what mass of cu(s) is electroplated by running 23.0 a of current through a cu2 (aq) solution for 4.00 h ? express your answer to three significant figures and include the appropriate units.

Answers

Answer 1

Electrolysis is a process that is used to electric current is passed in a solution. The mass of cu(s) is electroplated by running 23.0 a of current through a cu2 (aq) solution for 4.00 h is equals to 64 grams.

Electrolysis is a process in which an electric current is passed in a solution. Solving electrolysis problem is more on stoichiometric calculations are, coulombs = amperes x time

1 Faraday = 96,485 coulombs

1 Faraday = 1 mole of electrons

We have to determine the mass of cu(s) is electroplated by running 23.0 a of current through a Cu (aq) solution for 4.00 h. Half reaction, [tex]Cu^{2+ } + 2e^{-} --> Cu[/tex]

Current, I = 23.0 A

Time, t = 4 hours = 4 × 3600 seconds

= 14400 seconds

Calculate the moles of Copper, n=Q ×z× F

where, Q = total charge in coulombs

F = Faraday constant = 96485 per molez = the number of electrons in the half-cell reaction = 2

Computing for Q = 13.5coulomb sec (14,400 sec) = 194,400 coulomb-sec²

So, n = 194,400 coulomb-s² /(96485 coulomb)

= 1.007 moles Cu

Molar mass = 63.55 grams per mole

Molar mass is defined as the mass of substance divided by moles of substance.

=> 63.55 grams per mole = m/ 1.007 moles Cu

=> m = 63.55 g × 1.007

=> m = 64 grams

Hence, required value is 64 grams.

For more information about electrolysis, refer:

https://brainly.com/question/24063038

#SPJ4


Related Questions

What is the total number of oxygen atoms on the right-hand side of this chemical equation? 3 ΗNO, (α )- ΗNO, (α g) +H,0()+2NO (g)

Answers

The total number of oxygen atoms on the right-hand side of the balanced equation is 8.

The compound condition gave isn't adjusted, so it should be adjusted first prior to deciding the absolute number of oxygen iotas on the right-hand side. Here is the fair condition:

3 HNO2 (α) + H2O (l) → 2 NO (g) + 2 HNO3 (aq)

Presently, we can count the absolute number of oxygen particles on the right-hand side of the situation. There are two NO particles, every one of which contains one oxygen iota, for a sum of 2 oxygen molecules.

There are likewise two HNO3 particles, every one of which contains three oxygen iotas, for a sum of 6 oxygen molecules. So the complete number of oxygen iotas on the right-hand side of the situation is:

2 + 6 = 8

Thusly, there are a sum of 8 oxygen particles on the right-hand side of the reasonable substance condition.

To learn more about balanced chemical equation, refer:

https://brainly.com/question/17036425

#SPJ4

2. calculate the ph of a solution prepared by mixing 25.0 ml of 0.60 m hc2h3o2 and 15.0 ml of 0.60 m naoh?

Answers

The Ph of a solution is 8.46

The reaction is:

[tex]HC_2H_3O+2 + NaOH - > NaC_2H_3O_2 + H_2O[/tex]
This is a neutralization reaction, where the acid HC2H3O2 reacts with the base NaOH to form the salt NaC2H3O2 and water.

Next, we need to calculate the amount of each reagent used in the reaction. To do this, we use the equation:

Molarity (M) = moles (mol) / volume (L)

For [tex]HC_2H_3O_2[/tex]:

M = 0.60 M

Volume = 25.0 ml = 0.025 L

moles = M x volume = 0.60 M x 0.025 L = 0.015 mol

For NaOH:

M = 0.60 M

Volume = 15.0 ml = 0.015 L

moles = M x volume = 0.60 M x 0.015 L = 0.009 mol

Since the reaction is a 1:1 stoichiometry, we can see that 0.009 mol of NaOH is enough to react with all the HC2H3O2 in the solution, leaving some excess NaOH. Therefore, we need to calculate the concentration of the remaining NaOH in the solution:

moles of NaOH remaining = moles of NaOH added - moles of HC2H3O2 reacted

= 0.009 mol - 0.015 mol = -0.006 mol (negative sign indicates there is no excess NaOH remaining)

To calculate the concentration of the NaOH that reacted, we need to subtract the moles of NaOH remaining from the total moles of NaOH added:

moles of NaOH reacted = moles of NaOH added - moles of NaOH remaining

= 0.009 mol - (-0.006 mol) = 0.015 mol

The volume of the final solution is:

Total volume = volume of HC2H3O2 + volume of NaOH

= 25.0 ml + 15.0 ml = 0.040 L

The concentration of NaC2H3O2 in the final solution is:

Molarity (M) = moles / volume

M = 0.015 mol / 0.040 L = 0.375 M

Now, we need to calculate the pH of the solution. NaC2H3O2 is the conjugate base of HC2H3O2, which means it will hydrolyze in water to form OH- ions:

NaC2H3O2 + H2O ⇌ NaOH + HC2H3O2

The equilibrium constant for this reaction is called the base dissociation constant (Kb) and is given by:

Kb = [NaOH] [HC2H3O2] / [NaC2H3O2]

We can use the relationship:

Kw = Ka x Kb

Where Kw is the ion product constant for water, which is 1.0 x 10^-14 at 25°C, and Ka is the acid dissociation constant for HC2H3O2, which is 1.8 x 10^-5 at 25°C.

Rearranging the equation, we get:

Kb = Kw / Ka = 1.0 x 10^-14 / 1.8 x 10^-5 = 5.6 x 10^-10

Next, we need to calculate the concentration of HC2H3O2 and NaOH that are present in the solution after hydrolysis. Since NaC2H3O2 is a strong electrolyte,

it will completely dissociate in water to form Na+ and C2H3O2- ions. Therefore, the concentration of Na+ ions will be equal to the concentration of NaC2H3O2, which is 0.375 M.

The concentration of OH- ions can be calculated from the Kb expression:

Kb = [OH-]^2 / [HC_2H_3O_2]

[OH-]^2 = Kb x [[tex]HC_2H_3O_2[/tex]] = 5.6 x 10^-10 x 0.015 M = 8.4 x 10^-12

[OH-] = 2.9 x 10^-6 M

The pH of the solution can be calculated from the relationship:

pH + pOH = 14

pOH = -log [OH-] = -log (2.9 x 10^-6) = 5.54

pH = 14 - pOH = 14 - 5.54 = 8.46

To learn more about : Ph

https://brainly.com/question/172153

#SPJ11

2-thiosubstituted chlorocyclohexanes can undergo an sn2 reaction with intramolecular catalysis. which stereoisomer is the most reactive?

Answers

The axial stereoisomer is the most reactive in this type of reaction.

In an SN2 reaction with intramolecular catalysis, the most reactive stereoisomer is the one with an axial thioether group.

This is because in the axial position, the thioether group is closer to the leaving group (chlorine), allowing for more efficient overlap of their orbitals and a lower energy transition state.

The equatorial thioether group is farther away from the leaving group, resulting in a higher energy transition state and a slower reaction. Therefore, the axial stereoisomer is the most reactive in this type of reaction.

Learn more about stereoisomer

https://brainly.com/question/31147524

#SPJ4

each of the following can act as both an brönsted acid and a brönsted base except:
(A) HCO3
(B) NH4+
(C) HS
(D) H2PO4

Answers

The answer is (C) HS.

Each of the other options can donate a proton (act as a Brönsted acid) in certain conditions and accept a proton (act as a Brönsted base) in other conditions. However, HS is only capable of acting as a Brönsted base and accepting a proton, but it cannot donate a proton and act as a Brönsted acid.

Out of the given options, the one that cannot act as both an acid and a base is (C) HS. This is because HS can only act as a brönsted acid by donating a proton to a brönsted base, but it cannot act as a brönsted base by accepting a proton from a brönsted acid. This is because it lacks a lone pair of electrons on the sulfur atom, which is necessary for accepting a proton.

On the other hand, [tex]HCO_{3}[/tex] ,[tex]NH_{4}[/tex]+, and [tex]H_{2}[/tex][tex]O_{4}[/tex]P can all act as both brönsted acids and bases depending on the reaction conditions.

Learn more about Brønsted acid here:

https://brainly.com/question/24065957

#SPJ11

(B) NH4⁺,  cannot act as both a Brønsted acid and a Brønsted base.

What is Bronsted Acid-Base pairs?


A Brønsted acid is a species that can donate a proton (H⁺), while a Brønsted base is a species that can accept a proton (H⁺).

(A) HCO3⁻ can act as an acid by donating a proton to form CO3²⁻ or as a base by accepting a proton to form [tex]H_{2}CO_{3}[/tex].
(C) HS⁻ can act as an acid by donating a proton to form S²⁻ or as a base by accepting a proton to form [tex]H_{2}S[/tex].
(D) H2PO4⁻ can act as an acid by donating a proton to form HPO4²⁻ or as a base by accepting a proton to form [tex]H_{3}PO_{4}[/tex].

However,
(B) NH4⁺ can only act as a Brønsted acid by donating a proton to form [tex]NH_{3}[/tex] but cannot act as a Brønsted base since it has no lone pair of electrons to accept a proton.

To know more about Bronsted Theory:

https://brainly.com/question/148529

#SPJ11

why would it be necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube? simply to be sure the correct volumes are used. the reaction is exothermic which may boil and splatter the acidic solution out of the test tube. since the density of sulfuric acid is less than that for acetic acid, it requires a slower reaction time. the reaction is endothermic and the solution may solidify if the sulfuric acid is added too quickly.

Answers

The correct answer is option D. All of the above. It is necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube to prevent any accidents or injuries.

If sulfuric acid is added too soon, the solution may boil and the acid will spew out of the test tube, perhaps resulting in burns.

Sulfuric acid is also an endothermic reaction, which means it takes energy from its surroundings and has the potential to crystallise or cause the solution to harden.

Last but not least, adding the sulfuric acid gradually enables more precise measurement of the supplied sulfuric acid volume.

It is crucial to gradually add the sulfuric acid to the test tube mixture of p-cresol and acetic acid as a result of all these considerations.

Complete Question:

Why would it be necessary to slowly add the sulfuric acid to the p-cresol/acetic acid mixture in the test tube?

Options:

A.  To ensure accurate measurement of the volume of sulfuric acid added.

B. To prevent the solution from boiling and splattering the acidic solution out of the test tube.

C. To prevent the endothermic reaction from solidifying the solution.

D. All of the above.

To learn more about sulfuric acid visit:

https://brainly.com/question/10220770

#SPJ4

for the dyes synthesized from a naphthol starting material, did the position of the hydroxyl group an effect on the wavelength of light that was absorbed by the dyes? explain g

Answers

Yes, the position of the hydroxyl group does have an effect on the wavelength of light absorbed by the dyes synthesized from a naphthol starting material.

This is because the position of the hydroxyl group determines the electronic properties of the molecule, which in turn affects the energy levels and transitions that occur when the molecule absorbs light. In general, molecules with hydroxyl groups attached to positions closer to the aromatic ring will absorb light at shorter wavelengths (higher energy), while those with hydroxyl groups attached to positions farther from the ring will absorb light at longer wavelengths (lower energy).

This phenomenon is known as the bathochromic or hypsochromic effect, depending on whether the shift is toward longer or shorter wavelengths, respectively.

To learn more about bathochromic or hypsochromic effect, here

https://brainly.com/question/14083655

#SPJ4

What is the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K?

Answers

Answer:

0.9g/L.

Explanation:

To calculate the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K, we can use the ideal gas law:

PV = nRT

where P is the pressure in atmospheres (atm), V is the volume in liters (L), n is the number of moles of gas, R is the universal gas constant (0.08206 L·atm/(mol·K)), and T is the temperature in Kelvin (K).

We can rearrange this equation to solve for the number of moles of gas:

n = PV / RT

Next, we can use the molar mass of H2S (34.08 g/mol) to convert the number of moles to mass:

mass = n × molar mass

Finally, we can divide the mass by the volume to obtain the density:

density = mass/volume

Let's assume a volume of 1 L (since the volume is not given in the question). Then we have:

P = 0.7 atm

T = 322 K

R = 0.08206 L·atm/(mol·K)

molar mass of H2S = 34.08 g/mol

First, we calculate the number of moles of H2S using the ideal gas law:

n = PV / RT

n = (0.7 atm) (1 L) / (0.08206 L·atm/(mol·K) × 322 K)

n = 0.0265 mol

Next, we calculate the mass of H2S using the number of moles and the molar mass:

mass = n × molar mass

mass = 0.0265 mol × 34.08 g/mol

mass = 0.9 g

Finally, we calculate the density of H2S:

density = mass/volume

density = 0.9g/1 L

density = 0.9 g/L

Therefore, the density of hydrogen sulfide (H2S) at 0.7 atm and 322 K is approximately 0.9g/L.

when you boil water, bubbles begin to form before the water boils. this happens because . question 12 options: the vapor pressure is increasing the water has salt dissolved in it it is simmering the dissolved air is coming out of the water

Answers

The dissolved air is coming out of the water, causing bubbles to form before the water boils. Option 4 is correct.

As the water is heated, the solubility of gases, such as air, decreases, causing the dissolved gases to be released as bubbles. This process is called nucleation and occurs at sites of imperfections in the container or impurities in the water, which provide a surface for the bubbles to form.

Once the water reaches its boiling point, the vapor pressure of the liquid equals atmospheric pressure, causing bubbles to form throughout the liquid, not just at the nucleation sites. Hence Option 4 is correct.

To learn more about vapor pressure, here

https://brainly.com/question/11864750
#SPJ4

aldehydes and ketones prefer to fragment by ___ which produces a resonance stabilized acylium ion

Answers

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

https://brainly.com/question/12308782

#SPJ4

Aldehydes and ketones prefer to fragment by cleavage of the C-C bond adjacent to the carbonyl group, which produces a resonance-stabilized acylium ion.

Aldehydes and ketones have a carbonyl gathering (C=O) in their sub-atomic design, which is energized because of the distinction in electronegativity among carbon and oxygen particles. The carbonyl gathering can go through different compound responses, for example, nucleophilic expansion, decrease, and fracture. Discontinuity of aldehydes and ketones includes the cleavage of the C bond neighboring the carbonyl gathering, which prompts the development of a reverberation settled acylium particle.

This response is leaned toward on the grounds that the subsequent acylium particle is settled by reverberation structures, which disperse the positive charge among various iotas in the particle. This adjustment makes the response exceptionally exothermic and expands its rate.

To learn more about aldehydes and ketones, refer:

brainly.com/question/12308782

#SPJ4

what is the ph of a solution prepared by mizing 100ml of 0.020m ba(oh)2 with 50ml of 0.400m of koh? assume that the volumes are addative

Answers

The pH of the solution is approximately 12.73.

First, we need to find the moles of each solution:

moles of Ba(OH)2 = 0.020 mol/L x 0.100 L = 0.002 mol

moles of KOH = 0.400 mol/L x 0.050 L = 0.020 mol

Next, we need to find the total volume of the solution:

Vtotal = 100 mL + 50 mL = 150 mL = 0.150 L

Now, we can find the total concentration of OH- ions:

[OH-] = moles of Ba(OH)2 + moles of KOH / Vtotal

[OH-] = (0.002 mol + 0.020 mol) / 0.150 L = 0.187 mol/L

Finally, we can find the pH of the solution using the following formula:

pH = 14 - log([OH-])

pH = 14 - log(0.187) = 12.73

Therefore, the pH of the solution is approximately 12.73.

Learn more about   the moles

https://brainly.com/question/18265914

#SPJ4

Help what's the answers?

Answers

The number of moles of bromine trifluoride needed to produce 23.2 L of fluorine gas according to the reaction would be 0.339 moles.

Stoichiometric problems

The balanced equation for the reaction is:

BrF3 → Br + 3F2

From the equation, we can see that 1 mole of BrF3 produces 3 moles of F2. Therefore, to calculate the number of moles of BrF3 needed to produce 23.2 L of F2 at 0°C and 1 atm, we need to use the ideal gas law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

We can rearrange the ideal gas law to solve for n:

n = PV/RT

At 0°C (273 K) and 1 atm, the value of R is 0.08206 L·atm/mol·K. Substituting the values given, we get:

n = (1 atm) × (23.2 L) / (0.08206 L·atm/mol·K × 273 K)

n = 1.017 mol F2

Since 1 mole of BrF3 produces 3 moles of F2, we need 1/3 as many moles of BrF3:

n(BrF3) = 1.017 mol F2 × (1 mol BrF3 / 3 mol F2)

n(BrF3) = 0.339 mol BrF3

Therefore, 0.339 moles of BrF3 are needed to produce 23.2 L of F2 at 0°C and 1 atm.

More on stoichiometric problems can be found here: https://brainly.com/question/14465605

#SPJ1

Lab: Relative and Absolute Dating Lab Report What is the purpose of the lab?

Answers

The goal of a Relative and Absolute Dating Lab Report is to discover and utilize the concepts of relative and absolute dating methods for determining the age of geological materials like rocks and fossils.

What is the point of absolute dating?

Geologists frequently need to know the age of the material they find. They use absolute dating methods, also known as numerical dating, to give rocks an exact date, or date range, in years. This is distinct from relative dating, which only places geological events in chronological order.

What exactly is the concept of relative dating?

Relative dating is the process of determining whether one rock or geologic event is older or younger than another without knowing their exact ages that is, how many years ago the object was formed.

Where can the relative dating method be used?

Relative dating is used to order geological events and the rocks they leave behind. Stratigraphy is the process of reading the order. Relative dating does not yield precise numerical dates for the rocks.

To know more about the Lab visit:

https://brainly.com/question/29869193

#SPJ1

What volume of chlorine gas at 46.0◦C and
1.60 atm is needed to react completely with
5.20 g of sodium to form NaCl?

Answers

The volume of chlorine gas at 46.0°C and 1.60 atm that is needed to react completely with 5.20 g of sodium to form NaCl is 1.85 L

How do i determine the volume of chlorine gas needed?

We'll begin by obtaining the mole of 5.20 g of sodium. Details below:

Mass of Na = 5.20 gMolar mass of Na = 23 g/mol Mole of Na =?

Mole = mass / molar mass

Mole of Na = 5.20 / 23

Mole of Na = 0.226 mole

Next, we shall determine the mole of chlorine gas needed. Details below:

2Na + Cl₂ -> 2NaCl

From the balanced equation above,

2 moles of Na reacted with 1 mole of Cl₂

Therefore,

0.226 mole of Na will react with = (0.226 × 1) / 2 = 0.113 mole of Cl₂

Finally, we shall determine the volume of chlorine gas, Cl₂ needed. This is shown below:

Temperature (T) = = 46 °C = 46 + 273 = 319 KPressure (P) = 1.60 atmGas constant (R) = 0.0821 atm.L/molKNumber of mole (n) = 0.113 moleVolume of chlorine gas, Cl₂ (V) =?

PV = nRT

1.6 × V = 0.113 × 0.0821 × 319

Divide both sides by 1.6

V = (0.113 × 0.0821 × 319) / 1.6

V = 1.85 L

Thus, the volume of chlorine gas, Cl₂ needed is 1.85 L

Learn more about volume:

https://brainly.com/question/21838343

#SPJ1

how many moles of naf must be dissolved in 1.00 liter of a saturated solution of pbf2 at 25˚c to reduce the [pb2 ] to 1 x 10–6 molar? (ksp pbf2 at 25˚c = 4.0 x 10–8)

Answers

The moles of NaF that must be dissolved in 1.00 liter of a saturated solution of PbF₂ at 25˚C to reduce the [Pb²⁺] to 1 x 10⁻⁶ molar is 2.0 x 10⁻⁵.

The solubility product expression for PbF₂ is given by:

Ksp = [Pb²⁻][F-]²

At equilibrium, the product of the ion concentrations must be equal to the solubility product constant. We are given that the [Pb²⁺] in the saturated solution is 1 x 10⁻⁶ M. Therefore, we can use the Ksp expression to calculate the concentration of F- in the solution:

Ksp = [Pb²⁺][F⁻]²4.0 x 10⁻⁸ = (1 x 10⁻⁶)([F⁻]²)[F⁻]² = 4.0 x 10⁻²[F⁻] = 2.0 x 10⁻¹

Now, we can calculate the amount of NaF needed to reduce the [F⁻] concentration to 2.0 x 10⁻¹ M. Since NaF is a 1:1 electrolyte, the concentration of F- will be equal to the concentration of NaF added.

Number of moles of NaF = (2.0 x 10⁻¹) mol/L x 1.00 L = 2.0 x 10⁻¹ moles

However, we need to dissolve this amount of NaF in a saturated solution of PbF₂. Therefore, we need to check that the amount of NaF we added will not exceed the maximum amount that can dissolve in the solution at 25˚C.

To learn more about solubility, here

https://brainly.com/question/29661360

#SPJ4

The presence of an alcohol group (-OH), __________ the ΔT value of a molecule compared to the presence of a methyl group (-CH3).
A. increases
B. decreases
C. stays the same

Answers

The presence of an alcohol group (-OH) in a molecule, compared to the presence of a methyl group (-CH3), increases the ΔT value of a molecule.


The presence of an alcohol group (-OH) leads to the formation of hydrogen bonds, which are stronger than the van der Waals forces present in molecules with a methyl group (-CH3). As a result, more energy is required to break these hydrogen bonds, leading to a higher ΔT value (a greater change in temperature during phase transitions).

Therefore the correct answer is A. increases.

To learn more about alcohol, refer:-

https://brainly.com/question/16975086

#SPJ11

which acid in table 14.2 is most appropriate for preparation of a buffer solution with a ph of 3.7? explain your choice.

Answers

We can create a buffer solution with a pH of 3.7 by using formic acid as the buffer system's acid component.

What pH does a buffer solution have?

To keep fundamental conditions in place, these buffer solutions are used. A weak base and its salt are combined with a strong acid to create a basic buffer, which has a basic pH. Aqueous solutions of ammonium hydroxide and ammonium chloride at equal concentrations have a pH of 9.25. These solutions have a pH greater than seven.

Why may the pH of a buffered solution resist changing?

When little amounts of acid or base are supplied, buffers can resist pH changes, because they have an acidic component (HA) to neutralise OH- ions and a basic component (A-) to neutralise H+ ions, they are able to accomplish this.

To know more about buffer solution visit:-

https://brainly.com/question/24262133

#SPJ1

determine the standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide.

Answers

The standard enthalpy change for the decomposition of hydrogen peroxide per mole of hydrogen peroxide is -98.2 kJ/mol.

when 1 mole of hydrogen peroxide (H2O2) ( H 2 O 2 ) undergoes decomposition, the heat evolved (ΔH) is −98.2kJ. − 98.2 k J . The molar mass of H2O2 H 2 O 2 is 34.015 g/mol. This means that the mass of 1 mole of H2O2 H 2 O 2 is 34.015 g.

This value is obtained from the standard enthalpy of formation of the products (H2 and O2) and the standard enthalpy of formation of the reactant (H2O2). Enthalpy of formation is the energy change that occurs when a compound is formed from its elements, in their standard states.

The difference between the enthalpies of formation of the products and the reactant is the enthalpy change for the reaction. In this case, the enthalpy change for the decomposition of hydrogen peroxide is -98.2 kJ/mol. This indicates that the decomposition of hydrogen peroxide is an exothermic reaction and it releases 98.2 kJ/mole of energy.

Know more about Hydrogen peroxide here

https://brainly.com/question/29102186#

#SPJ11

the molar solubility of pbi 2 is 1.5 × 10 −3 m. calculate the value of ksp for pbi 2 .4.5 x 10 -6

Answers

The value of Ksp for PbI2 is 4.05 × 10^-8 if the molar solubility of PBI 2 is 1.5 × 10 −3 m.

The molar solubility of PBI 2 = 1.5 × 10 −3 m

The solubility product constant  = 2 .4.5 x 10 -6

The solubility product constant (Ksp) for PbI2 can be estimated using the molar solubility of PbI2, the stoichiometry of the equilibrium equation is:

[tex]PbI2(s) = Pb2+(aq) + 2I-(aq)[/tex]

The equation for Ksp is:

Ksp = [tex][Pb2+][I-]^2[/tex]

[Pb2+] = S = 1.5 × 10−3 M,

[I-] = 2S = 3 × 10−3 M

The stoichiometric coefficient of I- is 2. Substituting these values into the Ksp equation we get:

Ksp =[tex](1.5 × 10^-3) × (3 × 10^-3)^2[/tex]

Ksp = 4.05 × 10^-8

Therefore, we can conclude that the value of Ksp for PbI2 is 4.05 × 10^-8.

To learn more about Molar Solubility

https://brainly.com/question/31479331

#SPJ4

The value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6. The expression for the solubility product constant (Ksp) of a sparingly soluble salt such as PbI2 is: Ksp = [Pb2+][I-]^2

where [Pb2+] and [I-] are the molar concentrations of the lead ion and iodide ion, respectively, in a saturated solution of PbI2.

Given that the molar solubility of PbI2 is 1.5 × 10^-3 M, we can assume that [Pb2+] and [I-] in the saturated solution are also equal to 1.5 × 10^-3 M. Therefore, we can substitute these values into the Ksp expression and solve for Ksp:

Ksp = (1.5 × 10^-3 M)(1.5 × 10^-3 M)^2
Ksp = 3.375 × 10^-9

So the value of Ksp for PbI2 is 3.375 × 10^-9 or 4.5 x 10 -6 (if that was a typo in the question).

Learn more about soluble salt here: brainly.com/question/9537918

#SPJ11

does this suggest that your reaction worked? use three key signals to justify your answer 1-methoxy-2-chloro-4-nitrobenzene

Answers

Yes, the reaction worked. Three key signals that suggest the reaction worked include the appearance of the product, the presence of the expected starting material, and the absence of any other byproducts.

The product, 1-methoxy-2-chloro-4-nitrobenzene, can be identified by its distinct color, smell, and boiling point. Additionally, if the expected starting material is present, then it shows that the reaction has taken place.

Lastly, the absence of any other byproducts such as unreacted starting material implies that the reaction was successful. All together, all three signals indicate that the reaction worked.

Know more about Three key signals here

https://brainly.com/question/31114075#

#SPJ11

what do you suspect is the solid or oil that was not soluble in hexanes after synthesizing the adipoyl chloride?

Answers

Without more information about the synthesis process and the specific substances used, it's difficult to say exactly what the solid or oil that was not soluble in hexanes might be. However, there are a few possibilities to consider.

One possibility is that the solid or oil is an impurity that was introduced during the synthesis process. For example, it could be a side product or a reactant that did not fully react with the adipoyl chloride. In this case, the substance may not be soluble in hexanes because it has different chemical properties than the desired product.

Another possibility is that the substance is a byproduct of the reaction between the adipoyl chloride and another substance, such as a solvent or a catalyst. In this case, the substance may not be soluble in hexanes because it has a different chemical structure than the desired product and is not compatible with hexanes.

Alternatively, it's possible that the solid or oil is a form of the adipoyl chloride itself. For example, if the adipoyl chloride was not fully purified or if it was synthesized using impure starting materials, it could contain other compounds that are not soluble in hexanes.

Overall, without more information about the synthesis process and the specific substances used, it's difficult to determine the exact nature of the solid or oil that was not soluble in hexanes. Further analysis, such as chromatography or spectroscopy, may be necessary to identify the substance and determine its origin.

How many molecules of carbon dioxide gas, CO2, are found in 0.125 moles

Answers

There are 7.52 x 10^22 molecules of carbon dioxide gas, CO2, in 0.125 moles.

        The number of molecules in a given number of moles can be calculated using Avogadro’s number, which is approximately 6.022 x 10^23. This number represents the number of particles (atoms or molecules) in one mole of a substance.

         To calculate the number of molecules in 0.125 moles of CO2, we can multiply the number of moles by Avogadro’s number: 0.125 moles x (6.022 x 10^23 molecules/mole) = 7.52 x 10^22 molecules.

         Avogadro’s number is a fundamental constant in chemistry and is used in many calculations involving moles and molar mass.  

To learn more about carbon dioxide,

brainly.com/question/3049557

what is the voltage of a galvanic cell that does 788 j of work when 255 coulomb of charge is transferred?

Answers

The voltage of the  galvanic cell is 3.09 volts when the work done to  transfer the charge of 255 colombs is 788 joules.

The voltage of a galvanic cell can be calculated using the formula:
[tex]Voltage (V) = Work (J) / Charge (C)[/tex]
Given that the galvanic cell does 788 J of work and transfers 255 coulombs of charge, we can plug  these values into the formula:

[tex]Voltage (V) = Work (J) / Charge (C)[/tex]
[tex]Voltage (V) = 788 J / 255 C = 3.09 V[/tex]
So, the voltage of the galvanic cell is approximately 3.09 volts.

Learn more about galvanic cell here:

https://brainly.com/question/13031093

#SPJ11

a carving in metal that is soaked with acid, inked, and stamped on paper

Answers

The process you are referring to is called etching. Etching is a technique in which a design is carved into a metal plate using tools such as needles or acid. Once the design is carved, the plate is soaked in an acid solution, which eats away at the exposed metal to create grooves.

After the acid bath, the plate is cleaned and dried, and ink is applied to the surface. The ink is worked into the grooves created by the acid, and any excess ink is wiped away from the surface. The plate is then placed on a press, and a sheet of paper is carefully placed on top of it. Pressure is applied to the paper and the plate, which transfers the ink from the grooves onto the paper, creating a print.

Etching allows for great flexibility in creating fine art prints, as the artist can use a variety of techniques to create different line qualities, textures, and tonal effects. Additionally, multiple copies of the same image can be made from a single plate, making etching a popular printmaking technique among artists.

Learn more about etching here:

https://brainly.com/question/29808648

#SPJ11

The term for a carving in metal that is soaked with acid, inked, and stamped on paper is called etching.

What is the process of Etching?

Etchings are a type of printmaking where the artist creates a design by using acid to etch lines into a metal plate. Once the plate is inked, the ink is pushed into the etched lines, and the plate is stamped onto paper, transferring the ink and creating a print. Etchings can be highly detailed and precise and are often used in fine art prints. The acid bites into the exposed metal areas, creating recessed lines and textures on the plate. The plate is then inked and wiped, leaving ink only in the etched lines and textures. Finally, the plate is pressed onto paper to transfer the ink, creating a print. Etching is a versatile printmaking technique that allows for detailed and intricate designs to be transferred onto paper, and it has been used by artists for centuries to create a wide range of artistic prints.

To know more about Etching:

https://brainly.com/question/18064419

#SPJ11

the most common constituent of gas in the disk of the milky way galaxy is ________.

Answers

The most common constituent of gas in the disk of the Milky Way galaxy is hydrogen gas.

Hydrogen gas is the most abundant element in the Milky Way galaxy, making up around 75% of its elemental mass. This is why hydrogen is often used as a tracer for studying the structure and dynamics of galaxies. The gas in the disk of the Milky Way is mostly composed of atomic hydrogen (H I) and molecular hydrogen (H2), with smaller amounts of other elements like helium and carbon. Studying the distribution and properties of this gas can provide insight into the formation and evolution of the Milky Way.

learn more about gas here

https://brainly.com/question/28549254

#SPJ11

The most common constituent of gas in the disk of the Milky Way galaxy is hydrogen gas.

Which gas is present in abundance in Milky Way?


The most common constituent of gas in the disk of the Milky Way galaxy is hydrogen. Hydrogen is the most abundant element in the universe and makes up the majority of the gas in the disk of the Milky Way galaxy, with its presence primarily in the form of atomic and molecular hydrogen.  It is often found in the form of molecular hydrogen ([tex]H_{2}[/tex]) in interstellar clouds, which are regions of gas and dust where stars are formed. Other common constituents of gas in the Milky Way galaxy's disk include helium (He), carbon (C), oxygen (O), nitrogen (N), and trace amounts of other elements.

To know more about Milky Way:

https://brainly.com/question/30417276

#SPJ11

one of the techniques used in this experiment was that of crystallization. when cooling a solution in the process of crystallization, why would an ice bath be preferable over cold water or ice alone? none of the answers shown are correct. ice is too cold and will freeze any solution. cold water would dilute the solution making it impossible for crystals to form. a mixture of ice and water will keep the temperature above freezing and will contact the entire portion of the container immersed in the ice/water mixture.

Answers

When conducting a crystallization process, it is important to cool the solution at a slow and controlled rate to encourage crystal formation.

An ice bath is preferable over cold water or ice alone because it can maintain a consistent low temperature without causing the solution to freeze solid. Ice alone is too cold and can cause the solution to freeze rapidly, preventing the formation of crystals. Cold water, on the other hand, is not able to maintain a consistent low temperature as the heat from the solution will quickly dissipate into the surrounding water, resulting in a slower cooling rate.

An ice bath, which is a mixture of ice and water, provides a more stable and uniform cooling environment for the solution, allowing for the crystals to form at a slower rate. Additionally, an ice bath can contact the entire portion of the container immersed in the mixture, ensuring that the solution is evenly cooled. Overall, an ice bath is the preferred method for cooling a solution during the process of crystallization.

know more about crystallization process here

https://brainly.com/question/29662937#

#SPJ11

complete question is:-

one of the techniques used in this experiment was that of crystallization. when cooling a solution in the process of crystallization, why would an ice bath be preferable over cold water or ice alone? none of the answers shown are correct. ice is too cold and will freeze any solution. cold water would dilute the solution making it impossible for crystals to form. a mixture of ice and water will keep the temperature above freezing and will contact the entire portion of the container immersed in the ice/water mixture.  EXPLAIN.

What mass (grams) of nitrogen dioxide gas, NO2, is there in 67.2 liters at stop conditions

Answers

At STP (Standard Temperature and Pressure) conditions, 1 mole of gas occupies 22.4 L of volume.

What mass of nitrogen dioxide gas is present in STP conditions?

We can use the following conversion factor to find the number of moles of NO₂ gas:

1 mole NO₂ = 22.4 L at STP

To find the mass of NO₂ gas, we need to use the molar mass of NO₂, which is 46.0055 g/mol.

Putting all this together, we get:

(67.2 L) / (22.4 L/mol) = 3 moles of NO₂ gas

3 moles of NO₂ gas x 46.0055 g/mol = 138.02 g of NO₂ gas

Therefore, there are 138.02 grams of nitrogen dioxide gas in 67.2 liters of gas at STP conditions.

Learn more about nitrogen dioxide here:

https://brainly.com/question/6840767

#SPJ1

a sample of nobr was placed on a 1.00l flask containing no no or br 2 at equilibrium the flask contained

Answers

At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine.

.Based on the provided information, it seems that a sample of NOBr was placed in a 1.00 L flask at equilibrium, which means that the NOBr has decomposed into NO and Br2.

At equilibrium, the concentrations of NO, Br2, and NOBr in the flask will remain constant. However, without specific values for the initial concentration of NOBr or the equilibrium constant (Kc), it's not possible to determine the exact concentrations of these substances in the flask.

Visit here to learn more about  equilibrium : https://brainly.com/question/4289021
#SPJ11

A sample of NOBr being placed in a 1.00 L flask containing no NO or Br2 at equilibrium, I'll first provide the balanced chemical equation for the reaction:

[tex]2 NOBr (g) ⇌ 2 NO (g) + Br2 (g)[/tex]

At equilibrium, the concentrations of the reactants and products remain constant. To determine the concentrations of NOBr, NO, and Br2 at equilibrium, we need to follow these steps:

1. Write the expression for the equilibrium constant (Kc) based on the balanced chemical equation:
[tex]Kc = [NO]^2 [Br2] / [NOBr]^2[/tex]

2. Set up an ICE (Initial, Change, Equilibrium) table to determine the equilibrium concentrations of the species involved in the reaction. The initial concentrations of NO and Br2 are 0 since they are not initially present in the flask.

      NOBr      NO      Br2
I      C0        0        0
C     -2x        +2x      +x
E     C0-2x     2x       x

3. Substitute the equilibrium concentrations from the ICE table into the Kc expression:
[tex]Kc = (2x)^2 * x / (C0-2x)^2[/tex]


4. To solve for x, you need the value of Kc for the reaction. Look up the Kc value for this reaction in a reference or use provided information. Once you have Kc, substitute it into the equation and solve for x.

5. Calculate the equilibrium concentrations of NOBr, NO, and Br2 by substituting the value of x back into the ICE table:

[NOBr] = C0-2x
[NO] = 2x
[Br2] = x

By following these steps, you can determine the concentrations of NOBr, NO, and Br2 in the 1.00 L flask at equilibrium.

To know more about equilibrium constant (Kc):

https://brainly.com/question/29260433

#SPJ11

consider a reaction between two gaseous reactants (4 mol of a and 4 mol of b) in the closed flasks shown below. assume that the two reactions are both at room temperature. which reaction will occur faster?

Answers

Answer:

....................................................

Factors such as pressure, volume, and the presence of catalysts can affect the rate of the reaction.

Figure out the reaction between two gaseous reactants?

The two gaseous reactants (4 mol of A and 4 mol of B) in the closed flasks shown below will occur faster, I would need more information about the specific conditions in each flask. Factors such as pressure, volume, and the presence of catalysts can affect the rate of the reaction.

If you could provide more details about the flasks and the conditions, I would be happy to help you determine which reaction will occur faster.

Learn more about Gaseous reactants

brainly.com/question/28297794

#SPJ11

Question:
The Volume (V) of gas varies
directly as the temperature (T) and
inversely as the pressure (P). If the
volume is 225 cm³ when the
temperature is 300 K and the
pressure is 100 N/cm², what is the
volume when the temperature
drops to 270 K and the pressure is
150 N/cm²?

Answers

The volume of the gas when the temperature drops to 270 K and the pressure is 150 N/cm², is 135 cm³

How do I determine the volume of the gas?

The following data were obtained from the question.

Initial volume of gas (V₁) = 225 cm³Initial temperature of gas (T₁) = 300 KInitial pressure of gas (P₁) = 100 N/cm²New temperature (T₂) = 270 KNew pressure (P₂) = 150 N/cm²New volume of gas (V₂) = ?

The new volume of the gas can be obtained by using the combined gas equation as illustrated below:

P₁V₁ / T₁ = P₂V₂ / T₂

(100 × 225) / 300  = (150 × V₂) / 270

Cross multiply

300 × 150 × V₂ = 100 × 225 × 270

Divide both side by (300 × 150)

V₂ = (100 × 225 × 270) / (300 × 150)

V₂ = 135 cm³

Thus, the volume of the gas is 135 cm³

Learn more about volume:

https://brainly.com/question/14560487

#SPJ1

which observation best describes the physical appearance of a compound when the end of its melting point range is reached? the compound begins to convert to a liquid. the compound completely converts to a liquid. the compound begins to evaporate.

Answers

A compound turns completely into a liquid this observation best describes the physical appearance of a compound when it reaches the end of its melting point range. Here option B is the correct answer.

When a solid compound is heated, it undergoes a process called melting in which it transforms into a liquid state. The melting point of a compound is the temperature at which it changes from a solid to a liquid state. The melting process is characterized by a range of temperatures over which the compound is observed to be partially or fully melted.

The observation that best describes the physical appearance of a compound when the end of its melting point range is reached is B - the compound completely converts to a liquid. At the end of the melting point range, the compound has absorbed enough heat energy to fully overcome the intermolecular forces that hold its constituent particles together in a solid state, resulting in the complete transformation of the compound into a liquid.

This state is characterized by the loss of a crystalline structure, where the particles are free to move about and slide past each other, leading to an increased fluidity and mobility of the compound. At this stage, the compound is fully melted and can be poured or transferred into a new container in its liquid form.

To learn more about melting points

https://brainly.com/question/28902417

#SPJ4

Complete question:

Which observation best describes the physical appearance of a compound when the end of its melting point range is reached?

A - the compound begins to convert to a liquid.

B - the compound completely converts to a liquid.

C - the compound begins to evaporate.

Other Questions
Use the image to determine the direction and angle of rotation. 270 clockwise rotation 270 counterclockwise rotation 90 clockwise rotation 180 clockwise rotation felippe, a 17-year-old high school senior, is very talkative, intelligent, assertive, and politically conservative. research suggests that he would be most likely to develop a close friendship with esther, a manager at a customer service call center, reprimands her subordinates each time they are late to work. thus, esther is using the bioavailability of which two vitamins is significantly higher in supplemental form as compared to what is naturally occurring in foods? Here are two complex numbers being multiplied: (4 + 2)(6-3) = ?Without calculating the exact result of the multiplication, how canyou tell that the result will be a real number? consider a reaction between two gaseous reactants (4 mol of a and 4 mol of b) in the closed flasks shown below. assume that the two reactions are both at room temperature. which reaction will occur faster? Rectangle MPAT has vertices M(1,2) , P(1, 3), A(3, 3), and T(3, 2) . Rectangle MPAT . Which coordinates describe the vertices of the image? 21. which part of the prefrontal cortex seems to be particularly involved in working memory functions? Find the differential of the function. Z = e4x cos(4t) Problem 7: Find the surface area and round to the nearest tenth. one of the techniques used in this experiment was that of crystallization. when cooling a solution in the process of crystallization, why would an ice bath be preferable over cold water or ice alone? none of the answers shown are correct. ice is too cold and will freeze any solution. cold water would dilute the solution making it impossible for crystals to form. a mixture of ice and water will keep the temperature above freezing and will contact the entire portion of the container immersed in the ice/water mixture. a client who has been discharged home on citalopram calls the nurse reporting that the medication causes the client to feel too drowsy. the nurse should make which suggestion? 4 (20) + 6 (45) - (80) how are the masses of supermassive black holes related to the masses of the bulges of their surrounding galaxies and what does this suggest about the role of supermassive black holes in galaxy evolution. you want to rent an unfurnished one-bedroom apartment for next semester. the mean monthy rent for a random sample of 45 apartments advertised in the local newspaper is $775. assume the standard deviation is $110. find a formula used to generate the 98% confidence interval for the mean monthly rent for unfurnished one-bedroom apartments available for rent in this community. 20. Phylogenetic tree are used to help show which creatures are most closely related to each other. In the diagram below,common ancestor. The line from the chicken and the line from the dinosaur connect, so they would have a commonthe red dot shows the most common ancestor between a chimpanzee and a human. When two lines come together, there is aancestor. All the lines at the bottom connect, this would be the least common ancestor, but they are still related.ChimpanzeeHuman ChickenDinosaurMost recent commonancestor a nurse practitioner, who is treating a patient with gerd, knows that this type of drug helps treat the symptoms of the disease. the drug classification is: a dietitian can best evaluate a client's knowledge and application of cancer prevention dietary modification by asking the client to: each of our cells needs glucose in order to be able to conduct cellular respiration. through what structures do you think glucose could travel to enter into cells? barbara has been having problems with her boss. every time she gets in a big argument with him, she finds herself talking about it with her friends and family. barbara is using the coping strategy also known as: