Answer:
The internal resistance is [tex]r = 0.5 \ \Omega[/tex]
Explanation:
From the question we are told that the resistance of
The resistance of the resistor is [tex]R = 20.0\ \Omega[/tex]
The voltage is [tex]V = 12.0 \ V[/tex]
The magnitude of the voltage fall is [tex]e = 0.300\ V[/tex]
Generally the current flowing through the terminal due to the voltage of the battery is mathematically represented as
[tex]I = \frac{V}{R}[/tex]
substituting values
[tex]I = \frac{12.0 }{20 }[/tex]
[tex]I = 0.6 \ A[/tex]
The internal resistance of the battery is mathematically represented as
[tex]r = \frac{e}{I}[/tex]
substituting values
[tex]r = \frac{0.300}{ 0.6 }[/tex]
[tex]r = 0.5 \ \Omega[/tex]
The internal resistance of the battery is 0.5 ohms.
To calculate the internal resistance of the battery, we use the formula below
Formula:
(V/R)r = V'............. Equation 1Where:
V = Voltage across the terminal of the batteryR = Resistance connected across the batteryr = internal resistance of the batteryV' = voltage drop of the battery.Make r the subject of the equation
r = V'R/V............ Equation 2From the question,
Given:
V = 12 VR = 20 ohmsV' = 0.3 VSubstitute these values into equation 2
r = (0.3×20)/12r = 6/12r = 0.5 ohms.Hence, The internal resistance of the battery is 0.5 ohms.
Learn more about internal resistance here: https://brainly.com/question/14883923
calculate the upthrust aciting on a body if its
true weight is 550 N and apparent weight
lis 490 N
Answer:
As a body moving upward
T=real weight + apparent weight
T=550+490
T=1040
hope u will get the answer:)
Explanation:
Help me with these question and please explainnn
Explanation:
1. Impulse = change in momentum
J = Δp
J = mΔv
In the x direction:
Jₓ = mΔvₓ
Jₓ = (0.40 kg) (30 m/s cos 45° − (-20 m/s))
Jₓ = 16.5 kg m/s
In the y direction:
Jᵧ = mΔvᵧ
Jᵧ = (0.40 kg) (30 m/s sin 45° − 0 m/s)
Jᵧ = 8.49 kg m/s
The magnitude of the impulse is:
J = √(Jₓ² + Jᵧ²)
J = 18.5 kg m/s
The average force is:
FΔt = J
F = J/Δt
F = 1850 N
2. Momentum is conserved.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
In the x direction:
(1000 kg) (0 m/s) + (1500 kg) (-12 m/s) = (1000 kg + 1500 kg) vₓ
vₓ = -7.2 m/s
In the y direction:
(1000 kg) (20 m/s) + (1500 kg) (0 m/s) = (1000 kg + 1500 kg) vᵧ
vᵧ = 8 m/s
The magnitude of the final speed is:
v = √(vₓ² + vᵧ²)
v = 10.8 m/s
3. Momentum is conserved.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
In the x direction:
(0.8 kg) (18 m/s cos 45°) + (0.36 kg) (9.0 m/s) = (0.8 kg + 0.36 kg) vₓ
vₓ = 11.6 m/s
In the y direction:
(0.8 kg) (-18 m/s sin 45°) + (0.36 kg) (0 m/s) = (0.8 kg + 0.36 kg) vᵧ
vᵧ = -8.78 m/s
The magnitude of the final speed is:
v = √(vₓ² + vᵧ²)
v = 14.5 m/s
I wish to use a step up transformer to turn an initial RMS AC voltage of 100 V into a final RMS AC voltage of 200 V. What is the ratio of the number of turns in the primary to the secondary
Answer:
1:2
Explanation:
It is given that,
Initial RMS AC voltage is 100 V and final RMS AC voltage is 200 V.
We need to find the ratio of the number of turns in the primary to the secondary for step up transformer.
For a transformer, [tex]\dfrac{V_1}{V_2}=\dfrac{N_1}{N_2}[/tex]
So,
[tex]\dfrac{N_1}{N_2}=\dfrac{100}{200}\\\\\dfrac{N_1}{N_2}=\dfrac{1}{2}[/tex]
So, the ratio of the number of turns in the primary to the secondary is 1:2.
g When attempting to determine the coefficient of kinetic friction, why is it necessary to move the block with constant velocity
Answer:
This is because motion is intended to occur but at zero acceleration. It means at a constant velocity, henceFor that to happen the pulling force F must exactly equal the frictional force Fk .
A bullet with a mass of 20 g and a speed of 960 m/s strikes a block of wood of mass 4.5 kg resting on a horizontal surface. The bullet gets embedded in the block. The speed of the block immediately after the collision is:________.
A) cannot be found because we don't know whether the surface is frictionless.
B) is 0.21 km/s.
C) is 65 m/s.
D) is 9.3 m/s.
E) None of these is correct
Answer:
4.25m/sE. None of the option is correctExplanation:
Using the law of conservation of momentum to solve the problem. According to the law, the sum of momentum of the bodies before collision is equal to the sum of the bodies after collision. The bodies move with the same velocity after collision.
Mathematically.
mu + MU = (m+M)v
m and M are the masses of the bullet and the block respectively
u and U are their respective velocities
v is their common velocity
from the question, the following parameters are given;
m = 20g = 0.02kg
u = 960m/s
M = 4.5kg
U =0m/s (block is at rest)
Substituting this values into the formula above to get v;
0.02(960)+4.5(0) = (0.02+4.5)v
19.2+0 = 4.52v
4.52v = 19.2
Dividing both sides by 4.52
4.52v/4.52 = 19.2/4.52
v = 4.25m/s
Since they have the same velocity after collision, then the speed of the block immediately after the collision is also 4.25m/s
1. Notice that the voltmeter moves in response to the coil entering or leaving the magnetic gap.
2. Let's apply Faraday's Law to this situation. Faraday's Law says that the induced voltage (or emf )in a loop of wire caused by a changing magnetic field is:
€ = 1
Where is the magnetic flux which is
Q = BA
In this case, the flux density B is not changing. Instead, the changing flux is due to the motion of the coil as it enters or leaves the magnetic gap:
do = BdA
Given that the area immersed in the gap is changing as the coil enters the gap, what is the correct expression of Faraday's Law for this situation?
Answer:
Explanation:
let the coil of length l and breathe b entering the magnetic field B with speed v.
So, the magnetic flux through the coil is
Ф = B(l×b)
length × breathe = area
Ф = BA
dФ = BdA
therefore induced emf is given as
ε = [tex]Bl(\frac{db}{dt})[/tex]
note: [tex]\frac{db}{dt} = v[/tex]
ε[tex]= Blv[/tex]
attached is the diagram for the solution
an ice sheet 5m thick covers a lake that is 20m deep. at what is the temperature of the water at the bottom of the lake?
Answer:
4°C
Explanation:
Water is densest at 4°C. Since dense water sinks, the bottom of the lake will be 4°C.
Why does front side of spoon forms inverted image but the back side form opposite of inverted image?
Answer:
our face is outside the focal length of the concave side of the spoon. We see a virtual inverted image whereas in case of concave mirror we can see a virtual image which is erect.
The process of star and planet formation begins with a large cloud of gas and dust called a solar nebula. Rank the formation events that occur within a cloud from earliest to latest.
Rank from earliest to latest. To rank items as equivalent, overlap them.
A. The cloud is large, cool, and slowly rotating
B. The cloud collapses into a disk
C. Competing rotational and gravitational forces begin to flatten the cloud
D. The cloud becomes denser, heats up, and rotates faster
E. The cloud starts to contract under the influence of gravity
A, B, E , C, D
What is Nebula?A nebula is an enormous cloud of dust and gas occupying the space between stars and acting as a nursery for new stars.
Nebulae are made up of dust, basic elements such as hydrogen and other ionized gases.
Nebula Formation:
In essence, a nebula is formed when portions of the interstellar medium undergo gravitational collapse.
Mutual gravitational attraction causes matter to clump together, forming regions of greater and greater density.
The formation events that occur within a cloud from earliest to latest are:
A. The cloud is large, cool, and slowly rotating
B. The cloud collapses into a disk.
E. The cloud starts to contract under the influence of gravity
C. Competing rotational and gravitational forces begin to flatten the cloud.
D. The cloud becomes denser, heats up, and rotates faster
Therefore , The rank from earliest to latest is A, B, E , C, D
Learn more about Nebula here:https://brainly.com/question/9497068
#SPJ2
A person bends over to grab a 20 kg object. The back muscle responsible for supporting his upper body weight and the object is located 2/3 of the way up his back (where it attaches to the spine) and makes an angle of 12 degrees with the spine. His upper body weighs 36 kg. What is the tension in the back muscle
Answer:
T = 2689.6N
Explanation:
Considering the situation, one can say that torque due to tension in the spine is counter balanced by the torque due to weight of upper part of the body and the weight of the object. Hence, the tension force is acting at an angle of 12 degree
while both weight are acting perpendicular to the length. Hence we have :
Torque ( clockwise) = Torque ( anticlockwise)
m1g (L/2)+ m2g(L) = Tsin 12(2L/3)........1
Where m1 = 36kg
m2 = 20kg
g = 9.81m/s^2
Theta = 12
Substituting into equation 1
36(9.81) * (L/2)+20(9.81)(L) = Tsin12(2L/3)
353.16L/2+196.2L = T ×0.2079(2L/3)
176.58L+196.2L = T × 0.1386L
372.78L = 0.1386LT
T = 372.78L/0.1386L
T = 2689.6N
An FM radio station transmits a signal with a frequency of 89.1 MHz. Give the wavelength in meters. (use at least three significant digits)
Answer:
3m
Explanation:
89.1 MHz means
89.1×10^6 cycles/second.
Electromagnetic radiation (including radio waves) travel at
3.0×10^8meters/second
Wavelength = Speed/Frequency
The wavelength of a
89.1MHz radio signal is
3.0×10^8/89.1x10^6
= 0.03x10^2
= 3meters
Damon purchased a pair of sunglasses that were advertised as being polarized. Describe how Damon could test the sunglasses to verify they are polarized.
Answer:
To verify that they're polarized, he could hold the two lenses perpendicular (90 degrees) to each other, one lens in front of the other, and point it at a light source. If no light passes through then the lenses are polarized
The test of Polarization of pair of sunglasses is , hold the two lenses perpendicular to each other, one lens in front of the other, and point it towards a light source. If no light passes through then the lenses are polarized.
When a beam of light is reflected from a smooth surface, such as water or ice, it becomes polarized.Polarized light irritates the eyes and makes it hard to see clearly.For example, when fishing on a sunny day, you wouldn't see through the water. You would only see a reflection of the sun hitting the water.
Polarized lenses will neutralize the reflection of the water, and you will be able to into the water.To verify that pair of sunglasses are polarized, he could hold the two lenses perpendicular to each other, one lens in front of the other, and point it towards a light source. If no light passes through then the lenses are polarized.
Learn more:
https://brainly.com/question/11452190
One hundred turns of insulated copper wire are wrapped around an iron core of cross-sectional area 0.100m2. As the magnetic field along the coil axis changes from 0.5 T to 1.00T in 4s, the voltage induced is:
Answer:
The voltage induced in the coil is 1.25 V.
Explanation:
Given;
number of turns, N = 100 turns
cross sectional area of the copper coil, A = 0.1 m²
initial magnetic field, B₁ = 0.5 T
final magnetic field, B₂ = 1.00 T
duration of change in magnetic field, dt = 4 s
The induced emf in the coil is calculated as;
[tex]emf = -N\frac{\delta \phi}{\delta t} \\\\emf = - N (\frac{\delta B}{\delta t}) A\\\\emf = -N (\frac{B_1 -B_2}{\delta t} )A\\\\emf = N(\frac{B_2-B_1}{\delta t} )A\\\\emf = 100(\frac{1-0.5}{4} )0.1\\\\emf = 1.25 \ Volts[/tex]
Therefore, the voltage induced in the coil is 1.25 V.
Which of the following statements about Masters programs is not correct?
A. Most Masters athletes did not compete when they were in school.
B. The social life is as important as the athletics on most Masters
teams.
C. The level of competition is not very high in most Masters
programs.
D. Masters programs allow adults to work out and socialize with
people who share their love of a sport.
SUBMIT
The correct answer is C. The level of competition is not very high in most Masters programs.
Explanation:
In sports, the word "master" is used to define athletes older than 30 and that usually are professional or have trained for many years, although novates are also allowed. This means in most cases in Master programs and teams a high level of competition can be expected due to the experience and extensive training of Master athletes. Indeed, many records in the field of sport belong to Master athletes rather than younger athletes. According to this, the incorrect statement is "The level of competition is not very high in most Masters programs".
Water enters a typical garden hose of diameter 0.016 m with a velocity of 3 m/s. Calculate the exit velocity of water from the garden hose when a nozzle of diameter 0.0050 m) is attached to the end of the hose in units of m/s.
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
v₂ = 306.12 m/s
g The current in a series circuit is 15.0 A. When an additional 8.00-% resistor is inserted in series, the current drops to 12.0 A. What is the resistance in the original circuit
Answer:
Explanation:
Let the original resistance be R and voltage be V
Applying ohm's law
V / R = 15
V = 15 R
In second case
V / (R+8 ) = 12
V = 12 R + 96
15 R = 12 R + 96
3R = 96
R = 32 ohm .
Suppose a tank filled with water has a liquid column with a height of 19 meter. If the area is 2 square meters 2m squared, what’s the force of gravity acting on the column of water?
Answer:
372,400 N
Explanation:
The volume of the column is ...
V = Bh = (2 m^2)(19 m) = 38 m^3
If we assume the density is 1000 kg/m^3, then the mass of the water is ...
M = ρV = (1000 kg/m^3)(38 m^3) = 38,000 kg
The force of gravity on that mass is ...
F = Mg = (38,000 kg)(9.8 m/s^2) = 372,400 N
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following.
(a) the radius of the circular path ............ cm
(b) the time interval required to complete one revolution ............ s
Answer:
(a) 3.9cm
(b) 1.66 x 10⁻⁸s
Explanation:
Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,
F = m x a --------------(i)
Where;
m = mass of the particle
a = acceleration of the mass
The centripetal acceleration is given by;
a = v² / r [v = linear velocity of particle, r = radius of circular path]
Therefore, equation (i) becomes;
F = m v²/ r --------------------(ii)
The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;
F = qvBsinθ -------------(iii)
Where;
q = charge of the particle
v = velocity of the particle
B = magnetic field
θ = angle between the velocity and the magnetic field
Combine equations (ii) and (iii) as follows;
m (v² / r) = qvBsinθ [divide both side by v]
m v / r = qBsinθ [make r subject of the formula]
r = (m v) / (qBsinθ) ---------(iv)
(a) From the question;
v = 1.48 x 10⁷m/s
B = 2.14mT = 2.14 x 10⁻³T
θ = 90° [since the direction of velocity is perpendicular to magnetic field]
m = mass of electron = 9.11 x 10⁻³¹kg
q = charge of electron = 1.6 x 10⁻¹⁹C
Substitute these values into equation (iv) as follows;
r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)
r = 3.9 x 10⁻²m
r = 3.9cm
Therefore, the radius of the circular path is 3.9cm
(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by
T = d / v --------------(*)
Where;
d = distance traveled in the circular path in one complete turn = 2πr
v = velocity of the motion = 1.48 x 10⁷m/s
d = 2 π (3.9 x 10⁻²) [Take π = 22/7 = 3.142]
d = 2(3.142)(3.9 x 10⁻²) = 0.245m
Substitute the values of d and v into equation (*) as follows;
T = 0.245 / 1.48 x 10⁷
T = 0.166 x 10⁻⁷s
T = 1.66 x 10⁻⁸s
Therefore, the time interval is 1.66 x 10⁻⁸s
A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.17 s. What are the (a) period and (b) frequency? (c) The wavelength is 1.5 m; what is the wave speed?
Answer:
31
Explanation:
Two small plastic spheres are given positive electrical charges. When they are 20.0 cm apart, the repulsive force between them has magnitude 0.200 N.
1. What is the charge on each sphere if the two charges are equal? (C)
2. What is the charge on each sphere if one sphere has four times the charge of the other? (C)
Answer:
A. 2.97x 10^-6C
B. 1.48x10^ -6 C
Explanation:
Pls see attached file
Answer:
1) +9.4 x 10^-7 C
2) +4.72 x 10^-7 C and +1.9 x 10^-6 C
Explanation:
The two positive charges will repel each other
Repulsive force on charges = 0.200 N
distance apart = 20.0 cm = 0.2 m
charge on each sphere = ?
Electrical force on charged spheres at a distance is given as
F = [tex]\frac{kQq}{r^{2} }[/tex]
where F is the force on the spheres
k is the Coulomb's constant = 8.98 x 10^9 kg⋅m³⋅s⁻²⋅C⁻²
Q is the charge on of the spheres
q is the charge on the other sphere
r is their distance apart
since the charges are equal, i.e Q = q, the equation becomes
F = [tex]\frac{kQ^{2} }{r^{2} }[/tex]
making Q the subject of the formula
==> Q = [tex]\sqrt{\frac{Fr^{2} }{k} }[/tex]
imputing values into the equation, we have
Q = [tex]\sqrt{\frac{0.2*0.2^{2} }{8.98*10^{9} } }[/tex] = +9.4 x 10^-7 C
If one charge has four times the charge on the other, then
charge on one sphere = q
charge on the other sphere = 4q
product of both charges = [tex]4q^{2}[/tex]
we then have
F = [tex]\frac{4kq^{2} }{r^{2} }[/tex]
making q the subject of the formula
==> q = [tex]\sqrt{\frac{Fr^{2} }{4k} }[/tex]
imputing values into the equation, we have
q = [tex]\sqrt{\frac{0.2*0.2^{2} }{4*8.98*10^{9} } }[/tex] = +4.72 x 10^-7 C
charge on other sphere = 4q = 4 x 4.72 x 10^-7 = +1.9 x 10^-6 C
What is the length of the x-component of the vector shown below?
9
380
х
A. 5.5
B. 30.0
O O
O C. 7.1
O D. 8.6
Answer:
x-component = 7.1
Explanation:
x-component = 9cos38 = 7.09 =7.1
Answer:
7.1
Explanation:
use cos
1. A coil is formed by winding 250 turns of insulated 16-gauge copper wire, that has a diameter d = 1.3 mm, in a single layer on a cylindrical form of radius 12 cm. What is the resistance of the coil? Neglect the thickness of the insulation and the resistivity of copper is ???? = 1.69 × 10−8 Ω ∙ m.
Answer:
2.39 Ω
Explanation:
Given that
Number of winnings on the coil, = 250 turns
Radius if the copper wire, r(c) = 1.3/2 = 0.65 mm
Radius of single cylinder layer, R = 12 cm
Length of the cylinderical coil, L = 250 * 2π * 12 = 188.4 m
Resistivity of copper, ρ = 1.69*10^-8 Ωm
Area is πr(c)², which is
A = 3.142 * (0.65*10^-3)²
A = 3.142 * 4.225*10^-7
A = 1.33*10^-6 m²
The formula for resistance is given as
R = ρ.L/A, if we substitute, we have
R = (1.69*10^-8 * 188.4) / 1.33*10^-6
R = 3.18*10^-6 / 1.33*10^-6
R = 2.39 Ω.
Therefore, the resistance is 2.39 Ω
"Pipe A has length L and is open at one end and closed at the other. Pipe B is open at both ends and has length 2L. Which harmonic of pipe B matches in frequency the fundamental of pipe A?"
Answer:
Explanation:
length of pipe A is L
frequency of fundamental note of pipe A which is closed organ pipe
= velocity of sound / 4 x length of pipe
= V / 4 x L where V is velocity of sound .
Similarly frequency of fundamental note of pipe B which is open organ pipe
= velocity of sound / 2 x length of pipe
= V / (2 x 2L) = V / 4L , This is also called first harmonic
so fundamental frequency of pipe A will be equal to first harmonic of pipe B .
A plane is flying horizontally with a constant speed of 55 .0 m/s when it drops a
rescue capsule. The capsule lands on the ground 12.0 s later.
c) How would your answer to part b) iii change if the constant speed of the plane is
increased? Explain.
Answer:
therefore horizontal displacement changes increasing with linear velocity
Explanation:
Since the plane flies horizontally, the only speed that exists is
v₀ₓ = 55.0 m / s
the time is the time it takes to reach the floor, which we can find because the speed on the vertical axis is zero
y =y₀ + v₀ t - ½ g t2
0 = I₀ + 0 - ½ g t2
t = √ 2y₀o / g
time is that we use to calculate the x-axis displacement
The distance it travels to reach the floor is
x = v t
x = 55 12
x = 660 m
When the speed horizontally the time remains the same and 120
x ’= v’ 12
therefore horizontal displacement changes increasing with linear velocity
The flywheel of an engine has I of 1.60kg.m2 about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rpm in 8.00s, starting from rest?
Answer:
Torque = 8.38Nm
Explanation:
Time= 8.00s
angular speed (w) =400 rpm
Moment of inertia (I)= 1.60kg.m2 about its rotation axis
We need to convert the angular speed from rpm to rad/ sec for consistency
2PI/60*n = 0.1047*409 = 41.8876 rad/sec
What constant torque is required to bring it up to an angular speed of 40rev/min in a time of 8s , starting from rest?
Then we need to use the formula below for our torque calculation
from basic equation T = J*dω/dt ...we get
Where : t= time in seconds
W= angular velocity
T = J*Δω/Δt = 1.60*41.8876/8.0 = 8.38 Nm
Therefore, constant torque that is required is 8.38 Nm
Torque can be defined as the twisting or turning force that tends to cause rotation around an axis. The required constant torque is 8.38 N-m.
Given-
Inertia of the flywheel is 1.60 kg m squared.
Angular speed of the flywheel [tex]n[/tex] is 400 rpm. Convert it into the rad/sec, we get,
[tex]\omega =\dfrac{2\pi }{60} \times n[/tex]
[tex]\omega =\dfrac{2\pi }{60} \times 400[/tex]
[tex]\omega = 41.89[/tex]
Thus, the angular speed of the flywheel [tex]\omega[/tex] is 41.89 rad/sec.
When a torque [tex]\tau[/tex] is applied to an object it begins to rotate with an acceleration inversely proportional to its moment of inertia [tex]I[/tex]. Mathematically,
[tex]\tau=\dfrac{\Delta \omega }{\Delta t} \times I[/tex]
[tex]\tau=\dfrac{ 41.89 }{8} \times 1.6[/tex]
[tex]\tau=8.38[/tex]
Hence, the required constant torque is 8.38 N-m.
to know more about the torque, follow the link below-
https://brainly.com/question/6855614
7.00 kg piece of solid copper metal at an initial temperature T is placed with 2.00 kg of ice that is initially at -20.0°C. The ice is in an insulated container of negligible mass and no heat is exchanged with the surroundings. After thermal equilibrium is reached, there is 0.90 kg of ice and 1.10 kg of liquid water.
Required:
What was the initial temperature of the piece of copper?
Answer:
122°C
Explanation:
From the data Final temperature is 0 deg C since there is 0.9kg of ice and 1.10kg of liquid water.
That means that 1.10kg of the ice undergoes Heat of Fusion which is 3.34x10^5 J/kg...
Heat lost by copper = Heat gained by ice + Heat of fusion
-> (7.0kg)(390J/kg*C)(0-T) = (2.00kg)(2100J/kg*C)(0 - (-20) + (1.10kg)(3.34x10^5 J/kg)
-> T(2730) = 334001
-> T = 122°C
radiation transfers energy through___. a metal. b liquid. c touch. d waves.
Answer:
Radiation is transferred through electromagnetic waves so D.
Explanation:
Answer:
D. Waves
Explanation:
a and b don't make much sense, conduction is transfer of energy through touch
The temperature gradient between the core of Mars and its surface is approximately 0.0003 K/m. Compare this temperature gradient to that of Earth. What can you determine about the rate at which heat moves out of Mars’s core compared to Earth?
Answer:
The temperature gradient between the core of Mars and its surface is lower than that on Earth. So, heat moves outward more slowly on Mars than on Earth.
Explanation:
Answer:
The temperature gradient between the core of Mars and its surface is lower than that on Earth. So, heat moves outward more slowly on Mars than on Earth.
Explanation:
Edmentum sample answer
Suppose you have two point charges of opposite sign. As you move them farther and farther apart, the potential energy of this system relative to infinity:_____________.
(a) stays the same.
(b) Increases.
(c) Decreases.
(d) The answer would depend on the path of motion
Answer:
(b) Increases
Explanation:
The potential energy between two point charges is given as;
[tex]U = F*r = \frac{kq_1q_2}{r}[/tex]
Where;
k is the coulomb's constant
q₁ ans q₂ are the two point charges
r is the distance between the two point charges
Since the two charges have opposite sign;
let q₁ be negative and q₂ be positive
Substitute in these charges we will have
[tex]U = \frac{k(-q_1)(q_2)}{r} \\\\U = - \frac{kq_1q_2}{r}[/tex]
The negative sign in the above equation shows that as the distance between the two charges increases, the potential energy increases as well.
Therefore, as you move the point charges farther and farther apart, the potential energy of this system relative to infinity Increases.
the efficiency of a carnot cycle is 1/6.If on reducing the temperature of the sink 75 degrees celcius ,the efficiency becomes 1/3,determine he initial and final temperatures between which the cycle is working.
Answer:
450°C
Explanation: Given that the efficiency of Carnot engine if T₁ and T₂ temperature are initial and final temperature .
η = 1 - T2 / T1
η = 1/6 initially
when T2 is reduced by 65°C then η becomes 1/3
Solution
η = 1/6
1 - T2 / T1 = 1/6 [ using the Formula ]........................(1)
When η = 1/3 :
η = 1 - ( T2 - 75 ) / T1
1/3 = 1 - (T2 - 75)/T1.........................(2)
T2 - T1 = -75 [ because T2 is reduced by 75°C ]
T2 = T1 - 75...........................(3)
Put this in (2) :
> 1/3 = 1 - ( T1 - 75 - 75 ) / T1
> 1/3 = 1 - (T1 - 150 ) /T1
> (T1 - 150) / T1 = 1 - 1/3
> ( T1 -150 ) / T1 = 2/3
> 3 ( T1 - 150 ) = 2 T1
> 3 T1 - 450 = 2 T1
Collecting the like terms
3 T1- 2 T1 = 450
T1 = 450
The temperature initially was 450°C