What portion of the difference in the angular speed before and after you increased the mass can be accounted for by frictional losses

Answers

Answer 1

Answer:

As the mass increases, the moment of inertia(I) increases, therefore, the angular momentum(L) increases too.

Explanation:

friction can be defined as resistance in motion of bodies in relative to one another

momentum is the product of mass and velocity

torque is the time rate of change in momentum

τ = [tex]\frac{dL}{dt}[/tex]

where L = Iω = mvr

I = moment of inertia

ω=  angular frequency

if there is no external force(torque) acting on the system, then

[tex]\frac{dL}{dt}[/tex] = 0

dL = 0 = constant

moment of inertia I depends on the distribution of mass on the axis of rotation.

as the mass increases, the angular momentum(L) increases

angular frequency, ω, remains constant


Related Questions

A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the switch is open and the capacitor is uncharged. What is the voltage across the resistor and the capacitor at the moment the switch is closed

Answers

Answer:

The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.

Explanation:

This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery

A 18.0 kg electric motor is mounted on four vertical springs, each having a spring constant of 24.0 N/cm. Find the period with which the motor vibrates vertically.

Answers

Answer:

Explanation:

Total mass m = 18 kg .

Spring are parallel to each other so total spring constant

= 4 x 24 = 96 N/cm = 9600 N/m

Time period of vibration

[tex]T=2\pi\sqrt{\frac{m}{k} }[/tex]

Putting the given  values

[tex]T=2\pi\sqrt{\frac{18}{9600} }[/tex]

= .27 s .

A 900 kg roller coaster car starts from rest at point A. rolls down the track, goes
around a loop (points B and C) and then flies off the inclined part of the track (point D),
Figure 2.
The dimensions are: H =80 m.
r= 15m, h=10m and theta =9.30°

Calculate the
(a) gravitational potential energy at point A.

(b) velocity at point C, if the work done to move the roller coaster from point B to C is 264870 J.

c) distance of the car land (in the horizontal direction) from point D if given the
velocity at point D is 37.06 m/s

I​

Answers

Answer:

gravitational potential energy at point A.

A) The gravitational potential energy at point A is; 705600 J

B) The velocity at point C, if the work done to move the roller coaster from point B to C is 264870 J is; v = 31.295 m/s

A) Formula for gravitational potential energy is;

PE = mgh

At point A;

mass; m = 900 kg

height; h = 80 m

Thus;

PE = 900 × 9.8 × 80

PE = 705600 J

B) Kinetic energy of the roller coaster at point C is given as;

KE = PE - W

We are given Workdone; W = 264870 J

Thus;

KE = 705600 - 264870

KE = 440730 J

Thus, velocity at point C is gotten from the formula of kinetic energy;

KE = ½mv²

v = √(2KE/m)

v = √(2 × 440730/900)

v = 31.295 m/s

Read more at; https://brainly.com/question/14295020

Two particles, of charges q1 and q2, are separated by a distance d on the x-axis with q1 at the origin and q2 in the positive direction. The net electric field due to the particles is zero at x = d/4. With V = 0 at infinity, locate (in terms of d) any point on the x-axis (other than infinity) at which the electric potential due to the two particles is zero.

Answers

Answer:

No point on the x-axis

Pls see attached file

If the car decelerates uniformly along the curved road from 27 m/s m/s at A to 13 m/s m/s at C, determine the acceleration of the car at B

Answers

Answer:

0.9m/s²

Explanation:

See attached files

A circular loop of wire of radius 10 cm carries a current of 6.0 A. What is the magnitude of the magnetic field at the center of the loop

Answers

Answer:

3.77x10^-5T

Explanation:

Magnetic field at center of the loop is given as

B=uo*I/2r =(4pi*10-7)*6/2*0.1

B=3.77*10-5Tor 37.7 uTi

A string passing over a pulley has a 3.85-kg mass hanging from one end and a 2.60-kg mass hanging from the other end. The pulley is a uniform solid cylinder of radius 4.5 cm and mass 0.79 kg .
A. If the bearings of the pulley were frictionless, what would be the acceleration of the two masses?
B. In fact, it is found that if the heavier mass is given a downward speed of 0.20 m/s , it comes to rest in 6.4 s . What is the average frictional torque acting on the pulley?

Answers

Answer:

Explanation:

Let the acceleration be a of the system

T₁ and T₂ be the tension in the string attached with 3.85 and 2.6 kg of mass

for motion of 3.85 kg , applying newton's law

3.85g - T₁ = 3.85 a

for motion of 2.6 kg

T₂ - 2.6g = 2.6 a

T₂ - T₁ + 1.25 g = 6.45 a

T₁ - T₂ = 1.25 g -  6.45 a

for motion of pulley

(T₁ - T₂ ) x R = I x α where R is radius of pulley , I is its moment of inertia and α is angular acceleration

(T₁ - T₂ ) x R = 1 /2  m R² x a / R

(T₁ - T₂ )  =   m  x a / 2 = .79 x a / 2 = . 395 a

1.25 g -  6.45 a = .395 a

1.25 g = 6.845 a

a = 1.79 m /s²

B )

When heavier mass is given speed of .2 m /s , it comes to rest in 6.4 s

Average deceleration = .2 / 6.4 = .03125 m /s²

Total deceleration created by frictional torque = 1.79 + .03125

= 1.82125 m /s²

If R be the average frictional torque  acting on the pulley

angular deceleration of pulley = a / R

= 1.82125 / .045

= 40.47 rad /s²

Now  R = I x 40.47 , I is moment of inertia of pulley

= 1 /2 x .79 x .045² x 40.47

= .0323 N.m

Torque created = .0323 Nm

The acceleration of the two masses hanging from ends of the pulley is 31 m/s².

The average frictional torque acting on the pulley is 0.55 Nm.

The given parameters;

mass of the pulley, = M = 0.79 kgfirst mass, m₁ = 3.85 kgsecond mass, m₂ = 2.6 kgradius, R = 4.5 cm = 0.045 m

The acceleration of the two masses is determined by taking net torque acting on the pulley;

[tex]\tau _{net} = I \alpha[/tex]

[tex]T_1R - T_2R = I \alpha\\\\[/tex]

where;

T is the tension on both stings suspending the masses = mgI is the moment of inertia of the pulley [tex]= \frac{MR^2}{2}[/tex]α is the angular acceleration

[tex]R(T_1 - T_2) = (\frac{MR^2}{2} )(\frac{a}{R} )\\\\T_1 - T_2 = (\frac{MR^2}{2} )(\frac{a}{R} ) \times \frac{1}{R} \\\\T_1 - T_2 = \frac{M}{2} \times a\\\\a = \frac{2}{M} (T_1 - T_2)[/tex]

Substitute the given parameters, to solve for the acceleration of the masses;

[tex]a = \frac{2}{M} (m_1g - m_2 g)\\\\a = \frac{2g}{M} (m_1 - m_2)\\\\a = \frac{2 \times 9.8}{0.79} (3.85 - 2.6)\\\\a = 31 \ m/s^2[/tex]

The average frictional torque acting on the pulley when the heavier mass speeds down by 0.2 m/s and stop by 6.4 s.

[tex]a = \frac{v}{t} = \frac{0.2}{6.4} = 0.031 \ m/s^2 \\\\ a_t = 31 m/s^2+ 0.031 m/s^2 = 31.031 m/s^2 \\\\\tau = I \alpha\\\\\tau = (\frac{MR^2}{2} )(\frac{a_t}{R} )\\\\\tau = (\frac{0.79 \times 0.045^2 }{2} ) (\frac{31.031}{0.045} )\\\\\tau = 0.55 \ Nm[/tex]

Learn more here:https://brainly.com/question/14008486

Rick spends four hours researching on the internet and does 1090 J of work. In the process, his internal energy decreases by 2190 J. Determine the value of Q, including the algebraic sign.

Answers

Answer:

Q = -3280J

Explanation:

From the First Law of Thermodynamics, energy cannot be created nor destroyed but it can be converted from one form to another with the interaction of heat. Mathematically, this can be expressed as:

ΔU = Q + W        ----------(i)

Where;

ΔU = total change in internal energy of a system.

Q = heat exchanged between the system and the surrounding

W = work done by or on the system.

If heat is lost into the surrounding, then Q = -ve, else Q = +ve

If work is done on the system, then W = -ve, else W = -ve

=> From the question, Rick is the system and does a work of

W = +1090J  [since Rick does the work, W = +ve]

=>Also, the internal energy decreases by 2190J, therefore,

ΔU = -2190J   [since there is a decrease in internal energy]

Substitute the values of W and ΔU into equation (i) as follows;

-2190 = Q + 1090

=> Q = -2190 - 1090

=> Q = -3280J

Therefore, the value of Q = -3280J

Gravitational Force: Two small balls, A and B, attract each other gravitationally with a force of magnitude F. If we now double both masses and the separation of the balls, what will now be the magnitude of the attractive force on each one

Answers

Answer:

F' = F

Hence, the magnitude of the attractive force remains same.

Explanation:

The force of attraction between two bodies is given by Newton's Gravitational Law:

F = Gm₁m₂/r²   --------------- equation 1

where,

F = Force of attraction between balls

G = Universal Gravitational Constant

m₁ = mass of first ball

m₂ = mass of 2nd ball

r = distance between balls

Now, we double the masses of both balls and the separation between them. So, the force of attraction becomes:

F' = Gm₁'m₂'/r'²

here,

m₁' = 2 m₁

m₂' = 2 m₂

r' = 2 r

Therefore,

F' = G(2 m₁)(2 m₂)/(2 r)²

F' = Gm₁m₂/r²

using equation 1:

F' = F

Hence, the magnitude of the attractive force remains same.

Estimate the volume of a human heart (in mL) using the following measurements/assumptions:_______.
1. Blood flow through the aorta is approximately 11.2 cm/s
2. The diameter of the aorta is approximately 3.0 cm
3. Assume the heart pumps its own volume with each beat
4. Assume a pulse rate of 67 beats per minute.

Answers

Answer:

Explanation:

radius of aorta = 1.5 cm

cross sectional area = π r²

= 3.14 x 1.5²

= 7.065 cm²

volume of blood flowing out per second out of heart

= a x v , a is cross sectional area , v is velocity of flow

= 7.065 x 11.2

= 79.128 cm³

heart beat per second = 67 / 60

= 1.116666

If V be the volume of heart

1.116666 V = 79.128

V = 70.86 cm³.

which example describes a nonrenewable resource?
A. everyone in our neighborhood uses solar panels to generate electricity to run their pool pumps.
B. once up and running, the power plant will convert the energy from tides and waves into electricity.
C. there is a long stretch of land in the desert with many windmills that are able to generate enough electricity to run the town.
D. there are drilling platforms all along the coast that are used to drill for natural gas that can be used to generate electricity.

Answers

Answer:

D. There are drilling platforms all along the coast that are used to drill for natural gas that can be used to generate electricity

Explanation:

Solar panels are a renewable resource because the sun will not run out. The power plant uses water, so it is also a renewable resource. Windmills use wind, and wind will not run out so it is a renewable resource. However, natural gas and oil are not renewable resources because they will run out one day.

Find the net work W done on the particle by the external forces during the motion of the particle in terms of the initial and final kinetic energies. Express your answer in terms of Ki and Kf.

Answers

The net work done (W) on a particle by the external forces during the motion of the particle in terms of the initial and final kinetic energies is equal to [tex]W = K_f - K_i[/tex]

The net work done (W) can be defined as the work done in moving an object by a net force, which is the vector sum of all the forces acting on the object.

According to Newton's Second Law of Motion, the net work done (W) on an object or physical body is equal to the change in the kinetic energy possessed by the object or physical body.

Mathematically, the net work done (W) on an object or physical body is given by the formula:

[tex]W =\Delta K_E\\\\W = K_f - K_i[/tex]

Where:

W is the net work done.[tex]K_f[/tex] is the initial kinetic energy.[tex]K_i[/tex] is the final kinetic energy.

Read more: https://brainly.com/question/22599382

Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the following function.
h=1/2t2+1/2t
(a) What is the height of the balloon at the end of 40 sec?
(b) What is the average velocity of the balloon between t = 0 and t = 30?
ft/sec
(c) What is the velocity of the balloon at the end of 30 sec?
ft/sec

Answers

Answer:

Explanation:

Given the height reached by a balloon after t sec modeled by the equation

h=1/2t²+1/2t

a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t

If h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

b) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec

c) Velocity is the change of displacement of a body with respect to time.

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec

A)  The height of the balloon at the end of 40 sec is 820 feet.

B) The average velocity of the balloon is 30 ft/sec.

C) The velocity of the balloon at the end of 30 sec is

Velocity

Given :

h=1/2t²+1/2t

Part A)

The height of the balloon after 40 secs is :

h(t)=1/2t²+1/2t

h(40) = 1/2(40)²+1/2 (40)

h(40) = 1600/2 + 40/2

h(40) = 800 + 20

h(40) = 820 feet

The height of the balloon after 40 secs is 820 feet

Part B)

The average velocity of the balloon is  :

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

when v = 0 sec

v(0) = 0 + 1/2

v(0) = 1/2 ft/sec

When at v = 30secs

v(30) = 30 + 1/2

v(30) = 30 1/2 ft/sec

average velocity = v(30) - v(0)

average velocity = 30 1/2 - 1/2

average velocity of the balloon = 30 ft/sec

The average velocity of the balloon  is  30 ft/sec.

Part C)

The velocity of the balloon at the end of 30 sec is :

v = dh/dt

v(t) = 2(1/2)t²⁻¹ + 1/2

v(t) = t + 1/2

The velocity of the balloon after 30secs will be;

v(30) = 30+1/2

v(30) = 30.5ft/sec

The velocity of the balloon after 30 secs is 30.5 feet/sec.

Learn more about "Velocity":

https://brainly.com/question/862972?referrer=searchResults

select the example that best describes a renewable resource.
A.after a shuttle launch, you can smell the jet fuel for hours.
B.solar panels generate electricity that keeps the satellites running.
C.tractor trailers are large trucks that run on diesel fuel.
D. we use our barbeque every night; it cooks with propane.

Answers

Answer:

B.solar panels generate electricity that keeps the satellites running.

Explanation:

Solar panels are a renewable resource because they take energy from the sun.

A 3.15-kg object is moving in a plane, with its x and y coordinates given by x = 6t2 − 4 and y = 5t3 + 6, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.15 s.

Answers

Answer:

206.67N

Explanation:

The sum of force along both components x and y is expressed as;

[tex]\sum Fx = ma_x \ and \ \sum Fy = ma_y[/tex]

The magnitude of the net force which is also known as the resultant will be expressed as [tex]R =\sqrt{(\sum Fx)^2 + (\sum Fx )^2}[/tex]

To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.

Given the position of the object along the x-component to be x = 6t² − 4;

[tex]a_x = \frac{d^2 x }{dt^2}[/tex]

[tex]a_x = \frac{d}{dt}(\frac{dx}{dt} )\\ \\a_x = \frac{d}{dt}(6t^{2}-4 )\\\\a_x = \frac{d}{dt}(12t )\\\\a_x = 12m/s^{2}[/tex]

Similarly,

[tex]a_y = \frac{d}{dt}(\frac{dy}{dt} )\\ \\a_y = \frac{d}{dt}(5t^{3} +6 )\\\\a_y = \frac{d}{dt}(15t^{2} )\\\\a_y = 30t\\a_y \ at \ t= 2.15s; a_y = 30(2.15)\\a_y = 64.5m/s^2[/tex]

[tex]\sum F_x = 3.15 * 12 = 37.8N\\\sum F_y = 3.15 * 64.5 = 203.18N[/tex]

[tex]R = \sqrt{37.8^2+203.18^2}\\ \\R = \sqrt{1428.84+41,282.11}\\ \\R = \sqrt{42.710.95}\\ \\R = 206.67N[/tex]

Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N

n oscillator is driven by a sinusoidal force. The frequency of the applied force A : must be less than the natural frequency of the oscillator. B : is independent of the natural frequency of the oscillator. C : becomes the natural frequency of the oscillator. D : must be equal to the natural frequency of the oscillator. E : must be greater than the natural frequency of the oscillator

Answers

Answer:

  B : is independent of the natural frequency of the oscillator

Explanation:

You can apply any force you like to a natural oscillator. It is independent of the natural frequency of the oscillator.

The result you get will depend on how the frequency of the applied force and the natural frequency relate to each other. It will also depend on the robustness of the oscillator with respect to the applied force.

Clearly, if the force is small enough, it will have no effect on the oscillator. If it is large enough, it will overpower any motion the oscillator may attempt. For forces in the intermediate range, there will be some mix of natural oscillation and forced behavior. One may modulate the other, for example.

An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E⃗ =E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction.
What is the Poynting vector S⃗ (x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction?

Answers

Given that,

The electric field is given by,

[tex]\vec{E}=E_{0}\sin(kx-\omega t)\hat{j}[/tex]

Suppose, B is the amplitude of magnetic field vector.

We need to find the complete expression for the magnetic field vector of the wave

Using formula of magnetic field

Direction of [tex](\vec{E}\times\vec{B})[/tex] vector is the direction of propagation of the wave .

Direction of magnetic field = [tex]\hat{j}[/tex]

[tex]B=B_{0}\sin(kx-\omega t)\hat{k}[/tex]

We need to calculate the poynting vector

Using formula of poynting

[tex]\vec{S}=\dfrac{E\times B}{\mu_{0}}[/tex]

Put the value into the formula

[tex]\vec{S}=\dfrac{E_{0}\sin(kx-\omega t)\hat{j}\timesB_{0}\sin(kx-\omega t)\hat{k}}{\mu_{0}}[/tex]

[tex]\vec{S}=\dfrac{E_{0}B_{0}}{\mu_{0}}(\sin^2(kx-\omega t))\hat{i}[/tex]

Hence, The poynting vector is [tex]\dfrac{E_{0}B_{0}}{\mu_{0}}(\sin^2(kx-\omega t))\hat{i}[/tex]

Calculate the maximum kinetic energy of electrons ejected from this surface by electromagnetic radiation of wavelength 236 nm.

Answers

Answer:

Explanation:

Using E= hc/wavelength

6.63 x10^-34 x3x10^8/ 236nm

19.86*10^-26/236*10^-9

=0.08*10^-35Joules

A flashlight is held at the edge of a swimming pool at a height h = 1.6 m such that its beam makes an angle of θ = 38 degrees with respect to the water's surface. The pool is d = 1.75 m deep and the index of refraction for air and water are n1 = 1 and n2 = 1.33, respectively.

Required:
What is the horizontal distance from the edge of the pool to the bottom of the pool where the light strikes? Write your answer in meters.

Answers

one of the answers that i found was   5.83 m i did some more research and it showed the same answer again. good luck with it. hope i was able to help you.

A block of mass m is suspended by a vertically oriented spring. If the mass of a block is increased to 4m, how does the frequency of oscillation change, if at all

Answers

Answer:

The frequency will be reduced by a factor of √2/2

Explanation:

Pls see attached file

The new frequency of oscillation will be half the original frequency of oscillation of spring-block system.

Let the initial mass of block be m.

And new mass is, 4m.

The frequency of oscillating motion is defined as the number of complete oscillation made during the time interval of 1 second. The mathematical expression for the frequency of oscillation of block-spring system is given as,

[tex]f = \dfrac{1}{2 \pi}\sqrt{\dfrac{k}{m}}[/tex]

Here,

k is the spring constant.

If the mass of block increased to 4m, then the new frequency of oscillation of spring will be,

[tex]f' = \dfrac{1}{2 \pi} \sqrt{\dfrac{k}{4m}}\\\\\\f' =\dfrac{1}{2} \times \dfrac{1}{2 \pi} \sqrt{\dfrac{k}{m}}\\\\\\f' =\dfrac{1}{2} \times f[/tex]

Thus, we can conclude that the new frequency of oscillation will be half the original frequency of oscillation of spring-block system.

Learn more about the frequency of oscillation here:

https://brainly.com/question/14316711

The force required to compress a spring with elastic constant 1500N / m, with a distance of 30 cm is

Answers

Explanation:

F = kx

F = (1500 N/m) (0.30 m)

F = 450 N

An air conditioner connected to a 103 V rms AC line is equivalent to a 20 resistance and a 1.68 inductive reactance in series. a) What is the impedance of the air conditioner

Answers

Answer:

20.07ohms

Explanation:

Impedance is defined as the opposition to the flow of current through the elements of the circuit.

Impedance for R-L AC circuit is expressed as Z = √R²+XL²

R is the resistance

XL is the inductive reactance.

Given resistance of the air condition = 20 ohms

Inductive reactance XL = 1.68 ohms

Z = √20²+1.68²

Z = √400+2.8224

Z = √402.8224

Z = 20.07 ohms

Hence the impedance of the air conditioner is 20.07ohms

Resistance and Resistivity: The length of a certain wire is doubled while its radius is kept constant. What is the new resistance of this wire?

Answers

Answer:

Explanation:

The formula for calculating the resistance of a material in terms of its resistivity is expressed as [tex]R = \rho L/A[/tex] where;

R is the resistance of the material

[tex]\rho[/tex] is the resistivity of the material

L is the length of the wire

A is the area = πr² with r being the radius

[tex]R = \rho L/\pi r^{2}[/tex]

If the length of a certain wire is doubled while its radius is kept constant, then the new length of the wire L₁ = 2L

The new resistance of the wire R₁ will be expressed as [tex]R_1 = \frac{\rho L_1}{A_1}[/tex]

since the radius is constant, the area will also be the same i.e A = A₁ and the resistivity also will be constant. The new resistance will become

[tex]R_1 = \frac{\rho(2L)}{A}[/tex]

[tex]R_1 = \frac{2\rho L}{\pi r^2}[/tex]

Taking the ratio of both resistances, we will have;

[tex]\frac{R_1}{R} = \frac{2\rho L/\pi r^2}{\rho L/ \pi r^2} \\\\\frac{R_1}{R} = \frac{2\rho L}{\pi r^2} * \frac{\pi r^2}{ \rho L} \\\\\frac{R_1}{R} = \frac{2}{1}\\\\R_1 = 2R[/tex]

This shoes that the new resistance of the wire will be twice that of the original wire

A boat floating in fresh water displaces 16,000 N of water. How many newtons of salt water would it displace if it floats in salt water of specific gravity 1.10

Answers

Answer:

It will displace the same weight of fresh water i.e.16000N. The point is the body 'floats'- which is the underlying assumption here, and by Archimedes Principle, for this body or vessel or whatever it may be, to float it should displace an equal weight of water

Explanation:

1. The frequency of a wave defines
O A. the minimum height of a wave.
O B. the maximum height of a wave.
O C. how fast the wave is moving in cycles per second.
D. the height of the wave at a given point.

Answers

Answer:

The answer is C

Explanation:

Frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion. ... See also angular velocity; simple harmonic motion.

In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.

Answers

Answer:

E = 1.24MeV

Explanation:

The photon travels at the speed of light, 3.0 × [tex]10^{8}[/tex] m/s, and given that its frequency = 1 picometer = 1.0 × [tex]10^{-12}[/tex] m.

Its energy can be determined by;

E = hf

  = (hc) ÷ λ

where E is the energy, h is the Planck's constant, 6.626 × [tex]10^{-34}[/tex] Js, c is the speed of the light and f is its frequency.

Therefore,

E = (6.626 × [tex]10^{-34}[/tex]× 3.0 × [tex]10^{8}[/tex]) ÷ 1.0 × [tex]10^{-12}[/tex]

  = 1.9878 × [tex]10^{-25}[/tex] ÷ 1.0 × [tex]10^{-12}[/tex]

E = 1.9878 × [tex]10^{-13}[/tex] J

But, 1 eV = 1.6 × [tex]10^{-19}[/tex] J. So that;

E = [tex]\frac{1.9878*10^{-13} }{1.6*10^{-19} }[/tex]

  = 1242375 eV

∴ E = 1.24MeV

The energy of the photon is 1.24MeV.

A solenoid 26.0 cm long and with a cross-sectional area of 0.580 cm^2 contains 490 turns of wire and carries a current of 90.0 A.
Calculate:
(a) the magnetic field in the solenoid;
(b) the energy density in the magnetic field if the solenoid is filled with air;
(c) the total energy contained in the coil’s magnetic field (assume the field is uniform);
(d) the inductance of the solenoid.

Answers

Answer:

A.21.3T

B.1.8x 10^6J/m^3

C.0.27x10^2J

D.6.6x10^-3H

Explanation:

Pls see attached file

Find the absolute value of the change of the gravitational potential energy (GPE) of the puck-Earth system from the moment the puck begins to move to the moment it hits the spring. Use 0.253 m for the displacement of the puck along the ramp and 9.80 m/s2 for the acceleration due to gravity. Assume that the mass of the puck is 0.180 kg. Express your answer using SI units to three significant figures.

Answers

Answer:

0.16joules

Explanation:

Using the relation for The gravitational potential energy

E= Mgh

Where,

E= Potential energy

h = Vertical Height

M = mass

g = Gravitational Field Strength

To find the vertical component of angle of launch Where the angle is 22°

h= sin theta

So E = mghsintheta

= 0.18 x 0.98 x 0.253 sin22

=0.16joules

Explanation:

Receiver maxima problem. When the receiver moves through one cycle, how many maxima of the standing wave pattern does the receiver pass through

Answers

The number of maxima of the standing wave pattern is two.

Maxima problem:

At the time when the receiver moves via one cycle so here two maximas should be considered. At the time when the two waves interfere by traveling in the opposite direction through the same medium so the standing wave pattern is formed.

learn more about the waves here: https://brainly.com/question/3004869?referrer=searchResults

At t=0 a 2150kg rocketship in outer space fires the engine which exerts a force=At2, and F(1.25s)=781.25N in the x direction. Find the impulse J during the interval t=2.00s and t=3.5s

Answers

Answer:

5.81 X 10^3 Ns

Explanation:

Given that

F = At² and F at t = 1.25 s is 781.25 N ?

A = F/t² at t = 1.25 s => F = 781.25/(1.25)² = 500 N/s²

d(Impulse) = Fdt

Impulse = ∫Fdt =∫At²dt evaluated in the interval 2.00 s ≤ t ≤ 3.50 s

Impulse = At³/3 = (500/3)(t³) = 166.7t³ between t = 2.00 s and t = 3.50 s

Impulse = 166.7[3.5³ - 2³] = 166.7[42.875 - 8] = 166.7[34.875] = 5813.7 Ns

5.81 X 10^3 N.s

Other Questions
Find the missing side of a triangle when one side is 3.16 and the other is 3 The cell theory was first proposed in 1838. Evidence obtained through additional scientific investigations resulted in the current cell theory. Which statement describes a component of the original cell theory that was removed because of the new scientific knowledge? please help Describe how the Ming and Qing dynasties' policies of isolation during the 15th century affected China over the long term. Include at least one positive and one negative impact of these policies on China. (4 points) The Mahoney Company failed to accrue Rent Revenue on 12/31/23. The error was discovered on 2/1/24, before any cash was collected and after the 2023 books were closed. On 2/1/24, Mahoney would record: why does my cat act rough with her kittens ? WHO GIVES A REASONABLE ANSWER GET'S BRAINLIEST.(This is not from a subject just curious) Journalize the entry to record the receipt of payment of the note at maturity. Cash 60,900 Notes Receivable 60,000 Interest Revenue 3,600 Personal decisions are not related to career decisions.Please select the best answer from the choices providedo True oFalse do these problems and get 100 points 1. Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. c 22 and 15 2 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. d 13.2 and 6.7 3 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. e 34 and 12 4 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. f 23 and 44 jake buys a new car for $18,259. each year x after he buys the car, its value y depreciates by $445. which equation models the relationship between x and y?A. y=445x + 18,259B. y= -445x + 18,259C. y= 445x - 18,259D. y= -445x - 18,259 Use the appropriate double-angle formulas to rewrite the numerator and denominator of the expression given below. For the denominator, use the double-angle formula that will produce only one term in the denominator when it is simplified.1+ Cos2x/ Sin2x = 1+ (____)/____= _____ / _____The expression from the previous step then simplifies to cot x using what? a. Even-Odd Identity b. Quotient Identity c. Pythagorean Identity d. Reciprocal Identity At what stage does the umbilical cord develop? during the first trimester during the second trimester during ovulation during fertilization The current risk-free rate of return ( rRF ) is 4.67% while the market risk premium is 6.63%. The Burris Company has a beta of 0.78. Using the capital asset pricing model (CAPM) approach, Burriss cost of equity is Please help! I got 14 but it says it's incorrect! Find the maximum number of real zeros of the polynomial. f(x)=2x^(6)-3x^(3)+1-2x^(5) Cece works at a dress shop and needs to calculate the discounts for dresses on sale using the formula d=(pc)2, where d is the discount, p is the original price, and c is the store's cost for the dress. If the store's cost for a dress is $50 and the original price of the dress is $120, what is the discount on the dress? (4.06 MC)Which statement best compares coastal ecosystems to open ocean ecosystems? a. Coastal ecosystems include abyssopelagic depths, and open ocean ecosystems do not. b. Coastal ecosystems have less sunlight, fewer nutrients, and less diversity than open ocean ecosystems. c. Coastal ecosystems have a greater range of water pressures than open ocean ecosystems. d. Coastal ecosystems have more sunlight, more nutrients, and higher levels of productivity than open ocean ecosystems. Miss White wants to buy 5 value meals at Mels Diner.What is the reasonable total for her purchase? A. $25B. $1,000C. $100 D. $10Need answer ASAP The supply of luxury boats is perfectly elastic, the demand for luxury boats is unit elastic, and with no tax on luxury boats the price is $22 million and 210210 luxury boats a week are bought. Now luxury boats are taxed 10%. What is the new quantity of boats sold and what is the governments tax revenue? Can someone help with this.... thanks! If Tamarisk, Inc. realizes a loss of $9400 on a cash sale of office equipment having a book value of $93600, the total amount reported in the cash flows from investing activities section of the statement of cash flows is Its a beautiful spring day in May. The winter semester has motivated you and several friends to go rock climbing in the nearby mountain range. Soon you are testing your limits and pushing your climbing skills to the brink until a cold wind whips the cliff, and you have to hang on for dear life! As you quickly glance over and down, you see a friend who seems to be frozen with fear...he screams, then suddenly free falls to crash on the rocks 30 feet below. You quickly climb down to the victim and notice two other friends reaching him at the same time. 1. (Evaluate) In what order of priority would you pursue lifesaving measures? 2. (Analyze) Would you move the victim or keep him where he is? What woud help you decide? 3. (Apply) After emergency care is provided, what would you do to stabilize the victim and attempt to prevent shock and hypothermia? 4. (Create) Would you evacuate the victim or bring help to him? Describe how / why you might be forced to do either.