Answer:
the velocity component parallel to the magnetic field vector
Explanation:
When a charged particle moves in a helical path, we can decompose its velocity into two parts v_parallel and v_perpendicular to the magnetic field.
Let's analyze which component receives a force
F = q vxB
the bold letters indicate vectors, in the vector product if the two vectors are parallel the angle is zero and the sin 0 = 0 for which there is no force. therefore the velocity parallel to the field remains constant
If the two vectors are perpendicular, the angle is 90º and the sin 90 = 1, for which there is a force, which has a radial direction and consequently a centripetal acceleration that gives a circular path that does not remove the particle from the magnetic field
When checking the different answers, the correct one is: the velocity component parallel to the magnetic field vector
Which of the following types of energy is not associated with a car engine?
A. Kinetic
B. Heat
C. Sound
D. Light
Answer:
D
Explanation:
Does not assosicate with Light
A straight segment of wire has a length of 25 cm and carries a current of 5A. If the wire is perpendicular to the magnetic field of 0.60Tesla, then what is the magnitude of the magnetic force?
Answer:
The magnitude of the magnetic force acting on the conductor is 0.75 Newton
Explanation:
The parameters given in the question are;
The length of the straight segment of wire, L = 25 cm = 0.25 m
The current carried in the wire, I = 5 A
The orientation of the wire with the magnetic field = Perpendicular
The strength of the magnetic field in which the wire is located, B = 0.60 T
The magnetic force, 'F', is given by the following formula;
F = [tex]\underset{I}{\rightarrow }[/tex]·L×[tex]\underset{B}{\rightarrow }[/tex] = I·L·B·sin(θ)
Where;
[tex]\underset{I}{\rightarrow }[/tex] = The current flowing, I
L = The length of the wire
[tex]\underset{B}{\rightarrow }[/tex] = The magnetic field strength, B
θ = The angle of inclination of the conductor to the magnetic field
Where I = 5 A, L = 0.25 m, B = 0.60 T, and θ = 90°, we get;
F = 5 A × 0.25 m × 0.60 T × sin(90°) = 0.75 N
Therefore
The magnitude of the magnetic force, F = 0.75 N.
Write down 2 differences between electrical conductors and electrical insulators.
Answer:
electrical conductors help electric current to pass through it
electrical conductors are usually made of any metal
electrical insulator don't help electric current to pass through it
electrical insulators are made of non metals
hope it helped you
Explanation:
conductors allows free flow of electrons from one atom to another.
insulators restrict free flow of electrons
conductors allow electrical energy to pass through them
insulators do not allow electrical energy to pass through them
how many nucleons does sulphur have
Answer:
32
Explanation:
Answer:
32
Explanation:
Sulfur has 16 protons and 16 neutrons. The atomic number is roughly 32. Therefore, 16 + 16 = 32 nucleons.
Convertir:
A. 3Km a m
B. 250 ma Km
C. 1000Cm a m
D. 10000 mm a Cm
Answer:
A. 3,000,000 m
B. 0.25 km
C. 10 m
D. 1,000 cm
Explanation:
no hablo español, así que solo ingrese esto en el traductor de G*ogle
A. One kilometer equals 1000 meters, so
3,000*1,000 = 3,000,000 m
B. One meter equals 0.001 kilometer, so
250*0.001 = 0.25 km
C. One centimeter equals 0.01 meter
1,000*0.01 = 10 m
D. One milimeter equals 0.1 centimer, so
10,000*0.1 = 1,000
A bug on a turntable will make more turns per minute if it is located near the center of rotation. True or false?
Please help me this is timed!
Mass Number
The mass number of an atom is the sum of the number of protons and the number of neutrons in the nucleus of an atom.
Mass number = number of protons + number of neutrons For example, you can calculate the mass number of the copper atom listed in Table 4. 29 protons
plus 34 neutrons equals a mass number of 63
Also, if you know the mass number and the atomic number of an atom, you can calculate the number of neutrons in the nucleus. The number of neutrons is
equal to the mass number minus the atomic number. In fact, if you know two of the three numbers-mass number, atomic number, number of neutrons-
you can always calculate the third
The mass number of an atom is 35 and it has 16 protons. How many neutrons does this atom contain?
The atom contains
neutrons
Answer:
3
Explanation:
mass number minus the atomic number
35-32
3
Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate regions of the human brain. A small coil is placed on the scalp, and a brief burst of current in the coil produces a rapidly changing magnetic field inside the brain. The induced emf can be sufficient to stimulate neuronal activity. One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms. Determine the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field.
Answer:
0.125 volts
Explanation:
The induced emf can be sufficient to stimulate neuronal activity.
One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms.
We need to find the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field. The formula for the induced emf is given by :
[tex]\epsilon=-\dfrac{d\phi}{dt}[/tex]
Where
[tex]\phi[/tex] is magnetic flux
So,
[tex]\epsilon=-\dfrac{d(BA)}{dt}\\\\=2\pi r\times \dfrac{dB}{dt}\\\\=2\pi \times 1.6\times 10^{-3}\times \dfrac{1.5-0}{120\times 10^{-3}}\\\\=0.125\ V[/tex]
So, the induced emf is equal to 0.125 volts.
How is capacitance related to the distance between the plates of a capacitor?
It is directly proportional, so the capacitance increases as the distance increases.
It is inversely proportional, so the capacitance increases as the distance increases.
It is directly proportional, so the capacitance decreases as the distance increases.
It is inversely proportional, so the capacitance decreases as the distance increases.
Answer:C
Explanation: I studied, and C is correct
Answer:
D
Explanation:
An airplane traveling 919 m above the ocean at 505 m/s is to drop a case of twinkies to the victims below. How much time before being directly overhead should the box be dropped? What is the horizontal distance between the plane and the victims when the box is dropped?
Answer:
a. 13.7 s b. 6913.5 m
Explanation:
a. How much time before being directly overhead should the box be dropped?
Since the box falls under gravity we use the equation
y = ut - 1/2gt² where y = height of plane above ocean = 919 m, u = initial vertical velocity of airplane = 0 m/s, g = acceleration due to gravity = -9.8 m/s² and t = time it takes the airplane to be directly overhead.
So,
y = ut - 1/2gt²
y = 0 × t - 1/2gt²
y = 0 - 1/2gt²
y = - 1/2gt²
t² = -2y/g
t = √(-2y/g)
So, t = √(-2 × 919 m/-9.8 m/s²)
t = √(-1838 m/-9.8 m/s²)
t = √(187.551 m²/s²)
t = 13.69 s
t ≅ 13.7 s
So, the box should be dropped 13.69 s before being directly overhead.
b. What is the horizontal distance between the plane and the victims when the box is dropped?
The horizontal distance x between plane and victims, x = speed of plane × time it takes for box to drop = 505 m/s × 13.69 s = 6913.45 m ≅ 6913.5 m
1) Si un mango cae a una velocidad de 75m/s y tarda 26 seg. en caer. ¿ Cuál habrá sido la velocidad con qué el mango llegó al suelo?
Answer:
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Explanation:
El mango experimenta un movimiento de caída libre, es decir, un movimiento uniformemente acelerado debido a la gravedad terrestre, despreciando los efectos de la viscosidad del aire y la rotación planetaria. Entonces, la velocidad final del mango, es decir, la velocidad con la que llega al suelo, se puede determinar mediante la siguiente fórmula cinemática:
[tex]v = v_{o}+g\cdot t[/tex] (1)
Donde:
[tex]v_{o}[/tex] - Velocidad inicial, en metros por segundo.
[tex]v[/tex] - Velocidad final, en metros por segundo.
[tex]g[/tex] - Aceleración gravitacional, en metros por segundo al cuadrado.
[tex]t[/tex] - Tiempo, en segundos.
Si sabemos que [tex]v_{o} = -75\,\frac{m}{s}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex] y [tex]t = 26\,s[/tex], entonces la velocidad final del mango es:
[tex]v = v_{o}+g\cdot t[/tex]
[tex]v = -75\,\frac{m}{s}+\left(-9.807\,\frac{m}{s} \right)\cdot (26\,s)[/tex]
[tex]v = -329.982\,\frac{m}{s}[/tex]
El mango llega al suelo a una velocidad de 329.982 metros por segundo.
Stored energy is energy that is saved and can be used later.
Which statement is NOT true about stored energy?
A. Batteries can store electrical energy or solar energy.
B. Plants can store energy from the sun.
C. Animals can store energy as fat.
D. Stored energy does not happen naturally.
HELLLP! PHYSICAL SCIENCE GUYS THANK YOU!!
(Click the picture)
What is the source of energy that will send the arrow flying toward the target?
A- The archers ability to aim correctly
B- The arrow’s distance from the ground
C- The springiness of the bow
D- The time it takes to release the bow
Answer:
a
Explanation:
cause her hand is straight and she followed the direction it sould be correctly unless I am messing something
kid is bouncing on a pogo stick. he oscillates 22.0 times in 14.9 s. What is his period?
Answer:
Period = 0.68 seconds
Explanation:
Given the following data;
Number of oscillation = 22
Time = 14.9 seconds
To find the period;
Method I.
Period = time/number of oscillation
Period = 14.9/22
Period = 0.68 seconds.
Method II.
We would find the frequency of the wave;
Frequency = time/number of oscillation
Frequency = 22/14.9
Frequency = 1.48 Hertz
Next, we find the period;
Period = 1/frequency
Period = 1/1.48
Period = 0.68 seconds
A boy throws a ball vertically up. It returns to the
ground after 5 seconds. Find
(a) the maximum height reached by the ball.
(b) the velocity with which the ball is thrown up.
Answer:
31.25 m
25m/sec
Explanation:
Given :-
Time = 5sec
V = 0 (in going up)
U = 0 (in comming down)
Find :-
H and U by which it is thrown up
Since the total time is 5 sec ,therefore half time will be taken to go up and another half will be taken to go down .
We know that ,
V = U + gt
0 = U - 10*2.5
U = 25 m/sec
Also,
V² = U² +2gs
0 = 625 - 20s
s = 625/20 = 31.25 m
I need the definition or I won't graduate help and thank you
Answer:
1. a 2.c 3 b
Explanation:
Answer:
3=b 2=c 1=a
Explanation:
A video game regularly costs $29.95 is on sale for 15% off. About how much is the sale price of the game is you include 8% sales tax?
Answer:
Hereeeeeeeeeeeeeeeeeee
Measure of how high or low a sound is
A small cork with an excess charge of +6.0 μC (1 μC = 10 -6 C) is placed 0.12 m from another cork, which carries a charge of -4.3 μC. a. What is the magnitude of the electric force between the corks? b. Is this force attractive or repulsive? c. How many excess electrons are on the negative cork? d. How many electrons has the positive cork lost?
Answer:
a.16.125 N b. The force is an attractive force. c. 2.68 × 10¹³ electrons d. 3.75 × 10¹³ electrons
Explanation:
a. What is the magnitude of the electric force between the corks?
The electrostatic force of attraction between the two corks is given by
F = kq₁q₂/r² where k = 9 × 10⁹ Nm²/C², q₁ = +6.0 μC = +6.0 × 10⁻⁶ C, q₂ = -4.3 μC = -4.3 × 10⁻⁶ C and r = distance between the corks = 0.12 m
Substituting the values of the variables into the equation, we have
F = kq₁q₂/r²
F = 9 × 10⁹ Nm²/C² × +6.0 × 10⁻⁶ C × -4.3 × 10⁻⁶ C/(0.12 m)²
= -232.2 × 10⁻³ Nm²/(0.0144 m)²
= -16125 × 10⁻³ N
= -16.125 N
So, the magnitude of the force is 16.125 N
b. Is this force attractive or repulsive?
Since the direction of the force is negative, it is directed towards the positively charged cork, so the force is an attractive force.
c. How many excess electrons are on the negative cork?
Since Q = ne where Q = charge on negative cork = -4.3 μC = -4.3 × 10⁻⁶ C and n = number of excess electrons and e = electron charge = -1.602 × 10⁻¹⁹ C
So n = Q/e = -4.3 × 10⁻⁶ C/-1.602 × 10⁻¹⁹ C = 2.68 × 10¹³ electrons
d. How many electrons has the positive cork lost?
We need to first find the number of excess positive charge n'
Q' = n'q where Q = charge on positive cork = + 6.0 μC = + 6.0 × 10⁻⁶ C and n = number of excess protons and q = proton charge = +1.602 × 10⁻¹⁹ C
So n' = Q'/q = +6.0 × 10⁻⁶ C/+1.602 × 10⁻¹⁹ C = 3.75 × 10¹³ protons
To maintain a positive charge, the number of excess protons equals the number of electrons lost = 3.75 × 10¹³ electrons
PLEASE HELP WILL MARK BRAINLIEST PLS
Answer: 2
Explanation:
What is specific heat capacity?
A. The amount of energy required for a unit mass of a substance to
undergo a phase change from a liquid to a gas.
B. The amount of energy required to raise the temperature of 1 kg of
a substance 1 °C.
C. The amount of energy required for a unit mass of a substance to
undergo a phase change from solid to liquid.
O D. A physical change from one form (or phase) of matter to another.
True or False: A balanced force acts on different objects, and action-
eaction forces act on the same object. *
A. True
B. False
Answer:
true
Explanation:
according to the Newton's third law
If it is known that a motor battery has an input voltage of 12V and a capacity of 6 Ah, how much power and resistor value is required to turn on 8 lamps with a parallel circuit, with the specifications of each lamp having a maximum voltage of 3V and an electric current of 140 mA? How long did all the lights go on until they off?
Answer:
Part A
The power to turn on the lamp, ∑P = 3.36 W
Part B
The Resistor required is approximately 8.04 Ohms
Part C
The time for all the lights to go out is approximately 21.43 hours
Explanation:
The input voltage of the motor battery , V = 12 V
The capacity of the battery, Q = 6 Ah
The number of lamps in parallel = 8 lamps
The maximum voltage of each lamp, = 3 V
The electric current in each lamp = 140 mA
The energy available in a battery, E = Q × V
For the battery, we have;
E = 6 Ah × 12 V = 72 Wh
The energy available in a battery, E = 72 Wh
Part A
The power used by the lamps, [tex]P_i[/tex] = [tex]I_i[/tex] × [tex]V_i[/tex]
∴ The total power used by the lamp, ∑P = 8 × 0.14 A × 3 V = 3.36 W
The power to turn on the lamp, ∑P = 3.36 W
Part B
The resistance required, is given as follows;
Resistor required = (Battery voltage - Lamp voltage)/(The sum of bulb current)
∴ Resistor required = (12 V - 3 V)/(8 × 0.14 A)
The Resistor required = 8.03571429 Ohms
The Resistor required ≈ 8.04 Ohms
Part C
The time for all the lights to go out = The time for the lamps to use all the power available in the battery
The time for all the lights to go out, t = E/∑P
∴ t = 72 Wh/(3.36 W) = 21.4285714 h
∴ The time for all the lights to go out, t ≈ 21.43 h
The time for all the lights to go out = The time for the lamps to use all the power available in the battery = t ≈ 21.43 h
∴ The time for all the lights to go out ≈ 21.43 hours.
GIVING BRAINLIEST PLEASE HELP!!
-if you answer correctly ill give you brainliest which will give you 27pts-
Answer:
C. The lever applies three times more force than you hand can apply.
Explanation:
Since it's advantage is 3, that means you'll have to multiply the input of it by 3, making this apply 3x more force than your hand.
Hope this helped! <3
Source(s): Me and a bit of g*ogle for clarification
Two charges, one with a charge of +10.0 x 10-6 C, the other with a charge of -3 x 10-6 C exert a force on each other with a magnitude of 1.7 Newtons on each other. Is this a repulsive or attractive force. What is the separation distance of these charges?
Answer:
b.
Explanation:
Answer:
Attractive force and r = 0.399 m
Explanation:
One charge is positive and the other charge is negative. Opposite charges attract, so there has to be a force that attracts between them.
q1 = 10.0 x 10^-6 C
q2 = -3 x 10^-6 C
F = 1.7 N
Plug those values into Coulomb's Law:
[tex]F = k\frac{q1q2}{r^{2} } \\1.7 = \frac{(9x10^{9})(10.0 x 10^{-6})(-3 x 10^{-6})}{r^{2} }[/tex]
Solve for r
r = 0.399 m
You throw a baseball with a mass of 0.5 kg. The ball leaves your hand with a speed of 35 m/s. Calculate the kinetic energy. (SHOW ALL WORK)
Answer:
The kinetic energy of the baseball is 306.25 joules.
Explanation:
SInce the baseball can be considered a particle, that is, that effects from geometry can be neglected, the kinetic energy ([tex]K[/tex]), in joules, is entirely translational, whose formula is:
[tex]K = \frac{1}{2}\cdot m\cdot v^{2}[/tex] (1)
Where:
[tex]m[/tex] - Mass, in kilograms.
[tex]v[/tex] - Speed, in meters per second.
If we know that [tex]m = 0.5\,kg[/tex] and [tex]v = 35\,\frac{m}{s}[/tex], then the kinetic energy of the baseball thrown by the player is:
[tex]K = \frac{1}{2}\cdot m \cdot v^{2}[/tex]
[tex]K = 306.25\,J[/tex]
The kinetic energy of the baseball is 306.25 joules.
PLZZZZZZ HELP 50 POINTS Directions
Now that the lab is complete, it is time to write your lab report. The purpose of this guide is to help you write a clear and concise report that summarizes the lab you have just completed.
The lab report is composed of two sections:
Section I: Overview of Investigation
Provide background information.
Summarize the procedure.
Section II: Observations and Conclusions
Include any charts, tables, or drawings required by your teacher.
Include answers to follow-up questions.
Explain how the investigation could be improved.
To help you write your lab report, you will first answer the four questions listed below based on the lab that you have just completed. Then you will use the answers to these questions to write the lab report that you will turn in to your teacher.
You can upload your completed report with the upload tool in formats such as , Microsoft Word, or PDF. Alternatively, your teacher may ask you to turn in a paper copy of your report or use a web-based writing tool.
Questions
Section I: Overview of Lab
What is the purpose of the lab?
What procedure did you use to complete the lab?
Outline the steps of the procedure in full sentences.
Section II: Observations and Conclusions
What charts, tables, or drawings would clearly show what you have learned in this lab?
Each chart, table, or drawing should have the following items:
An appropriate title
Appropriate labels
If you could repeat the lab and make it better, what would you do differently and why?
There are always ways that labs can be improved. Now that you are a veteran of this lab and have experience with the procedure, offer some advice to the next scientist about what you suggest and why. Your answer should be at least two to three sentences in length.
Writing the Lab Report
Now you will use your answers from the four questions above to write your lab report. Follow the directions below.
Section I: Overview of Lab
Use your answers from questions 1 and 2 (above) as the basis for the first section of your lab report. This section provides your reader with background information about why you conducted this lab and how it was completed. It should be one to two paragraphs in length.
Section II: Observations and Conclusions
Use your answers from questions 3 and 4 (above) as the basis for the second section of your lab report. This section provides your reader with charts, tables, or drawings from the lab. You also need to incorporate your answers to the follow-up questions (from the Student Guide) in your conclusions.
Overall
When complete, the lab report should be read as a coherent whole. Make sure you connect different pieces with relevant transitions. Review for proper grammar, spelling, punctuation, formatting, and other conventions of organization and good writing.
Answer:
60-34+56×22
Explanation:
that's cuz imma teacher THOY!!!!!!
Answer:
60-34+56×22
Explanation:
What I ferromagnetism??
Answer:
Ferromagnetism is a kind of magnetism that is associated with iron, cobalt, nickel, and some alloys or compounds containing one or more of these elements. It also occurs in gadolinium and a few other rare-earth elements.
Explanation:
Hope this helped Mark BRAINLIEST!!!
Describe how seismic waves can be used to determine the location of petroleum far beneath the surface.
Answer: The seismic waves are useful for the oil and gas exploration beneath the earth crust.
Explanation:
The seismic waves are sent beneath the earth crust to determine the location of fossil fuels like petrol, and natural gas. These seismic waves bound back and their pattern of reflection and refraction is recorded by using a receiver that is a geophone or can be a hydrophone (in water). The seismic waves bounce back indicating towards the reservoir of fossil fuel exhibit a characteristic pattern that can help in tracing the location of the fossil fuel.