell division, resulting in the formation of spermatozoa.

a) During Metaphase I of meiosis in primary spermatocytes, the chromosomes arrange themselves along the equatorial plate. To draw a fully labeled typical primary spermatocyte in Metaphase I, we need to depict the chromosomes and label them accordingly. The metacentric, acrocentric, telocentric, and short metacentric chromosomes should be clearly illustrated and labeled to represent the haploid number of 4.

b) After completing meiosis, the primary spermatocytes undergo Telophase II, resulting in the formation of spermatozoa. In this stage, the chromosomes have separated and migrated to opposite poles of the cell. The cell then undergoes cytokinesis, leading to the formation of two daughter cells, each containing half the number of chromosomes. To draw the resultant spermatozoa after Telophase II, two cells should be depicted, each with half the number of chromosomes (2 in this case), and labeled as spermatozoa.

It is important to note that the actual arrangement and appearance of the chromosomes may vary in the common bug, but the general principles of chromosome behavior during meiosis remain consistent.

Learn more about meiosis here

https://brainly.com/question/30970004

#SPJ11

Discuss using examples that targeting the immune system is leading to breakthroughs in the fight against human disease including
Autoimmune diseases - which can be organ-specific or systemic
Cancer

Answers

Targeting the immune system has led to breakthroughs in the fight against autoimmune diseases and cancer.

1. Autoimmune Diseases: Autoimmune diseases occur when the immune system mistakenly attacks healthy cells and tissues in the body. Targeting the immune system in these diseases involves modulating immune responses to prevent excessive inflammation and tissue damage.

For example, in organ-specific autoimmune diseases like multiple sclerosis, therapies such as monoclonal antibodies Crohn's disease that target specific immune cells or cytokines have shown efficacy in reducing disease activity and slowing progression. In systemic autoimmune diseases like rheumatoid arthritis, drugs that target immune cells or pathways involved in inflammation have been successful in managing symptoms and preventing joint damage.

2. Cancer: The immune system plays a crucial role in identifying and eliminating cancer cells. However, cancer cells can develop mechanisms to evade immune recognition. Immunotherapy approaches, such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have emerged as powerful tools in cancer treatment. Immune checkpoint inhibitors block proteins that prevent immune cells from attacking cancer cells, while CAR T-cell therapy involves engineering a patient's T cells to specifically recognize and kill cancer cells. These approaches have shown remarkable success in treating various cancers, including melanoma, lung cancer, and hematological malignancies.

In both cases, targeting the immune system holds great potential for improving patient outcomes and achieving breakthroughs in disease management. However, further research and development are still needed to optimize these therapies and expand their applications to a wider range of diseases.

Learn more about Crohn's disease  here

https://brainly.com/question/28284062

#SPJ11

1. Blood poisoning by bacterial infection and their toxins called as
A. Peptic Ulcer B. Blood carcinoma C. Septicemia D. Colitis
2. Define UL?
A. Upper Intake Level B. Tolerable Upper Intake Levels C. Upper Level D. Under Intake Level
3. Proteins are made of monomers called
A. Amino acids B. Lipoprotein C. Glycolipids D. Polysaccharides
4. Most of the body fat in the adipose tissue is in the form of
A. Amino acids B. Fatty acids C. Triglycerides D. Glycogen

Answers

1. Blood poisoning by bacterial infection and their toxins called as septicemia.Sepsis is a serious bacterial infection of the blood that can quickly lead to septic shock, which is a life-threatening condition.2.

UL stands for Upper Intake Level. The Tolerable Upper Intake Level (UL) is the maximum daily amount of a nutrient that a person can consume without adverse effects. The UL is determined by scientific research and is intended to be used as a guideline to help individuals avoid overconsumption of nutrients that can lead to health problems.3. Proteins are made of monomers called Amino acids.

Proteins are made up of long chains of amino acids that are linked together by peptide bonds. The sequence of amino acids determines the protein's three-dimensional structure and its biological function.4. Most of the body fat in the adipose tissue is in the form of Triglycerides. Triglycerides are a type of fat that is stored in adipose tissue and used by the body for energy.

They are composed of three fatty acid molecules and one glycerol molecule. Triglycerides are an important source of energy for the body, but when they are present in high levels in the blood, they can increase the risk of heart disease.

To know more about . Blood visit:

https://brainly.com/question/26557101

#SPJ11

A horse breeder has identified that some of their horses produce much more muscle than the others. The heavily muscled horses are all related, leading to the breeder believing the cause is genetic. Suggest an investigation to identify the gene responsible for the phenotype, assuming there is a single gene involved. Take into account both practical and ethical aspects when suggesting an experimental approach.

Answers

The horse breeder has identified that some of their horses produce significantly more muscle than the others. All heavily muscled horses are related, and the breeder thinks the cause is genetic.

Therefore, a suitable investigation could be undertaken to identify the gene responsible for this phenotype. Suppose a single gene is involved. There are several practical and ethical aspects to consider when proposing an experimental approach. These aspects include the cost of the analysis, the impact on animal welfare, and the need for the outcomes to be beneficial to society.It is essential to check the genotype of the parent horses to see if they have homozygous or heterozygous alleles for the muscle phenotype. After this is established, the parent horses are chosen based on their genotype.

We can also select the phenotype-positive horse of the next generation. The horse can now be bred with a phenotype-negative animal in a breeding program that should produce a 1:1 ratio of phenotype-positive to negative offspring.

To know more about breeder visit:

https://brainly.com/question/3680636

#SPJ11

5. You are following a family that has a reciprocal translocation, where a portion of one chromosome is exchanged for another, creating hybrid chromosomes. In some cases of chronic myelogenous leukemia, patients will have a translocation between chromosome 9 and 22, such that portions of chromosomes 9 and 22 are fused together. You are choosing between performing FISH and G-banding, which technique is best used to find this translocation, and why did you choose this technique?
6. What type of nucleotide is necessary for DNA sequencing? How is it different structurally from a deoxynucleotide, and why is this difference necessary for sequencing? Below is a Sequencing gel. Please write out the resulting sequence of the DNA molecule. Blue = G, Red C, T=Green, A = Yellow (Please see below for the gel).

Answers

The best technique to detect the translocation in the family with reciprocal translocation would be Fluorescence In Situ Hybridization (FISH).

FISH is specifically designed to detect chromosomal abnormalities and rearrangements, such as translocations. It uses fluorescently labeled DNA probes that can bind to specific target sequences on the chromosomes. In the case of the translocation between chromosomes 9 and 22, FISH probes can be designed to specifically bind to the hybrid chromosomes formed by the fusion of these two chromosomes. By visualizing the fluorescent signals under a microscope, FISH allows for the direct detection and localization of the translocation event.

The nucleotide necessary for DNA sequencing is a deoxynucleotide triphosphate (dNTP). Structurally, a deoxynucleotide consists of a deoxyribose sugar, a phosphate group, and one of the four nitrogenous bases: adenine (A), cytosine (C), guanine (G), or thymine (T). The key difference between a deoxynucleotide and a nucleotide used in RNA (ribonucleotide) is the absence of an oxygen atom on the 2' carbon of the sugar in deoxynucleotides. This difference makes deoxynucleotides more stable and less susceptible to degradation.

During DNA sequencing, the incorporation of dNTPs is crucial. Each dNTP is complementary to the template DNA strand at a specific position. The DNA polymerase enzyme incorporates the appropriate dNTPs according to the template sequence, and the sequencing reaction proceeds by terminating the DNA synthesis at different points. By using dideoxynucleotides (ddNTPs) that lack the 3'-OH group necessary for further DNA elongation, the resulting DNA fragments can be separated by size using gel electrophoresis, as shown in the sequencing gel provided. The sequence of the DNA molecule can be determined based on the order of the colored bands, with blue representing G, red representing C, green representing T, and yellow representing A.

Learn more about here:

https://brainly.com/question/31385011

#SPJ11

Discuss lengthily homeostatic processes for thermoregulation
involve form, function, and behavior.

Answers

Homeostatic processes for thermoregulation involve a combination of form, function, and behavior to maintain a stable internal body temperature in the face of changing environmental conditions. These processes are essential for the proper functioning of organisms and play a crucial role in their survival.

In terms of form, organisms have evolved various anatomical adaptations that aid in thermoregulation. These include features like fur or feathers, which act as insulation to reduce heat loss, and specialized structures like sweat glands or panting mechanisms, which facilitate heat dissipation through evaporative cooling. Additionally, structures such as the circulatory system help distribute heat throughout the body to maintain a uniform temperature.

The function of thermoregulation involves physiological processes that regulate heat production and loss. For example, when body temperature drops below a set point, thermoreceptors in the skin and organs send signals to the hypothalamus, which acts as the body's thermostat. The hypothalamus initiates responses such as vasoconstriction, shivering, or hormone release to increase heat production and retain warmth. Conversely, when body temperature rises, mechanisms like vasodilation, sweating, or seeking shade help dissipate heat and cool the body down.

Behavior also plays a vital role in thermoregulation. Organisms exhibit behaviors like seeking shade or sun, adjusting posture or orientation to control exposure to heat or cold, and modifying their activity levels based on environmental temperature. Migration, hibernation, or seeking shelter are behavioral strategies employed to avoid extreme temperatures and maintain thermal homeostasis.

Overall, homeostatic processes for thermoregulation involve a complex interplay between form, function, and behavior. An understanding of these mechanisms allows organisms to adapt to a wide range of environmental conditions and maintain a stable internal temperature conducive to their survival and physiological processes.

To know more about Homeostatic

brainly.com/question/13062984

#SPJ11

The ventriculus and the ceacae collectively form which part of
the insect alimentary canal?

Answers

The ventriculus and the caeca collectively form the midgut of the insect alimentary canal.

The insect alimentary canal is divided into three main sections: the foregut, midgut, and hindgut. The foregut is responsible for ingestion and storage of food, while the hindgut is involved in the absorption of water and elimination of waste.

The midgut, where the ventriculus and the caeca are located, is primarily responsible for digestion and absorption of nutrients.

The ventriculus, also known as the gastric caeca or gastric pouches, is a specialized part of the midgut in insects. It is responsible for the secretion of digestive enzymes and the breakdown of food into simpler molecules that can be absorbed.

The ventriculus is often lined with microvilli to increase the surface area for nutrient absorption.

The caeca, on the other hand, are blind-ended tubes or pouches that extend from the ventriculus. They increase the surface area available for digestion and absorption by providing additional space for enzyme secretion and nutrient absorption.

Together, the ventriculus and the caeca make up the midgut of the insect alimentary canal. This is where the majority of digestion and absorption of nutrients takes place, ensuring proper nourishment for the insect's physiological functions and growth.

Know more about the alimentary canal click here:

https://brainly.com/question/9120234

#SPJ11

c) Why does it appear that increasing levels of rho protein lowers the rate of incorporation of nucleotides into RNA? Explain by describing what's happening at the molecular level. innove the riho at

Answers

The

increasing levels of rho protein will lower the rate of incorporation of nucleotides into RNA.

Rho protein is a transcription termination factor in prokaryotes that can stop the process of transcription. When rho protein levels are increased, it results in a decrease in the rate of incorporation of nucleotides into RNA.

The rho protein will then push the RNA polymerase off the DNA template, releasing the newly synthesized RNA molecule and terminating transcription. However, if the level of rho protein increases, it will bind to the RNA transcript more often, leading to premature termination of RNA synthesis.

This will result in incomplete RNA transcripts, which are less efficient in protein synthesis and lead to a decrease in the rate of incorporation of nucleotides into RNA. The

increasing levels of rho protein will lower the rate of incorporation of nucleotides into RNA.

To know more about protein visit:

https://brainly.com/question/31017225

#SPJ11

Define and compare non-Mendelian phenotypic ratios produced by different allelic interactions: multiple alleles, incomplete dominance, codominance, pleiotropy. Describe and give examples of Complementary genes and Epistasis, and their altered Mendelian Ratios. 3. Predict inheritance patterns in human pedigrees for recessive, dominant, X-linked recessive, and X-linked dominant traits. DRAW an example of each of the four types of pedigrees.

Answers

Non-Mendelian phenotypic ratios arise from different allelic interactions. Multiple alleles have more than two options for a given gene, incomplete dominance results in an intermediate phenotype, codominance shows simultaneous expression of both alleles, and pleiotropy occurs when a single gene influences multiple traits. Complementary genes involve two gene pairs working together to produce a specific phenotype, while epistasis occurs when one gene masks or affects the expression of another gene, altering the expected Mendelian ratios.

Multiple alleles: In this case, a gene has more than two possible alleles. A classic example is the ABO blood group system, where the A and B alleles are codominant, while the O allele is recessive to both.Incomplete dominance: When neither allele is completely dominant over the other, an intermediate phenotype is observed. For instance, in snapdragons, the cross between a red-flowered (RR) and white-flowered (rr) plant produces pink-flowered (Rr) offspring.Codominance: Here, both alleles are expressed simultaneously, resulting in a distinct phenotype. An example is the ABO blood group system, where individuals with AB genotype express both A and B antigens.Pleiotropy: It occurs when a single gene influences multiple traits. An example is Marfan syndrome, where mutations in the FBN1 gene affect connective tissues, leading to various symptoms like elongated limbs, heart issues, and vision problems.

Complementary genes and epistasis involve interactions between different genes:

Complementary genes: Two gene pairs complement each other to produce a specific phenotype. An example is the color of wheat, where both gene pairs need to have at least one dominant allele to produce a purple color. Epistasis: One gene affects the expression or masks the effect of another gene. For example, in Labrador Retrievers, the gene responsible for coat color is epistatic to the gene controlling pigment deposition, resulting in different coat color ratios than expected in a Mendelian inheritance pattern.

Human pedigrees for inheritance patterns:

Recessive traits: In a recessive trait, individuals must inherit two copies of the recessive allele (aa) to display the trait. The trait can skip generations when carriers (Aa) are present.Dominant traits: In a dominant trait, individuals with at least one copy of the dominant allele (Aa or AA) will exhibit the trait. The trait may appear in every generation.X-linked recessive traits: Recessive traits carried on the X chromosome affect males more frequently. Affected fathers pass the trait to all daughters (carrier) but not to sons.X-linked dominant traits: Dominant traits carried on the X chromosome affect males and females differently. Affected fathers pass the trait to all daughters and none to sons, while affected mothers pass the trait to 50% of both sons and daughters.

To know more about Pleiotropy click here,

https://brainly.com/question/28903841

#SPJ11

1. We sleep because we need to hide ourselves away from danger. A) True B) False 2. During sexual activity more dopamine is released in the brain. A) True B) False

Answers

False and True

We sleep primarily to fulfill physiological needs, such as restoring and rejuvenating our bodies, consolidating memories, and supporting overall cognitive function. While sleep can contribute to our safety by allowing us to rest and recover, it is not primarily driven by a need to hide ourselves from danger. Sleep serves important biological functions unrelated to danger avoidance.During sexual activity, the brain releases various neurotransmitters and hormones, including dopamine. Dopamine is associated with pleasure and reward, and its release during sexual activity contributes to feelings of pleasure and satisfaction. It plays a role in the brain's reward system, reinforcing behaviors that are essential for survival and reproduction. So, it is true that more dopamine is released in the brain during sexual activity.

Learn more about Dopamine-

https://brainly.com/question/18452559

#SPJ11

Since most cell membranes are not generally permeable to sodium, this movement of potassium combined with the fact that the sodium potassium pump moves more sodium than potassium starts to generate an electrical gradient across the membrane. The inside of the cell becomes negative relative to the outside of the cell. Which direction will the electrical gradient move potassium? 13. When the two gradients move potassium at the same rate the cell reaches equilibrium with a charge of -70mV (RMP). Since most membranes are permeable to chloride, which direction will the concentration gradient push chloride?

Answers

The direction of the electrical gradient will move potassium ions into the cell. concentration of chloride is higher outside the cell, the gradient will push chloride ions into the cell.

When the movement of potassium ions and the activity of the sodium-potassium pump combine, they create an electrical gradient across the cell membrane. This occurs because most cell membranes are not permeable to sodium, resulting in the pumping of more sodium out of the cell than potassium in. As a result, the inside of the cell becomes negatively charged relative to the outside.

The electrical gradient affects the movement of potassium ions. Since potassium carries a positive charge, it will be attracted to the negative interior of the cell. Therefore, the electrical gradient will move potassium ions into the cell.

On the other hand, most cell membranes are permeable to chloride. The concentration gradient of chloride ions determines their movement. If the concentration of chloride is higher inside the cell, the concentration gradient will push chloride ions out of the cell. Conversely, if the concentration of chloride is higher outside the cell, the gradient will push chloride ions into the cell.

Learn more about cell membranes here:

https://brainly.com/question/13524386

#SPJ11

How are proteins inserted into the endoplasmic
reticulum membrane and how does this compare to the way membrane
proteins are inserted into the ER membrane?

Answers

Proteins inserted into the endoplasmic reticulum (ER) membrane and membrane proteins insertion into the ER membrane are two distinct processes.

Membrane proteins inserted into the ER membrane are somewhat more complicated than proteins inserted into the ER membrane. Proteins are inserted into the ER membrane through a process known as translocation, which involves co-translational and post-translational mechanisms.

Co-translational mechanism: During protein synthesis, nascent proteins are moved towards the lumen of the ER by the ribosome, which is docked at the ER membrane. This process is known as co-translational translocation.

Post-translational mechanism: Post-translational translocation is a process in which completely formed proteins are transferred to the lumen of the ER. Chaperones and Sec61 complex are utilized to achieve this. The Sec61 complex, which is a protein translocation complex, is crucial in both mechanisms, according to scientists.

During co-translational translocation, the complex aids in the translocation of newly synthesized polypeptides as the ribosome moves along the mRNA molecule. The Sec61 complex, on the other hand, performs a similar task in post-translational translocation.

In post-translational translocation, translocation channels are formed in the membrane, allowing proteins to be transported into the lumen.

Learn more about the endoplasmic reticulum here:

https://brainly.com/question/25750008

#SPJ11

If you add more Didinium what happens to the Paramecium species in the microcosm over time? Select one:
A. The abundance of Paramecium species increases over time, with more Didinium present.
B. The abundance of Paramecium bursaria decreases more than the abundance of Paramecium aurelia.
C. The abundances of both Paramecium drop rapidly and they disappear completely in only a short time, even with only a few more Didinium added.
D. None of the above

Answers

The correct answer is D. None of the above.

The relationship between Didinium and Paramecium species is that Didinium is a predator that preys on Paramecium.

However, the specific outcome of adding more Didinium to the microcosm would depend on various factors such as the initial population sizes, resource availability, and ecological dynamics.

It is not possible to determine the exact outcome without additional information. The effect of adding more Didinium on the Paramecium species could lead to changes in their abundances, but the specific outcome could vary and would require a detailed understanding of the ecological interactions and conditions in the microcosm.

Learn more about  Paramecium    here:

https://brainly.com/question/13944425

#SPJ11

Discussion Board After initial prenatal screening, you are told that you are at risk for delivering a child with Down Syndrome. You are sent to the genetic counselor and they inform you of your options for further testing State your reasons for proceeding with testing or not testing regardless of whether or not you decide to test, what genetic tests could be done. Which test would you choose and why?

Answers

Reasons for proceeding with testing: Concern for the health and well-being of the child, desire for accurate information, ability to make informed decisions about future care and planning.

Reasons for not testing: Personal beliefs, acceptance of any outcome, emotional readiness, potential risks associated with testing.

Genetic tests that could be done: Non-invasive prenatal testing (NIPT), combined first-trimester screening, chorionic villus sampling (CVS), amniocentesis.

Test choice and rationale: The choice of which test to pursue depends on factors such as timing, accuracy, and individual preferences. Non-invasive prenatal testing (NIPT) is a common choice due to its high accuracy and low risk. It involves a simple blood test and can detect chromosomal abnormalities like Down syndrome by analyzing fetal DNA present in the maternal bloodstream. NIPT has a low risk of miscarriage compared to invasive procedures like CVS or amniocentesis.

Choosing to proceed with testing provides more information about the baby's health, which can help in making informed decisions regarding medical interventions, early interventions, and support systems. It allows for appropriate prenatal care and planning to ensure the best possible outcome for the child and family. However, the decision to test or not ultimately depends on personal beliefs, values, emotional readiness, and the ability to cope with the potential outcomes. It is important to discuss these options with a genetic counselor to fully understand the benefits, limitations, and potential risks associated with each test.

To learn more about Down Syndrome, here

https://brainly.com/question/32223588

#SPJ4

Seek out information on what types of roles our gut flora or gut microbes play regarding our health and well-being.

Answers

Our gut flora or gut microbes play an important role in our overall health and well-being. These microbes, which are found in our digestive system, help break down the food we eat and support the functioning of our immune system, among other things. In this answer, I will discuss the roles that gut flora plays in our health in more detail.

One of the key roles of gut flora is to support our digestion. These microbes help break down complex carbohydrates, proteins, and fats into smaller, more easily digestible molecules. They also produce enzymes that we need to digest certain types of food, such as lactose in dairy products.

Another important function of gut flora is to support our immune system. These microbes help train our immune system to recognize and respond to harmful pathogens. They also produce molecules that help regulate inflammation in the body, which is important for maintaining good health.

Gut flora has also been linked to a number of chronic diseases, including obesity, type 2 diabetes, and heart disease. Research has shown that imbalances in gut flora can lead to inflammation, insulin resistance, and other metabolic problems that can contribute to these conditions.

In addition to these health benefits, gut flora has also been shown to play a role in our mental health. Research has linked imbalances in gut flora to a number of mental health disorders, including depression and anxiety.

Overall, gut flora plays a critical role in our health and well-being. By supporting our digestion, immune system, and mental health, these microbes help keep us healthy and strong. If you want to maintain good gut health, it is important to eat a healthy diet that is rich in fiber and fermented foods, avoid unnecessary antibiotics, and seek out other ways to support your gut health, such as probiotic supplements.

To know more about flora visit:

https://brainly.com/question/12993029

#SPJ11

how
does heat stress cause Cerebral blood flow reduction

Answers

Heat stress refers to a condition in which body temperature increases beyond the normal range, making it hard for the body to regulate its temperature. Heat stress affects different organs in the body, including the brain. A reduction in cerebral blood flow is a typical response to heat stress.

Cerebral blood flow (CBF) refers to the amount of blood flowing through the brain's vessels, supplying oxygen and glucose to the brain tissues. Blood flow is essential for the brain's metabolic activity. It ensures that brain cells get the nutrients and energy needed to function.

A decrease in CBF affects brain functions and may lead to various cognitive impairments and neurological disorders.The brain controls thermoregulation, which is a process responsible for maintaining a stable body temperature. In response to heat stress, the brain activates the thermoregulatory system to help regulate body temperature. The thermoregulatory system triggers sweating and vasodilation to increase heat loss. However, excessive heat stress may result in cerebral blood flow reduction.

During heat stress, the body tries to maintain its internal temperature by vasodilation (widening of the blood vessels) and sweating. This process may lead to a reduction in blood flow to the brain. The brain reduces blood flow to non-essential regions of the brain to ensure the vital areas of the brain receive enough blood flow to function correctly.

Heat stress is a physical condition that occurs when the body temperature increases beyond the normal range. The body loses its ability to regulate its temperature, resulting in various physiological responses that affect different organs in the body. One of the typical responses to heat stress is a reduction in cerebral blood flow. Cerebral blood flow (CBF) is essential for the brain's metabolic activity.

A decrease in CBF may lead to cognitive impairment and neurological disorders.The reduction in cerebral blood flow during heat stress is due to the thermoregulatory system's activation, which is responsible for maintaining body temperature.

The thermoregulatory system triggers sweating and vasodilation to increase heat loss. Vasodilation causes the blood vessels to widen, which may lead to a reduction in blood flow to the brain. However, the brain tries to maintain its internal environment by reducing blood flow to non-essential regions of the brain to ensure the vital areas of the brain receive enough blood flow to function correctly.

Heat stress causes cerebral blood flow reduction due to the thermoregulatory system's activation. The body tries to maintain its internal temperature by vasodilation, which leads to a reduction in blood flow to the brain. However, the brain tries to maintain its functions by reducing blood flow to non-essential regions to ensure the vital areas receive enough blood flow to function correctly.

To know more about Cerebral blood flow:

brainly.com/question/31566717

#SPJ11

Endocrine System A) (25 points) List ONE hormone produced by each of the following: a) Follicular cells of the thyroid gland b) Zona glomerulosa of the adrenal gland c) Chromaffin cells of the adrenal

Answers

The Endocrine System is a complex system of glands and hormones that regulates various physiological processes within the body. The hormones produced by the Endocrine System act as chemical messengers that are released into the bloodstream and transported to various organs and tissues in the body.

The hormones produced by the Endocrine System play a vital role in regulating metabolism, growth, development, and other physiological processes. Therefore, the hormones produced by the Endocrine System are extremely important for maintaining the proper functioning of the body.

The requested hormones produced by various Endocrine glands are as follows:

a) Follicular cells of the thyroid gland - Thyroxine (T4) hormone is produced by follicular cells of the thyroid gland. T4 plays a crucial role in regulating metabolism, body temperature, and other physiological processes within the body.

b) Zona glomerulosa of the adrenal gland - Aldosterone hormone is produced by Zona glomerulosa of the adrenal gland. Aldosterone hormone is responsible for regulating blood pressure and electrolyte balance in the body.

c) Chromaffin cells of the adrenal - Epinephrine hormone (also called Adrenaline) is produced by Chromaffin cells of the adrenal gland. Epinephrine hormone plays a crucial role in the "fight or flight" response of the body, which is a response to stress or danger.

Learn more about Endocrine system:

brainly.com/question/4455660

#SPJ11

Which of these is NOT a GM crop trait (for food that can be purchased in U.S. grocery stores)? A) Insect resistance B) Better taste C) Herbicide tolerance D) Virus resistance

Answers

Better taste is not a trait commonly associated with genetically modified (GM) crops that can be purchased in U.S. grocery stores. The correct answer is option b.

While GM crops are often engineered for traits such as insect resistance, herbicide tolerance, and virus resistance, improving taste is not a primary focus of genetic modification.

The main objectives of GM crop development typically revolve around enhancing agronomic characteristics, increasing yield, reducing crop losses, or improving resistance to pests and diseases.

However, it's worth noting that conventional breeding techniques can be used to develop crops with improved taste, and these non-GM crops may be available in grocery stores.

The correct answer is option b.

To know more about grocery stores refer to-

https://brainly.com/question/31524354

#SPJ11

Other Questions
A small bird of mass 50 g is sitting on a wire of length 2 m and mass 150 g. A current of 4.0 A is passing through the wire. A magnetic field B perpendicular to the wire is applied in the region so that the force due to magnetic field balances the weight of the bird and the wire. What is the magnitude of B? Polyethylene (PE), C2H4 has an average molecular weight of 25,000 amu. What is the degree of polymerization of the average PE molecule? Answer must be to 3 significant figures or will be marked wrong. Atomic mass of Carbon is 12.01 Synthesis is defined as a. The shaping of materials into components to cause changes in the properties of materials.b. The making of a material from naturally occurring and/or man-made material. c. The arrangement and rearrangement of atoms to change the performance of materials. d. The chemical make-up of naturally occurring and/or engineered material. 1.What is the main difference between gymnoperms and angiosperms? What do they have in common? 2.You remove a cell from a four-cell embryo of a roundworm. Explain what you expect to happen. 3.Describe the life cycle of an insect with complete metamorphosis and provide an example. (3.5 marks)4.Describe the excretory system of insects. (5 marks) with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy. Which of the following is a characteristic of all members of the fungi kingdom? O prokaryotic O unicellular O heterotrophic O autotrophic 2 pts What kiciu us intermolecular forces act between an argon atom and a carbon dioxide molecule? Note: If there is miere than one type of intermolecular force that acts, be sure to list them all, with a c This is precalculus, not acalculus.Please show me the work in precalculus, Thank youSketch a graph of \[ f(x)=\frac{(x-1)(x+2)}{(x+1)(x-4)} \] State the domain and range in interval notation. 6. A quantum particle is described by the wave function y(x) = A cos (2x/L) for -L/4 x L/4 and (x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of findin A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension. A force of 10,000 N produces a reduction in specimen diameter of 2 10^-3 mm. The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa. What is the Poisson's ratio of this material? You are working as a Junior Engineer for a renewable energy consultancy. Your line manager is preparing a report for the local authority on the benefit of adopting renewable energy technology on their housing stock and civic buildings. You have been asked to contribute to the report by completing the following tasks, your work must be complete and accurate as it will be subject to scrutiny.ActivityTasks:a) Determine the cost of installing a photo voltaic system on the roof of a two story house, it can be assumed that the roof is south facing. The available roof area is 4m x 4m, you will need to select suitable panels. Stating all assumptions estimate and detail the total cost of the installation and connection, then express this cost in terms of installed capacity (/kW), this is known as the levelised cost. In a binary star system, Star 1 has a mass 2 x 1030 kg, and Star 2 has a mass 1 x 1030 kg. At a certain instant (r = 0). Star 1 is at the origin with zero velocity, and Star 2 is at (-1.50 x 10,0,0) m with a velocity (0.-3.50 x 10,0) m/s. Later, at = 4.5 x 10 s. Star 1 has a velocity (-1.12453 x 104, -6.76443 x 10, 0) m/s. Define the system as Star 1 and Star 2. It is an isolated system. Part 1 Atr= 0, what is the total kinetic energy of the system? Ktotal = Save for Later Part 2 Atr=0, what is the translational kinetic energy of the system? Kirans = Save for Later Attempts: 0 of 3 used Attempts: 0 of 3 used Submit Answer Submit Answer Part 3 Att = 0, what is the relative kinetic energy of the system? Kret = Save for Later Part 4 Atr= 4.5 x 10 s, what is the total kinetic energy of the system? Kot = Save for Later Part 5 At 4.5 x 10 s, what is the translational kinetic energy of the system? Kirans = Save for Later Attempts: 0 of 3 used Attempts: 0 of 3 used Attempts: 0 of 3 used Submit Answer Submit Answer Submit Answer Part 6 Att = 4.5 x 10 s, what is the relative kinetic energy of the system? Krel = Save for Later Part 7 What is the change in gravitational potential energy of the system from/= 0 tor = 4.5 x 10 s? AU = eTextbook and Media Attempts: 0 of 3 used Save for Later Attempts: 0 of 3 used Submit Answer Submit Answer Please help! I thought it would be sagittal and coronal, but thesystem told me my answer was "partially correct". Please give mesome insight!If you needed to visualize at least one lung, part of the liver and stomach, which of the following body planes could you use? [mark all correct answers] a. Sagittal b. coronal c. transverse d. obliqu True or False: A clear temporal relationship between exposureand disease is an advantage of cross sectional studies.Group of answer choicesA. TrueB. False identify this rock. what is the texture? which type ofmagma/lava did this rock cool from? what was the rate ofcooling? List three (3) basic attributes required for the operation of PV Cells.What technology is used to generate electricity from solar power? Which of the following is NOT a function of the plasmamembrane?Group of answer choicesIt regulates which substances can enter or leave the cell.It receives information from outside the cell and tr State the domain of \( f(x)=-6 \sqrt{5 x+1} \). Enter your answer using interval notation. The domain is Mirabeau B. Lamar, Texass second president, believed that a. Texas was a sinful nation; he pursued abolitionist policies b. Texas would collapse; he fled to New Orleans in anticipation c. Texas should be an empire; he pursued aggressive policies against Mexico and the Indians d. Texas was better off in Sam Houstons hands; he continued Houstons policies 6 1 point Choose the following options which indicate pleiotropy: A mutant allele at one locus X creates mice with brown fur, while an allele at locus Y creates mice with red eye color. When mice are Papineau argues that the ability to form long-term intentions is one of the features that distinguishes humans from other animals. a.True b.False