What mass of KNO3 will dissolve in 50mL of water at 60 degrees?

Answers

Answer 1

Approximately 50 grams mass of [tex]KNO_{3}[/tex] will dissolve in 50 mL of water at 60°C.

What is mass?

Mass is a fundamental physical quantity that refers to the amount of matter in an object. It is a scalar quantity that measures the inertia of an object.

The solubility of  [tex]KNO_{3}[/tex] in water depends on temperature. At 60°C, the solubility of  [tex]KNO_{3}[/tex] is approximately 100 g/100 mL of water.

To determine the mass of  [tex]KNO_{3}[/tex] that will dissolve in 50 mL of water at 60°C, we can use the following equation:

mass of  [tex]KNO_{3}[/tex]  = (solubility of [tex]KNO_{3}[/tex]  at 60°C) × (volume of water)

mass of [tex]KNO_{3}[/tex]  = (100 g/100 mL) × (50 mL)

mass of [tex]KNO_{3}[/tex]  = 50 g

Therefore, approximately 50 grams of  [tex]KNO_{3}[/tex] will dissolve in 50 mL of water at 60°C.

What is solubility?

Solubility is the ability of a substance, called the solute, to dissolve in a solvent to form a homogeneous solution. The solubility of a substance depends on the nature of the solute, the solvent, and the conditions under which the solution is formed, such as temperature, pressure, and concentration.

The amount of solute that can dissolve in a given amount of solvent at a particular temperature and pressure is known as the solubility of the solute. Solubility is typically expressed in units of mass per unit volume, such as grams per liter (g/L) or moles per liter (mol/L).

The solubility of a substance can vary widely depending on the solvent. For example, water is a good solvent for many ionic and polar compounds, while nonpolar solvents like benzene and hexane are better at dissolving nonpolar substances like oils and fats.

To know more about solubility, visit:

https://brainly.com/question/26766449

#SPJ1

Complete question is: 50 grams mass of [tex]KNO_{3}[/tex] will dissolve in 50 mL of water at 60°C.


Related Questions

a student used 1.506 g of p-cresol and 1.992 g of t-butanol in the synthesis of bht. which is the limiting reagent and how many moles of bht can be formed? p-cresol, 0.014 mole of bht p-cresol, 0.028 mole of bht t-butanol, 0.013 mole of bht t-butanol, 0.026 mole of bht

Answers

The limiting reagent is t-butanol, and 0.013 mole of BHT can be formed.

To determine the limiting reagent, we need to calculate the number of moles of each reactant. For p-cresol, we have 1.506 g / 108.14 g/mol = 0.0139 mol. For t-butanol, we have 1.992 g / 74.12 g/mol = 0.0269 mol.

Since the mole ratio between t-butanol and BHT is 2:1, and we have fewer moles of t-butanol, it is the limiting reagent. Therefore, the maximum number of moles of BHT that can be formed is equal to half the number of moles of t-butanol, which is 0.013 mol.

To learn more about limiting reagent, here

https://brainly.com/question/11848702

#SPJ4

if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml , what is the molarity of the diluted solution?

Answers

the molarity of the diluted solution is 0.27 M.if 124 ml of a 1.2 m glucose solution is diluted to 550.0 ml

To solve the problem, we can use the formula:

M1V1 = M2V

where M1 is the initial molarity, V1 is the initial volume, M2 is the final molarity, and V2 is the final volume.

Plugging in the values we have:

M1 = 1.2 M

V1 = 124 ml = 0.124 L

V2 = 550.0 ml = 0.550 L

Solving for M2:

M2 = (M1V1)/V2

= (1.2 M * 0.124 L)/0.550 L

= 0.27 M

A solution is a homogeneous mixture of two or more substances. In a solution, the solute is uniformly dispersed in the solvent. The solute is the substance that is being dissolved, and the solvent is the substance in which the solute is being dissolved. For example, in saltwater, salt is the solute and water is the solvent.

Learn more about solution here:

https://brainly.com/question/30665317

#SPJ12

The molarity of the diluted glucose solution is approximately 0.2705 M.

How to find the molarity of solution?

To find the molarity of the diluted glucose solution after 124 mL of a 1.2 M solution is diluted to 550.0 mL, you can use the dilution formula:
M1V1 = M2V2

where M1 is the initial molarity (1.2 M), V1 is the initial volume (124 mL), M2 is the final molarity, and V2 is the final volume (550.0 mL).

Rearrange the formula to solve for M2:

M2 = (M1*V1) / V2

Now, plug in the given values:
M2 = (1.2 M * 124 mL) / 550.0 mL
M2 = 148.8 mL / 550.0 mL
M2 = 0.2705 M

To know more about Molarity:

https://brainly.com/question/14581742

#SPJ11

the gradual increase or decrease in concentration from one point to another constitutes a concentration

Answers

The gradual increase or decrease in concentration from one point to another constitutes a concentration gradient. This gradient can occur within a single substance, such as a solution or gas, or between different substances in a system.

Concentration gradients play an important role in various natural and artificial processes, including diffusion, osmosis, and chemical reactions. A concentration gradient is the change in the concentration of a substance over a distance. It often results in the passive or active movement of particles from areas of high concentration to areas of low concentration, a process known as diffusion or transport.

The direction and magnitude of the concentration gradient can influence the rate and direction of these processes, making it a critical parameter to consider in many scientific and engineering applications.

To know more about diffusion:

https://brainly.com/question/30697046

#SPJ11

Yes, the gradual increase or decrease in the amount or density of a substance from one point to another is referred to as a concentration gradient. This can occur in various settings, such as in chemical reactions or in the distribution of molecules within a cell or organism. The concept of concentration is essential in understanding many biological and chemical processes, as it helps to determine how different substances interact and affect one another.

Concentration gradients are important in a wide range of biological, chemical, and physical processes. For example, in the human body, concentration gradients of ions and other molecules are essential for the functioning of cells and tissues. In addition, concentration gradients can drive the diffusion of gases, the movement of water in and out of cells, and many other important biological processes.

Overall, the gradual increase or decrease in concentration from one point to another constitutes a concentration gradient, which is a fundamental concept in many areas of science and engineering.

Learn more about concentration gradient here:

https://brainly.com/question/11391123

#SPJ11

compounds f, g, and k are isomers of molecular formula c13h18o. how could 1h nmr spectroscopy distinguish these three compounds from each other?

Answers

1H NMR spectroscopy can be used to distinguish between isomers of a given molecular formula based on the differences in their chemical environments and the resulting shifts in their NMR signals.

In the case of compounds F, G, and K, which all have the molecular formula C13H18O, there are several ways in which their 1H NMR spectra could differ.

Firstly, the number of unique proton environments in each compound can differ, leading to a difference in the number of signals observed in their respective spectra. For example, if compound F contains a methyl group, a methylene group, and an isolated proton, it would exhibit three distinct signals in its 1H NMR spectrum, whereas if compound G contains a cyclohexane ring with no substituents, it would only exhibit a single signal corresponding to the equivalent protons in the ring.

Secondly, the chemical shifts of the protons in each compound can differ due to differences in the electronic environment around them. For example, a proton in a more electronegative environment will experience a downfield shift, whereas a proton in a more shielded environment will experience an upfield shift. Therefore, compounds F, G, and K could exhibit different chemical shifts for their equivalent protons, allowing for differentiation between them.

Learn more about spectroscopy ,

https://brainly.com/question/28523860

#SPJ4

1H NMR spectroscopy can be used to distinguish between isomers of a given molecular formula based on the differences in their chemical environments and the resulting shifts in their NMR signals.

In the case of compounds F, G, and K, which all have the molecular formula C13H18O, there are several ways in which their 1H NMR spectra could differ.

Firstly, the number of unique proton environments in each compound can differ, leading to a difference in the number of signals observed in their respective spectra. For example, if compound F contains a methyl group, a methylene group, and an isolated proton, it would exhibit three distinct signals in its 1H NMR spectrum, whereas if compound G contains a cyclohexane ring with no substituents, it would only exhibit a single signal corresponding to the equivalent protons in the ring.

Secondly, the chemical shifts of the protons in each compound can differ due to differences in the electronic environment around them. For example, a proton in a more electronegative environment will experience a downfield shift, whereas a proton in a more shielded environment will experience an upfield shift. Therefore, compounds F, G, and K could exhibit different chemical shifts for their equivalent protons, allowing for differentiation between them.

Learn more about spectroscopy ,

brainly.com/question/28523860

#SPJ11

50.0 ml of 0.10 m hcl is mixed with 50.0 ml of 0.10 m naoh. the solution temperature rises by 3.0 calculate the enthalpy

Answers

To calculate the enthalpy of the reaction, we need to use the equation:
q = mCΔT  where q is the heat absorbed or released by the reaction, m is the mass of the solution , C is the specific heat capacity of the solution.


First, we need to calculate the amount of heat absorbed or released by the reaction. Since the reaction is exothermic (it releases heat), q will be negative. We can use the following equation to calculate q:
q = -CΔT
q = -(100 g)(4.18 J/g°C)(3.0°C) = -1254 J
Now we can use the following equation to calculate the enthalpy of the reaction (ΔH):
ΔH = q/n
where n is the number of moles of limiting reactant (in this case, either HCl or NaOH).
To find the number of moles of HCl, we can use the following equation:
n = C × V
where C is the concentration of HCl (0.10 M) and V is the volume of HCl (50.0 mL = 0.050 L).
n = (0.10 M)(0.050 L) = 0.0050 moles
To find the number of moles of NaOH, we can use the same equation:
n = C × V
where C is the concentration of NaOH (0.10 M) and V is the volume of NaOH (50.0 mL = 0.050 L).
n = (0.10 M)(0.050 L) = 0.0050 moles
Since the stoichiometric ratio between HCl and NaOH is 1:1, the number of moles of HCl and NaOH are equal. Therefore, we can use either value for n in the equation for ΔH.
ΔH = -1254 J / 0.0050 moles
ΔH = -250800 J/mol
Therefore, the enthalpy of the reaction is -250.8 kJ/mol.

Learn more about  absorbed here

https://brainly.com/question/6838193

#SPJ11

a sample of 35.1 g of methane gas has a volume of 2.55 l at a pressure of 2.70 atm. calculate the temperature.

Answers

A sample of 35.1 g of methane gas has a volume of 2.55 l at a pressure of 2.70 atm. The temperature of the sample of methane gas is 224.8 K.

The temperature of the sample of methane gas can be calculated using the ideal gas law equation, PV = nRT, where P is the pressure in atmospheres, V is the volume in liters, n is the amount of gas in moles, R is the ideal gas constant, and T is the temperature in Kelvin.

Since the pressure and volume are given, we can calculate the moles of methane gas using the relationship n= PV/RT.

Plugging in the given values, n = (2.7 atm)(2.55 L)/(0.08206 L·atm/mol·K)(T) = 0.824 mol.

Then, rearranging the ideal gas law equation, T = PV/nR, and plugging in our values, T = (2.7 atm)(2.55 L)/(0.824 mol)(0.08206 L·atm/mol·K) = 224.8 K.

As a result, the sample of methane gas had a temperature of 224.8 K.

To learn more about methane gas visit:

https://brainly.com/question/23151003

#SPJ4

if you can fill out this worksheet 100 pts! only 5 questions, about stoichiometry PLEASE HELP ASAP!!

Answers

Given: NaOH, H₂SO₄. Wanted: Na₂SO₄.

Percent yield = (325 g / 355.1 g) × 100 = 91.5%

molar mass of Na₂SO₄ is 142.04 g/mol.

The mole ratio needed is 2:1 (two moles of NaOH react with one mole of H₂SO₄ to produce one mole of Na₂SO₄).

The molar mass of Na₂SO₄ is 142.04 g/mol.

To determine the theoretical yield, we need to first calculate the limiting reagent.

Using the mole ratio, we can calculate the number of moles of H₂SO₄ required to react with 5.00 moles of NaOH:

5.00 mol NaOH × (1 mol H₂SO₄ / 2 mol NaOH) = 2.50 mol H₂SO₄

Since we have 7.00 moles of H₂SO₄, it is in excess and NaOH is the limiting reagent.

The number of moles of Na₂SO₄ that can be produced is:

5.00 mol NaOH × (1 mol Na₂SO₄ / 2 mol NaOH) = 2.50 mol Na₂SO₄

The theoretical yield of Na₂SO₄ is:

2.50 mol Na₂SO₄ × 142.04 g/mol = 355.1 g Na₂SO₄

The percent yield is calculated by dividing the actual yield (325 g) by the theoretical yield (355.1 g) and multiplying by 100:

Percent yield = (325 g / 355.1 g) × 100 = 91.5%

learn more about stoichiometry here

https://brainly.com/question/16060223

#SPJ1

What is a likely purpose of the hair in an adult’s armpits and genital regions, especially given that this hair grows during puberty?
Think about an animal like a rhinoceros, a deer, or an antelope. What parts of their body other than their hair must be composed of quite similar material to your nails and hair?
What kind of locations in the world (either in the United States or globally) might be easier to live in for people with Seasonal Affective Disorder? Which kinds of places might be worse?
Your friend Olivia has a blemish on her shoulder that she can’t easily see herself, so she asks you to check it out for her to help her decide if she should see her doctor. What are at least three things you would look for to help you advise her? (Remember: ABCDE!)
What might an elevated skin temperature indicate beside a fever from a cold, flu, or other typical viral disease? How might you test for an elevated temperature?

Answers

Adults' armpit and vaginal hair likely serves the function of preventing friction and irritability during physical exertion.

Hooves, horns, and antlers are other portions of an animal's anatomy that must be made of material that is very similar to hair and nails.

Seasonal Affective illness (SAD) sufferers may find it easier to live in areas of the world with more daylight and longer daylight hours because these elements can lessen the symptoms of the illness.

It's crucial to use the ABCDE method while analyzing a spot on a friend's shoulder to check for the following indicators:

Asymmetry: Is the imperfection shaped in an unbalanced manner?Border: Are the blemish's margins ragged or poorly defined?Color: Is the blemish a unique color or does it have several colors?Diameter: Is the blemish larger than 6mm in diameter?Evolution: Has the blemish changed in size, shape, or color over time?

Your acquaintance should visit a doctor if the blemish displays any of these symptoms since it may be an indication of skin cancer.

Infection, inflammation, or injury are just a few of the situations that can cause an elevated skin temperature.

Learn more about Seasonal Affective illness, here:

https://brainly.com/question/8018755

#SPJ1

how did the salt concentration of each of the four buffer solutions (equilibration, binding, wash, and te) relate to its function?

Answers

The salt concentration of each of the four buffer solutions is given by the means of the function which is provided.

When an acid or a basic is supplied, buffers maintain a pH that is comparatively stable. As a result, they shield—or "buffer,"—other molecules in solution from the negative consequences of the extra acid or base. Buffers are vital for the correct operation of biological systems because they either contain a weak acid (HA) and its conjugate base (A), or a weak base (B) and its conjugate acid (BH+). In actuality, every biological fluid has a buffer to keep the pH at a healthy level.

Salinity (/slnti/), commonly known as saline water (also see soil salinity), is the degree of saltiness or quantity of salt dissolved in a body of water. The standard units of measurement are grammes of salt per litre (g/L) or grammes per kilogramme (g/kg; the latter is dimensionless and equal to ).

Salinity is a thermodynamic state variable that, along with temperature and pressure, controls physical properties like the density and heat capacity of the water. Salinity plays a significant role in defining many elements of the chemistry of natural waters and of biological activities within them.

Learn more about salt concentration:

https://brainly.com/question/14696785

#SPJ4

The salt concentration of each of the four buffer solutions (equilibration, binding, wash, and elution) plays a crucial role in their respective functions during protein purification.



1. Equilibration buffer: This buffer is used to prepare the column and adjust its conditions to match the sample's salt concentration. A moderate salt concentration helps maintain protein stability and prevents non-specific interactions.

2. Binding buffer: This buffer has a specific salt concentration to promote the target protein's binding to the resin, while minimizing non-specific binding of other proteins. The concentration ensures optimal interactions between the protein and the resin's functional groups.

3. Wash buffer: The salt concentration in the wash buffer is slightly higher than that in the binding buffer. This helps remove weakly bound and unbound contaminants, while keeping the target protein attached to the resin.

4. Elution buffer: The salt concentration in the elution buffer is the highest among the four solutions. This high salt concentration competes with the target protein for binding sites on the resin, causing the protein to be released from the column and collected in the eluate.

Overall, the varying salt concentrations in these buffers aid in the separation and purification of the target protein through a step-wise process.

To learn more about buffer click here

brainly.com/question/30546730

#SPJ11

Help what's the answer?

Answers

The mass of the P4 that is reacted is 37.2 g

How does stoichiometry work?

Stoichiometry works by using a balanced chemical equation to determine the mole ratio between reactants and products. This mole ratio is then used to convert the amount of one substance into the amount of another substance, using the mole concept and molar mass.

Using

PV = nRT

n = PV/RT

n = 1 * 39.6/0.082 * 298

n = 1.6 moles

From the reaction equation;

P4 + 6Cl2 → 4PCl3

1 mole of P4 reacts with 6 moles of Cl2

x moles of P4 reacts with 1.6 moles of Cl2

x = 1.6 * 1/6

= 0.3 moles

Mass of P4 = 0.3 * 124 g/mol

= 37.2 g

Learn more about stoichiometry:https://brainly.com/question/30215297

#SPJ1

during the transition step, pyruvate is converted to acetyl-coa and one carbon dioxide is released. where does the co2 come from?

Answers

The CO2 come out of the six originally present in glucose in the process of Pyruvate is converted to Acetyl-CoA.

The biological process known as pyruvate decarboxylation, also known as the oxidative decarboxylation reaction, utilises pyruvate to create acetyl-CoA while simultaneously releasing NADH, a reducing equivalent, and carbon dioxide through decarboxylation.

This process serves as a bridge between glycolysis and the citric acid cycle in the majority of organisms. So, oxidative decarboxylation is the procedure employed to convert pyruvate to acetyl CoA.

An essential molecule in biology is pyruvate. It is a byproduct of the glucose metabolism process called glycolysis. One of two processes results in the breakdown of one glucose molecule into two pyruvate molecules, which are subsequently utilised to produce further energy.

Learn more about Pyruvate conversion:

https://brainly.com/question/28941347

#SPJ4

During the transition step, pyruvate is converted to acetyl-CoA through the removal of one carbon dioxide molecule.

This carbon dioxide is released from the pyruvate molecule itself, specifically from the carboxyl group (-COOH) that is cleaved during the process. The remaining two-carbon molecule then binds with coenzyme A (CoA) to form acetyl-CoA.


During the transition step, pyruvate is converted to acetyl-CoA and one carbon dioxide molecule is released. The CO2 comes from the decarboxylation of pyruvate, which involves the removal of a carboxyl group from the pyruvate molecule, ultimately releasing carbon dioxide as a byproduct.

The process of decarboxylating pyruvate, which involves removing a carboxyl group from the pyruvate molecule and ultimately releasing carbon dioxide as a byproduct, produces carbon dioxide as a byproduct.

Visit here to learn more about carboxyl group  : https://brainly.com/question/31319088
#SPJ11

calculate the engery of a photon needed to cause an electron in the 3s orbital to be excited to tthe 3p orbital

Answers

The energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × [tex]10^{-18}[/tex] J (or about 1.90 eV).

To calculate the energy of a photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital, we need to know the energy difference between these two orbitals.

The energy of an electron in a hydrogenic atom (an atom with one electron) can be calculated using the following formula:

[tex]E = - (Z^2 * Ry) / n^2[/tex]

where Z is the atomic number, Ry is the Rydberg constant (2.18 × [tex]10^{-18}[/tex]J), and n is the principal quantum number.

The energy difference between the 3s and 3p orbitals can be calculated by subtracting the energy of the 3s orbital from the energy of the 3p orbital.

For hydrogen, the energy of the 3s orbital is:

E(3s) = - ([tex]1^2[/tex]* 2.18 × [tex]10^{18}[/tex] J) / [tex]3^2[/tex]

E(3s) = - 0.242 ×[tex]10^{18}[/tex] J

And the energy of the 3p orbital is:

E(3p) = - ([tex]1^2[/tex] * 2.18 × [tex]10^{-18}[/tex] J) / 2^2

E(3p) = - 0.546 × [tex]10^{-18}[/tex] J

The energy difference between the two orbitals is:

ΔE = E(3p) - E(3s)

ΔE = (- 0.546 ×[tex]10^{18}[/tex]  J) - (- 0.242 ×[tex]10^{-18}[/tex] J)

ΔE = - 0.304 × [tex]10^{-18}[/tex]J

This energy difference represents the energy required to excite an electron from the 3s orbital to the 3p orbital.

To calculate the energy of the photon needed to provide this energy, we use the formula:

E = hν

where E is the energy of the photon, h is Planck's constant (6.626 × [tex]10^{-34}[/tex]J·s), and ν is the frequency of the photon.

Rearranging this formula to solve for the frequency of the photon, we get:

ν = E / h

Substituting the energy difference we calculated, we get:

ν = (- 0.304 × [tex]10^{18}[/tex] J) / (6.626 × [tex]10^{-34}[/tex] J·s)

ν = - 4.59 × [tex]10^{15}[/tex]Hz

Finally, to calculate the energy of the photon, we use the formula:

E = hν

Substituting the frequency we calculated, we get:

E = (6.626 ×[tex]10^{-34}[/tex] J·s) x (- 4.59 × [tex]10^{15}[/tex] Hz)

E = - 3.04 × [tex]10^{-18}[/tex]J

Therefore, the energy of the photon needed to cause an electron in the 3s orbital to be excited to the 3p orbital is approximately 3.04 × 10^-18 J (or about 1.90 eV).

Learn more about photon

https://brainly.com/question/20912241

#SPJ4

Silver nitrate and iron (III) chloride are reacted. 27.0 g silver nitrate and 43.5 g iron (III) chloride are used in the reaction.

3 AgNO3 + FeCl3 --> 3 AgCl + Fe(NO3)3

1. Using the limiting reactant, calculate how many grams of silver chloride are produced.

Answers

The mass of silver chloride produced is 7.24 grams.  To determine the limiting reactant,

we need to calculate the amount of product that each reactant would produce if reacted completely, and the reactant that produces the least amount of product will be the limiting reactant.

First, we need to write the balanced chemical equation for the reaction:

3 AgNO₃ + FeCl₃ --> 3 AgCl + Fe(NO₃)³

The molar mass of AgNO₃ is 169.87 g/mol (107.87 g/mol for Ag, 14.01 g/mol for N, and 3 x 16.00 g/mol for 3 O atoms). The molar mass of FeCl₃ is 162.20 g/mol (55.85 g/mol for Fe and 3 x 35.45 g/mol for 3 Cl atoms).

Using the given masses, we can calculate the number of moles of each reactant:

Number of moles of AgNO₃ = 27.0 g / 169.87 g/mol = 0.159 moles

Number of moles of FeCl₃ = 43.5 g / 162.20 g/mol = 0.268 moles

According to the balanced equation, 3 moles of AgNO₃ react with 1 mole of FeCl₃ to produce 3 moles of AgCl. Therefore, if all the AgNO₃ were to react, we would expect to produce:

3 moles AgCl / 3 moles AgNO₃ x 0.159 moles AgNO₃ = 0.159 moles AgCl

Similarly, if all the FeCl₃ were to react, we would expect to produce:

1 mole AgCl / 1 mole FeCl₃ x 0.268 moles FeCl₃ = 0.268 moles AgCl

Since the calculated amount of AgCl from AgNO₃ is smaller than that from FeCl₃, AgNO₃ is the limiting reactant. Therefore, we can calculate the amount of AgCl produced based on the moles of AgNO₃:

1 mole AgCl / 3 moles AgNO₃ x 0.159 moles AgNO₃ x 143.32 g/mol AgCl = 7.24 g AgCl

Therefore, the mass of silver chloride produced is 7.24 grams.

To know more about silver chloride, visit:

https://brainly.com/question/12912140

#SPJ1

I need help please help me with these two questions (the second picture is in the comments)

Answers

sodium hydroxide

cobalt (II) phosphide

lead (IV) carbonate

Magnesium fluoride

lithium sulfite

ammonium phosphate

iron (II) oxide

calcium sulfate

silver nitride

sodium sulfide

At 275 °C a gas has a volume of 500 mL. What is the volume of this gas at 190°C?

Answers

Answer:

using the formula

v1/T1 =V2T2

make V2 subject of formula

V2= V1T2/T1

V2= 724mL

Answer :

The volume of this gas at the 190°C will be 423 ml.

Explanation :

We can resolve this issue by applying Charles' law. According to Charles' law, a gas's volume is directly inversely proportionate to its Kelvin temperature. To resolve this issue, we can apply the formula shown below:

[tex]\large{\implies{\bf{\boxed{\boxed{\dfrac{V1}{T1} = \dfrac{V2}{T2} }}}}}[/tex]

Where,

V1 is the gas's initial volume T1 is its starting temperature in Kelvin V2 is its finished volume T2 is its finished temperature in Kelvin.

The temperatures must first be converted from Celsius to Kelvin. By raising each temperature by 273.15, we may achieve this.

Initial temperature (T1) is equal to 275 + 273 K.

500 mL is the initial volume (V1).

Final volume (V2) = Final temperature (T2) = 190 + 273.15 = 463.15 K Final temperature (T2) =?

V1/T1 = V2/T2

500/548.15 = V2/463.15

V2 = (500/548.15) * 463.15

V2 ≈ 423 mL

Therefore, at a temperature of 190°C, the volume of this gas would be approximately 423 mL.

Similar answers :

https://brainly.com/question/30911674

a 40.0 ml sample of a 0.100 m aqueous nitrous acid solution is titrated with a 0.200 m aqueous sodium hydroxide solution. what is the ph after 10.0 ml of base have been added?

Answers

The pH of the solution after the addition of 10.0 mL of base is 3.35.

The balanced chemical equation for the reaction between nitrous acid and sodium hydroxide is:

HNO2 + NaOH → NaNO2 + H2O

Before any base is added, the nitrous acid solution is acidic, and so the pH is less than 7. The nitrous acid dissociates in water according to the following equilibrium:

HNO2 + H2O ⇌ H3O+ + NO2-

The equilibrium constant for this reaction is the acid dissociation constant, Ka, which is given by:

Ka = [H3O+][NO2-] / [HNO2]

At equilibrium, the concentration of nitrous acid that has dissociated is equal to the concentration of hydroxide ions that have been neutralized by the acid:

[HNO2] - [OH-] = [NO2-]

Initially, the concentration of nitrous acid in the solution is:

[HNO2] = 0.100 mol/L × 0.0400 L = 0.00400 mol

When 10.0 mL of 0.200 M sodium hydroxide solution is added, the number of moles of hydroxide ions added is:

[OH-] = 0.200 mol/L × 0.0100 L = 0.00200 mol

Using the stoichiometry of the balanced equation, the number of moles of nitrous acid that have reacted is also 0.00200 mol.

The concentration of nitrous acid remaining in the solution after the addition of base is:

[HNO2] = (0.00400 mol - 0.00200 mol) / 0.0500 L = 0.0400 mol/L

The concentration of nitrite ion in the solution is equal to the concentration of hydroxide ions that have been neutralized by the acid:

[NO2-] = [OH-] = 0.00200 mol / 0.0500 L = 0.0400 mol/L

The acid dissociation constant for nitrous acid is Ka = 4.5 × 10^-4 at 25°C.

Using the expression for the equilibrium constant, we can solve for the concentration of hydronium ions:

Ka = [H3O+][NO2-] / [HNO2]

[H3O+] = Ka × [HNO2] / [NO2-] = 4.5 × 10^-4 × 0.0400 mol/L / 0.0400 mol/L = 4.5 × 10^-4

Therefore, the pH of the solution after the addition of 10.0 mL of sodium hydroxide solution is:

pH = -log[H3O+] = -log(4.5 × 10^-4) = 3.35

So the pH of the solution after the addition of 10.0 mL of base is 3.35.

Click the below link, to learn more about Titration:

https://brainly.com/question/2728613

#SPJ11

which control tube is used to compare to test broths 1, 2, and 3 in order to evaluate the effectiveness of the germicide?

Answers

The control tube that is used to compare to test broths 1, 2, and 3 in order to evaluate the effectiveness of the germicide is the positive control tube.

This control tube contains bacteria that are not exposed to the germicide and serves as a reference for the growth and viability of the bacteria in the absence of the germicide.

By comparing the growth and viability of the bacteria in the positive control tube to the growth and viability of the bacteria in the test broths, researchers can determine the effectiveness of the germicide in killing or inhibiting the growth of the bacteria.

It is important to use a positive control tube in order to establish a baseline for comparison and ensure accurate and reliable results

To learn more about : germicide

https://brainly.com/question/29316904

#SPJ11

Name both local and global effects of burning petroleum in car engines

Answers

The both local and the global effects of burning petroleum in the car engines are smog and the global warming.

The Global effects defines to the various effects at which the actions of the individuals, the businesses, and the governments will be on the environment and the society at the large. The Global effects will leads to the changes to the climate, the water cycle, the biodiversity, and the food production, and the other natural systems.

The Smog is the form of the air pollution and will be created by the reaction of the sunlight and with the emissions from the car exhausts.

To learn more about global effects here

https://brainly.com/question/22599236

#SPJ4

a balloon filled with helium has a volume of 11.8 l at 289 k. what volume will the balloon occupy at 257 k?

Answers

Answer:

Explanation:

289k ---- 11.8

257k ------ x (where x = volume at 257k)

x = [tex]\frac{257*11.8}{289}[/tex]

x = 10.49 I

therefore at, 257k the balloon will have a volume of 10.49

rank each set of compounds from most acidic (i) to least acidic (iii): a) 2,4-dichlorobutyric acid i.) most b) 2,3-dichloro butyric acid ii.) c.) 3,3-dimethylbutryic acid iii.) least 3b. explain why you chose this order:

Answers

Answer:

Explanation:

i) Most acidic: 2,4-dichlorobutyric acid

ii) Intermediate acidity: 2,3-dichlorobutyric acid

iii) Least acidic: 3,3-dimethylbutyric acid

The acidity of a compound is determined by the stability of its conjugate base. A stronger acid will have a more stable conjugate base. In this case, the presence of electron-withdrawing groups like chlorine atoms in the carboxylic acid group increases the acidity of the compound by stabilizing the negative charge on the conjugate base.

Comparing the three compounds, 2,4-dichlorobutyric acid has two chlorine atoms which are more electronegative than the methyl groups present in the other compounds. The presence of these electron-withdrawing groups increases the acidity of the compound, making it the most acidic of the three.

2,3-dichlorobutyric acid has only one chlorine atom in the carboxylic acid group, making it less acidic than 2,4-dichlorobutyric acid but more acidic than 3,3-dimethylbutyric acid.

3,3-dimethylbutyric acid does not have any electron-withdrawing groups in the carboxylic acid group, making it the least acidic of the three compounds.

Multiply. 15y^3/8ay x 2a/3y
Simplify your answer as much as possible

Answers

The simplified answer to the multiplication of the [tex]$\frac{15y^3}{8ay} \times \frac{2a}{3y}$[/tex] expression is [tex]$\frac{5y^2}{2a}$[/tex].

To multiply the given expression, we need to first simplify each fraction.

Starting with the first fraction:

[tex]$\frac{15y^3}{8ay}$[/tex]

We can simplify this fraction by canceling out the common factors in the numerator and denominator.

[tex]$\frac{15y^3}{8ay} = \frac{35yyy}{222ay}[/tex]

[tex]= \frac{35y^2}{22a}[/tex]

[tex]= \frac{15y^2}{4a}$[/tex]

Now we simplify the second fraction:

2a/3y

We can also simplify this fraction by canceling out the common factors in the numerator and denominator.

2a/3y = 2/(3y)

Now that we have simplified both fractions, we can multiply them together:

[tex]$\frac{15y^2}{4a} \times \frac{2}{3y}$[/tex]

Multiplying the numerators and denominators together gives:

[tex]$\frac{15y^2 \times 2}{4a \times 3y}[/tex]

[tex]= \frac{30y^2}{12ay}[/tex]

[tex]= \frac{5y^2}{2a}$[/tex]

To learn more about expression

https://brainly.com/question/14083225

#SPJ4

what is the ph after 0.195 mol of naoh is added to the buffer from part a? assume no volume change on the addition of the base. express the ph numerically to three decimal places.

Answers

The pH after 0.195 mol of NaOH is added to the buffer from part a is pH > 14.

To answer this question, we need to use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
We were given the following information in part a: a buffer solution with a pKa of 5.00 and a concentration of 0.100 M for both the acid (HA) and its conjugate base (A-).
To determine the pH after adding 0.195 mol of NaOH to this buffer solution, we need to first calculate the new concentrations of the acid and its conjugate base:
- The initial moles of the acid (HA) and its conjugate base (A-) are both 0.100 M x 1.00 L = 0.100 mol.
- Adding 0.195 mol of NaOH will react with an equivalent amount of the acid, leaving behind the conjugate base. This means that the new amount of the acid will be 0.100 mol - 0.195 mol = -0.095 mol. However, this negative value doesn't make sense, so we should interpret it as meaning that all of the acid was used up and there is still 0.095 mol of NaOH remaining in the solution. The new amount of the conjugate base (A-) will be 0.100 mol + 0.195 mol = 0.295 mol.
- The new concentrations of the acid and its conjugate base are therefore:
[HA] = 0.000 mol/L
[A-] = 0.295 mol/L
Now we can substitute these values into the Henderson-Hasselbalch equation:
pH = 5.00 + log([0.295]/[0.000])
We cannot divide by zero, so we know that the pH will be very high (basic) because there is no acid left to keep the solution acidic. Taking the log of a very large number will also give us a very large positive value. Let's calculate it:
pH = 5.00 + log(∞)
pH = 5.00 + ∞
pH = ∞
However, we need to express the pH numerically to three decimal places. This means that we need to choose a convention for representing infinite values. One common convention is to use "pH = 14.000", since pH + pOH = 14. Another convention is to use "pH > 14", which indicates that the pH is higher than the highest possible value on the pH scale.
Therefore, the answer to the question is:
The pH after 0.195 mol of NaOH is added to the buffer from part a is pH > 14.

learn more about pH here

https://brainly.com/question/29775377

#SPJ11

petrochemicals create the raw materials used to produce which of the following? pesticides plastics soaps computers all of these answer choices are correct.

Answers

Petrochemicals are used to create the raw materials used to produce all of the answer choices provided in the question, which includes pesticides, plastics, soaps, and computers. Petrochemicals are chemical compounds that are derived from petroleum or natural gas. These compounds are widely used in various industries to create the raw materials needed for the production of a wide range of products.

Pesticides are chemicals used to kill or control pests, and many of them are made from petrochemicals. Plastics are also made from petrochemicals and are used to make a variety of products such as packaging materials, toys, and automotive parts. Soaps are made from a combination of petrochemicals and natural oils, and they are used for personal hygiene and cleaning purposes. Petrochemicals are also used to create components of computers, such as circuit boards and other electronic parts.

In conclusion, petrochemicals are an essential component in the production of various consumer goods and industrial products, and they play a significant role in modern society.

For more such questions on Petrochemicals, visit:

brainly.com/question/28540307

#SPJ11

a buffer solution has 0.750 m h2co3 and 0.650 m hco3−. if 0.020 mol of hcl is added to 275 ml of the buffer solution, what is the ph after the addition? the pka of carbonic acid is 6.37.

Answers

The pH of the buffer solution after the addition of 0.020 mol of HCl is approximately 7.779.

Describe a buffer?

A buffering agent is a substance that can withstand tiny additions of bases or acids without changing its pH. A weak acid with its conjugate base, and a base that is weak and its conjugate acid, make up the compound.

Small amounts of additional acid or base can be neutralised by the weakened acid or base while significantly altering the acidity of the solution in question. This is due to the fact that the acid that is weak and the base it conjugates with (or a base that is weak and its conjugated acid) exist in the solution in nearly equal proportions and can engage in a reversible process that preserves the pH..

To know more about buffer visit:

https://brainly.com/question/22821585

#SPJ1

Estimate the change in the thermal energy of water in a pond

a mass of 1,000 kg and a specific heat of 4,200 J/(kg. °C) if the

cools by 1°C.

er in a pond with

kg. "C) if the water

Answers

The change in the thermal energy of the water in the pond, a mass of 1,000 kg and the specific heat of 4,200 J/(kg. °C) is 4200 kJ.

The Mass of the water of the pond, m = 1,000 kg,

The specific heat of the water, C = 4,200  J/kg °C,

The change in temperature, ΔT =  1 °C,

The change in the thermal energy :

Q = mcΔT

where,

m = mass,

C = specific heat,

ΔT =  change in temperature.

Q = 1000 × 4200 × 1

Q = 4200000 J

Q = 4200 kJ

The change in the thermal energy is 4200 kJ.

Thus, the change in thermal energy of the water in a pond is 4200 kJ.

To learn more specific heat here

https://brainly.com/question/29499912

#SPJ4

superficial frostbite is a blank and results in blank

Answers

Superficial frostbite is a second-degree frostbite (a type of injury) and results in clear skin blisters.

Frostbite is damage of skin due to cold temperatures. The victim of frostbite is mostly unaware of it because a frozen tissue is numb. It can be cured but depends upon the stages of frostbite. There are three stages of frostbite as given below:

First stage is Frostnip, cause loss of feeling in skin occurs. Skin color becomes red and purple.

Second stage is Superficial Frostbite, cause clear skin blisters. Skin color changes from red to paler. A fluid-filled blister may appear 24 to 36 hours after color changing of skin

Third stage is Deep Frostbite, cause joints or muscles no longer work. Skin color changes to black and the area turns hard.

Redness or pain in any skin area maybe the first sign of frostbite.

Thus, when weather is very cold, stay indoors or dress in layers to prevent serious health problems.

Learn more about Frostbite here:

brainly.com/question/14460475

#SPJ11

Superficial frostbite is a type of frostbite that affects the outer layers of the skin and results in localized damage to the skin and underlying tissues. It is considered a mild form of frostbite and usually affects the fingers, toes, ears, nose, and cheeks.

The symptoms of superficial frostbite can include numbness, tingling, stinging, and burning sensations in the affected area. The skin may also appear pale or waxy and may be hard to the touch. In some cases, blisters may form several hours after rewarming the affected area.

If treated promptly and properly, superficial frostbite usually heals without complications. However, if left untreated, it can progress to deeper layers of tissue, leading to more severe frostbite and potential tissue damage.

For more question on Superficial frostbite click on

https://brainly.com/question/31453309

#SPJ11

If 1.2 moles of a gas occupy a volume of 2.0 L at 300 K, what is the pressure of the gas? a) 15 atm b) 720 atm c) 0.4 atm.

Answers

The pressure of the gas is approximately 14.71 atm, which is closest to answer choice a) 15 atm.

We can use the ideal gas law to solve for the pressure of the gas:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in kelvins.

Substituting the given values, we get:

P(2.0 L) = (1.2 moles)(0.0821 L·atm/mol·K)(300 K)

Simplifying and solving for P, we get:

P = (1.2 moles)(0.0821 L·atm/mol·K)(300 K) / 2.0 L

P = 14.71 atm

Therefore, the pressure of the gas is approximately 14.71 atm, which is closest to answer choice a) 15 atm.

Learn more about ideal gas law ,

https://brainly.com/question/28257995

#SPJ4

If 1.2 moles of a gas occupy a volume of 2.0 L at 300 K,  the pressure of the gas is option a) 15 atm.

To solve this problem, we need to use the ideal gas law, which is PV = nRT.

P = pressure of the gas (in atm)
V = volume of the gas (in L)
n = number of moles of gas
R = universal gas constant (0.08206 L·atm/mol·K)
T = temperature of the gas (in K)

First, let's convert the given values into the correct units:

n = 1.2 moles
V = 2.0 L
T = 300 K

Now we can plug these values into the ideal gas law equation:

PV = nRT

P(2.0 L) = (1.2 mol)(0.08206 L·atm/mol·K)(300 K)

Simplifying this equation, we get:

P = (1.2 mol)(0.08206 L·atm/mol·K)(300 K)/(2.0 L)

P = 14.4 atm

Therefore, the pressure of the gas is approximately 14.4 atm.

None of the given answer choices match exactly with this value, but option a) is the closest at 15 atm.

To learn more about ideal gas law equation click here

brainly.com/question/4147359

#SPJ11

given the equation3cl2 8nh3 =n2 6nh$cl how many moles of nh3 are required to produce 12 moles of nh4cl

Answers

16 moles of NH3 are required to produce 12 moles of NH4Cl.

Given the balanced equation:

3Cl2 + 8NH3 → N2 + 6NH4Cl

To determine how many moles of NH3 are required to produce 12 moles of NH4Cl, we can use the stoichiometry of the equation. We can see that 6 moles of NH4Cl are produced from 8 moles of NH3.

Follow these steps:

1. Write down the balanced equation:
  3Cl2 + 8NH3 → N2 + 6NH4Cl

2. Determine the stoichiometric ratio between NH3 and NH4Cl:
  8 moles of NH3 : 6 moles of NH4Cl

3. Calculate the moles of NH3 needed to produce 12 moles of NH4Cl using the stoichiometric ratio:
  (8 moles of NH3 / 6 moles of NH4Cl) * 12 moles of NH4Cl = 16 moles of NH3

16 moles of NH3 are required to produce 12 moles of NH4Cl.

Learn more about moles here:

https://brainly.com/question/15833820

#SPJ11

Given the equation 3[tex]Cl_{2}[/tex] + 8[tex]NH_{3}[/tex] = [tex]N_{2}[/tex] + 6 [tex]NH_{4}Cl[/tex], 16 moles of [tex]NH_{3}[/tex] are required to produce 12 moles of  [tex]NH_{4}Cl[/tex].

How to determine the number of moles?

To know how many moles of [tex]NH_{3}[/tex] are required to produce 12 moles of  [tex]NH_{4}Cl[/tex], we can follow the steps below:

Step 1: Determine the mole ratio between [tex]NH_{3}[/tex] and  [tex]NH_{4}Cl[/tex] from the balanced equation. In this case, it is 8 moles of [tex]NH_{3}[/tex] to 6 moles of  [tex]NH_{4}Cl[/tex].

Step 2: Set up a proportion to find the moles of NH3 needed for 12 moles of  [tex]NH_{4}Cl[/tex]:
(8 moles [tex]NH_{3}[/tex] / 6 moles  [tex]NH_{4}Cl[/tex]) = (x moles [tex]NH_{3}[/tex] / 12 moles  [tex]NH_{4}Cl[/tex])

Step 3: Solve for x:
x moles [tex]NH_{3}[/tex] = (8 moles [tex]NH_{3}[/tex] / 6 moles [tex]NH_{4}Cl[/tex]) * 12 moles  [tex]NH_{4}Cl[/tex]

Step 4: Calculate x:
x moles [tex]NH_{3}[/tex] = (8/6) * 12 = 16 moles [tex]NH_{3}[/tex]

To know more about Stoichiometry:

https://brainly.com/question/29195098

#SPJ11

Which of the following correctly defines work? Responses the amount of power consumed per unit time by an object the amount of power consumed per unit time by an object the amount of force exerted per unit time in order to accelerate an object the amount of force exerted per unit time in order to accelerate an object a net force applied through a distance in order to displace an object a net force applied through a distance in order to displace an object the amount of work done per unit time on an object the amount of work done per unit time on an object

Answers

The correct definition of work is: net force applied through a distance in order to displace an object.

What is work?

In physics, work is defined as the energy transferred to or from any object by means of force acting on the object as it moves through displacement.

More specifically, work is calculated as the product of force acting on an object and distance the object is displaced, multiplied by cosine of the angle between the force and displacement. Mathematically, work can be expressed as W = Fd cos(theta), where W is work, F is the force, d is displacement, and theta is angle between the force and displacement vectors.

To know more about work, refer

https://brainly.com/question/28356414

#SPJ1

(a) Briefly describe the phenomena of superheating and supercooling.(b) Why do these phenomena occur?

Answers

(a) Superheating is a phenomenon where a liquid is heated above its boiling point without actually boiling.

(b) Superheating and supercooling occur because they represent a state of thermodynamic instability

(a) This occurs when the liquid is free of impurities or nucleation sites that can trigger boiling. Supercooling is the opposite phenomenon, where a liquid is cooled below its freezing point without actually freezing. This occurs when the liquid is pure and there are no nucleation sites for the formation of ice crystals.
(b). In the case of superheating, the liquid is at a temperature above its boiling point but is prevented from boiling due to the absence of nucleation sites. In the case of supercooling, the liquid is at a temperature below its freezing point but is prevented from freezing due to the absence of nucleation sites. These phenomena can be observed in nature and can have practical applications in various fields, such as materials science and engineering.

learn  more about superheating Refer: https://brainly.com/question/24249319

#SPJ11

Superheating and supercooling are two phenomena that occur when a substance is heated or cooled beyond its boiling or freezing point, respectively.

Superheating is when a liquid is heated above its boiling point without boiling. This occurs because the liquid is in a stable state with no nucleation sites for bubbles to form. When a nucleation site is introduced, such as when the liquid is disturbed or when a foreign object is added, the liquid will rapidly boil and can potentially cause a dangerous explosion. Supercooling, on the other hand, is when a liquid is cooled below its freezing point without solidifying. This occurs because the liquid is also stable with no nucleation sites for ice crystals to form. When a nucleation site is introduced, such as when the liquid is agitated or when a foreign object is added, the liquid will rapidly freeze.These phenomena occur because a substance's boiling or freezing point is dependent on pressure, and when the pressure is decreased or increased, the boiling or freezing point will also change. Additionally, the lack of nucleation sites in a superheated or supercooled substance means that the substance is not able to transition to a new state until a nucleation site is introduced.

Learn more about Superheating here:

https://brainly.com/question/31496362

#SPJ11


Other Questions
Find an equation of the osculating plane and an equation of the normalplane of the curve x = sin 2t, y = t, z = cos 2t at the point (0, , 1). poorly controlled diabetes mellitus, which results in high blood glucose, often causes glucose and ketones to be found in the urine. explain these findings. The distinguishing characteristic of - form is the recurrence of a musical idea called a refrain that alternates with contrasting -.rondoepisodes-thematic development-motive the value of the action potential -- how much greater the electric potential is inside the axon as compared to outside the axon -- is around 30 mv for the average neuron in humans. if the length constant of an axon is about 2 mm, at what distance (to the nearest tenth of a mm) from the end of the axon where this action potential is applied would the potential difference across the membrane become less than 3.3 mv (which is a very weak signal)? (and this fast decay of the potential difference is why the action potential must be regenerated with further depolarization along the axon. with additional depolarization down the length of the axon, the action potential is thus maintained as a strong voltage pulse -- again, with a maximum value of around 30 mv -- that can travel along the entire length of axons, which can be over a meter long!) again, we can use the equation that relates the potential difference across a membrane as a function of how far from the end of the axon this potential difference is measured, i.e., . minimum required information for inflight emergencies is: aircraft identification and type; pilot's desires, and ________________. Which graph shows the solution to the inequality Negative 3 x minus 7 less-than 20 Group of answer choices A number lines goes from negative 10 to positive 10. An open circle appears at positive 9. The number line is shaded from positive 9 through negative 10. A number line goes from negative 10 to positive 10. An open circle appears at positive 9. The number line is shaded from positive 9 through positive 10. A number line goes from negative 10 to positive 10. An open circle appears at negative 9. The number line is shaded from negative 9 through positive 10. A number line goes from negative 10 to positive 10. An open circle appears at negative 9. The number line is shaded from negative 9 through negative 10. jane smith earns $975 a week. as of the end of february, jane has cumulative earnings $7,800. during the last week of february, how much of her current earnings are subject to state unemployment tax? Fill in table.It takes Shaun 90 minutes to complete a 15 mile race. Assume Shaun runs at a constant rate during the race. Complete the table to show Shauns time, in minutes, and distance, in miles, at each checkpoint. Select the correct answerWhich preposition best completes the second sentence?Du bist spt. Ich habe ____ eine ganze Stunde auf dich gewartet. A. fr B. vor C. seit D. am the impact of electronic and print news media causes americans to focus most on __________ politics. a. community b. local c. state d. national the power of a dinner table selection test if a response is not followed by a reward after it has been repeated many times, it will go away. this describes the operant conditioning term of question 25 options: a) punishment. b) extinction. c) negative reinforcement. d) time out. Suppose that the functions fand g are defined as follows.f(x)=2x-1g(x)=3x-5 which assessment finding will the nurse monitor as an indicator of an undesired effect of penicillin g? ___ describes children who display an age-inappropriate recurrent pattern of stubborn, hostile, and defiant behaviors Help Please show your work . Write an essay on the Fourth Industrial Revolution (4IR) challenge to South Africa, with reference to the following: a) historically contextualise the 4IR in relation to and describe preceding industrial revolutions, b) describe the physical, digital and biological clusters of the 4IR, c) the disruptive effects of the 4IR, and d) debunking the argument about 4IR with reference to issues about capitalism, capitalist social relations, profit-motives and innovating technology. Why did the healthcare industry not historically viewcustomers or patients as consumers? Please support any answer youpost with references. thank you martha stewart employs a(n) style of leadership for her lifestyle brand martha stewart living. she makes every decision, no matter how small. martha is able to make quick decisions due to her consistent vision.her style can be described as: A 0.80kg block of carbon (solid) is dropped into 1.4kg of water. If the carbon starts at -20C, the water starts at 92C, and they have equal final temperatures, what is the final temperature of the system?