when cuso4.5h2o is dissolved in water what are the major species present in the solution besides the solvent molecules?

Answers

Answer 1

When CuSO4·5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution, besides the solvent molecules (water), are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

The dissolution process involves the dissociation of CuSO4·5H2O into its constituent ions:
CuSO4·5H2O → Cu²⁺ + SO₄²⁻ + 5H2O
The water molecules serve as the solvent, and the Cu²⁺ and SO₄²⁻ ions are the solute, forming the solution.

The compound dissociates in water, releasing the Cu2+ and SO42- ions, which become hydrated by water molecules. The five water molecules in the formula unit of the compound (CuSO4·5H2O) become part of the solvent and do not exist as distinct species in the solution.

So, in summary, the major species present in a solution of CuSO4·5H2O in water are Cu2+ cations and SO42- anions, along with water molecules as the solvent.

To learn more about solvent molecules, refer:-

https://brainly.com/question/9545412

#SPJ11

Answer 2

When CuSO4.5H2O (copper(II) sulfate pentahydrate) is dissolved in water, the major species present in the solution besides the solvent molecules are Cu²⁺ (copper(II) ions) and SO₄²⁻ (sulfate ions).

When CuSO4·5H2O is dissolved in water, the major species present in the solution besides the solvent molecules are Cu2+ ions and SO42- ions. The Cu2+ ions and SO42- ions come from the dissociation of the CuSO4 compound in water, while the H2O molecules are present as the solvent. The Cu2+ ions and SO42- ions interact with the water molecules through hydration and solvation, respectively, which affects the physical and chemical properties of the solution. The dissolution process can be represented by the following equation:

CuSO4.5H2O (s) → Cu²⁺ (aq) + SO₄²⁻ (aq) + 5H2O (l)

In this equation, CuSO4.5H2O dissociates into its constituent ions, Cu²⁺ and SO₄²⁻, while the water molecules from the pentahydrate become part of the solvent.

Learn more about solvent: https://brainly.com/question/25326161

#SPJ11


Related Questions

in the removal of a pollutant from wastewater, which of the following is true of the cost per unit of pollutant removed? it decreases as the toxicity of the pollutant increases. it decreases as the time passed before remediation increases. it increases as the concentration of the pollutant decreases. it increases as the concentration of the

Answers

pollutant increases.

The cost per unit of pollutant removed increases as the concentration of the pollutant increases. The higher the concentration of the pollutant, the more difficult it is to remove, and more expensive the technology and processes required to remove it. Therefore, the cost per unit of pollutant removed is generally higher for higher concentrations of pollutants.

what, if any, relationship is observed between the most probable molecular speed and the molar mass of the gas? the most probable molecular speed decreases as the molar mass of the gas increases. there is no relationship between the most probable molecular speed and the molar mass. the most probable molecular speed decreases as the molar mass of the gas decreases. the most probable molecular speed increases as the molar mass of the gas increases.

Answers

The correct statement is: the most probable molecular speed decreases as the molar mass of the gas increases. The relationship observed between the most probable molecular speed and the molar mass of the gas is that the most probable molecular speed decreases as the molar mass of the gas increases. This is because heavier molecules have more inertia and therefore move more slowly than lighter molecules. So, the larger the molar mass, the slower the molecular speed.


This relationship can be explained by the equation for the most probable molecular speed (V_p), which is derived from the Maxwell-Boltzmann distribution:

V_p = √(2 * R * T / M)

where:
- V_p is the most probable molecular speed
- R is the ideal gas constant
- T is the temperature in Kelvin
- M is the molar mass of the gas

As you can see from the equation, the most probable molecular speed (V_p) is inversely proportional to the square root of the molar mass (M). This means that when the molar mass increases, the most probable molecular speed decreases, and vice versa.

Learn more about molar mass at https://brainly.com/question/837939

#SPJ11

The relationship observed between the most probable molecular speed and the molar mass of the gas is the most probable molecular speed decreases as the molar mass of the gas increases.

This relationship can be explained by the following steps:
1. Molecular speed refers to the velocity of individual molecules in a gas sample.
2. Molar mass is the mass of one mole of a substance, usually expressed in grams per mole (g/mol).
3. The most probable molecular speed can be estimated using the Maxwell-Boltzmann distribution, which describes the distribution of molecular speeds in a gas.
4. According to this distribution, lighter molecules (with lower molar mass) tend to have higher molecular speeds than heavier molecules (with higher molar mass) at the same temperature.
5. Therefore, as the molar mass of a gas increases, the most probable molecular speed decreases.

To learn more about molecular speed, refer:-

https://brainly.com/question/19243977

#SPJ11

at stp, what is the volume of 4.50 moles of nitrogen gas? at stp, what is the volume of 4.50 moles of nitrogen gas? 101 l 167 l 1230 l 60.7 l 3420 l

Answers

The volume of 4.50 moles of nitrogen gas at STP is approximately 101 L. So, the correct answer is 101 L.

At STP (standard temperature and pressure), the volume of one mole of any gas is 22.4 liters. Therefore, to find the volume of 4.50 moles of nitrogen gas at STP, we can simply multiply the number of moles by the molar volume:

At STP (Standard Temperature and Pressure), the volume of 4.50 moles of nitrogen gas (N2) can be calculated using the ideal gas law:

PV = nRT

Where P is the pressure (which is 1 atm at STP), V is the volume, n is the number of moles, R is the gas constant, and T is the temperature (which is 273.15 K at STP).

Rearranging this equation to solve for V, we get:

V = (nRT)/P

Substituting the values for n, R, P, and T, we get:

V = (4.50 mol x 0.08206 L atm K^-1 mol^-1 x 273.15 K)/1 atm

V = 101.3 L

For such more questions on STP:

https://brainly.com/question/27100414

#SPJ11

can you help me with this

Answers

Rock type I’m not sure but Yan ang natatandaan ko na tinuri sa amin

. the two main sources for the increase of carbon dioxide in the atmosphere are . select one:

Answers

Answer:

combustion

respiration by humans

Explanation:

burning of wood leaves release carbon dioxide which is a green house gas and detrimental to the climate

calculate the volume of a solution, in liters, prepared by diluting a 1.0 l solution of 0.40 m koh to 0.13 m.

Answers

The volume of a solution, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is approximately 3.08 liters.

To calculate the volume of a solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M, you can use the dilution formula:

M1V1 = M2V2

where M1 is the initial molarity of the solution (0.40 M), V1 is the initial volume of the solution (1.0 L), M2 is the final molarity of the solution (0.13 M), and V2 is the final volume of the solution (in liters) that we need to find.

Rearrange the formula to solve for V2:

V2 = (M1V1) / M2

Now, plug in the given values:

V2 = (0.40 M * 1.0 L) / 0.13 M

V2 = 0.40 L / 0.13

V2 ≈ 3.08 L

So, the volume of the diluted solution is approximately 3.08 liters.

Learn more about the volume of a solution at https://brainly.com/question/29262229

#SPJ11

The volume of the solution after dilution is approximately 3.08 liters.

To calculate the volume of the solution, we can use the formula:

V1C1 = V2C2

where V1 is the initial volume, C1 is the initial concentration, V2 is the final volume, and C2 is the final concentration.

Plugging in the values given in the question, we get:

(1.0 L)(0.40 M) = V2(0.13 M)

Solving for V2, we get:

V2 = (1.0 L)(0.40 M) / (0.13 M) = 3.08 L

Therefore, the volume of the solution, in liters, prepared by diluting a 1.0 L solution of 0.40 M KOH to 0.13 M is 3.08 L.
Hi! I'd be happy to help you calculate the volume of the solution. To do this, we'll use the dilution formula:

C1V1 = C2V2

where C1 and V1 represent the initial concentration and volume, and C2 and V2 represent the final concentration and volume.

1. Plug in the given values:
C1 = 0.40 M (initial concentration of KOH)
V1 = 1.0 L (initial volume of the solution)
C2 = 0.13 M (final concentration of KOH)

2. Rearrange the formula to solve for V2:
V2 = (C1V1) / C2

3. Substitute the values into the formula:
V2 = (0.40 M × 1.0 L) / 0.13 M

4. Calculate V2:
V2 ≈ 3.08 L

So, the volume of the solution after dilution is approximately 3.08 liters.

Learn more about solution here:

https://brainly.com/question/31522192

#SPJ11

154.42g of oxygen gas (O2) react with an excess of ethane (C2H6) produces how many moles of water vapor (H20)?

Answers

For every 60 grammes of ethane, 108 grammes of water are produced. We therefore obtain 10.8 g of water from the combustion of 6 g of ethane. As a result, is created in 0.6 moles.

How are moles determined when vapour pressure is involved?

The mole fraction of the solvent must be multiplied by the partial pressure of the solvent in order to determine an ideal solution's vapour pressure. The vapour pressure would be 2.7 mmHg, for example, if the mole fraction is 0.3 and the partial pressure is 9 mmHg.

One mol of the solute is contained in one thousand grammes of the solvent (water) in a one molal solution. It follows that the solution's vapour pressure is 12.08 kPa.

learn more about mole fraction

https://brainly.com/question/29367909

#SPJ1

if groundwater contaminant is not visible does that mean it is safe to drink? Explain

Answers

It depends on what you meant by saying not visible. Of it is not visible by using accurate measuring equipment then I think so, but if you mean that all transparent water is drinkable, then no. Think about this. When you put salt in water, you can't see it but it is still there: if you taste the water you can tell that there's salt in there. Let's say that instead of salt there are some bacteria, or some other type of salt which is not appropriate to drink at high levels, such as nitrates. I personally wouldn't recommend drinking from any type.of water unless you are not sure about its purity

which pair of elements are nonmetals and gases at room temperature and normal atmospheric pressure ?

Answers

The pair of elements that are nonmetals and gases at room temperature and normal atmospheric pressure are:

Oxygen (O₂) - Oxygen is a nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is colorless, odorless, and tasteless.

Nitrogen (N₂) - Nitrogen is another nonmetal that exists as a diatomic gas at room temperature and normal atmospheric pressure. It is also colorless, odorless, and tasteless.

Both oxygen and nitrogen are essential components of the Earth's atmosphere, with nitrogen making up about 78% of the air we breathe and oxygen making up about 21%.

To know more about atmospheric pressure, visit:

https://brainly.com/question/30166820

#SPJ1

the gain or loss of electrons from an atom results in the formation of a (an)

Answers

The formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Atoms are composed of protons, neutrons, and electrons. The number of protons in an atom determines its atomic number and the element it represents. The electrons in an atom occupy different energy levels or shells, and these electrons participate in chemical reactions. The outermost shell of electrons, called the valence shell, is particularly important in chemical reactions because it determines the chemical properties of the atom.

When an atom gains or loses electrons, it becomes charged and is called an ion. The process of gaining or losing electrons is called ionization. When an atom loses one or more electrons, it becomes a positively charged ion called a cation. Cations have a smaller number of electrons than protons and have a net positive charge. For example, when the element sodium (Na) loses one electron, it becomes a sodium ion (Na+).

On the other hand, when an atom gains one or more electrons, it becomes a negatively charged ion called an anion. Anions have a larger number of electrons than protons and have a net negative charge. For example, when the element chlorine (Cl) gains one electron, it becomes a chloride ion (Cl-).

The formation of ions is a fundamental process in many chemical reactions. Ions can combine with each other to form ionic compounds, which are compounds composed of ions held together by electrostatic forces. For example, sodium ions (Na+) and chloride ions (Cl-) can combine to form sodium chloride (NaCl), which is common table salt.

Overall, the formation of ions is an essential process in chemistry and is involved in many chemical reactions and compounds.

Visit to know more about Compound:-

brainly.com/question/26487468

#SPJ11

the nadh cofactor has a midpoint potential of -320 mv vs nhe. what fraction of a population of these cofactors would be in the nad form in a ph 7.0 solution with a potential of -300 mv vs nhe? -350 mv vs nhe?

Answers

The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -300 mV vs NHE is 0.015. The fraction of NADH cofactors in the NAD form in a pH 7.0 solution with a potential of -350 mV vs NHE is 0.065.

The NADH/NAD couple has a midpoint potential of -320 mV vs NHE. At pH 7.0, the NADH/NAD couple has an Nernst potential of -320 mV. To calculate the fraction of NADH cofactors in the NAD form at a given potential, we use the Nernst equation:

E = E0 - (RT/nF) ln ([NAD]/[NADH])

where E0 is the standard potential (-320 mV), R is the gas constant, T is the temperature, n is the number of electrons transferred (2 for NADH/NAD), F is the Faraday constant, and [NAD]/[NADH] is the ratio of the oxidized to reduced forms of the cofactor.

Solving for [NAD]/[NADH], we get:

[NAD]/[NADH] = e^((E-E0) nF/RT)

Plugging in the values for E and T, and assuming a 1:1 ratio of NADH to NAD, we get:

[NAD]/[NADH] = e^((E-E0) nF/RT) = e^((E-E0)/59.16)

At -300 mV vs NHE, we get:

[NAD]/[NADH] = e^((-300+320)/59.16) = e^(-0.533) = 0.59

So the fraction of NADH cofactors in the NAD form is

0.59/(1+0.59) = 0.015.

At -350 mV vs NHE, we get:

[NAD]/[NADH] = e^((-350+320)/59.16) = e^(-0.495) = 0.61

So the fraction of NADH cofactors in the NAD form is

0.61/(1+0.61) = 0.065.

To learn more about NADH cofactors, here

https://brainly.com/question/28051041
#SPJ4

if each orange sphere represents 0.010 mol of sulfate ion, how many moles of acid and of base reacted?

Answers

The number of moles of acid and base that react depends on the stoichiometry of the chemical reaction and the amounts of reactants used

Without additional information about the chemical reaction or system being referred to, we cannot determine the number of moles of acid and base that reacted.

If we assume that the orange spheres represent sulfate ions in a specific reaction, then we would need to know the stoichiometry of the reaction to determine the number of moles of acid and base that reacted.

For example, if the reaction involved sulfuric acid ([tex]H_2SO_4[/tex]) and sodium hydroxide (NaOH) and the orange spheres represent sulfate ions ([tex](SO_4)^{2-[/tex]), then the balanced chemical equation would be:

[tex]H_2SO_4 + 2NaOH - > Na_2SO_4 + 2H_2O[/tex]

In this case, we would need to know the amount of sodium hydroxide used to determine the number of moles of acid and base that reacted. If we know the number of orange spheres representing sulfate ions and the amount of sodium hydroxide used, we can determine the moles of acid and base that reacted.

For such more questions on Stoichiometry:

https://brainly.com/question/30417834

#SPJ11

it takes 500 j of work to compress quasi-statically 0.50 mol of an ideal gas to one-fifth its original volume. calculate the temperature of the gas, assuming it remains constant during the compression.

Answers

As the compression is carried out quasi-statically, the gas's temperature will not change during the process. The temperature of the gas is T= 60.65 K.

The temperature of the gas will remain constant during the compression process since it is being done quasi-statically.

This means that the temperature of the gas will remain constant throughout the compression process.

Since the amount of work (500 J) is given, the temperature of the gas can be determined using the equation U = (3/2)nRT, where U is the work, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Solving for T, we find that the temperature of the gas is T = (2/3)(500 J)/(0.50 mol)(8.31 J/mol K) = 60.65 K.

Complete Question:

It takes 500 J of work to compress 0.50 mol of an ideal gas quasi-statically to one-fifth its original volume. What is the temperature of the gas, assuming it remains constant during the compression?

To learn more about temperature visit:

https://brainly.com/question/2339046

#SPJ4

25. j. chadwick discovered the neutron by bombarding with the popular projectile of the day, alpha particles. (a) if one of the reaction products was the then unknown neutron, what was the other product? (b) what is the q-value of this reaction?

Answers

(a) If one of the reaction products was the then unknown neutron, what was the other product is the C -12.

(b) The q-value of this reaction is the 5.9 × 10⁸ J.

The James Chadwick was discovered the neutron during the experiment involving the nuclear reaction in that the beryllium, bombarded with the alpha particles. The equation of the reaction is as :

⁴Be₉  +  ²He₄  ---->  ⁶C₁₂  +  ⁰n₁

(a) If one of the reaction products was the then unknown neutron, what was the other product is the C -12.

(b) The q-value of this reaction is as :

q = mc²

Where,

The m is the mass

The c is the speed of the light.

m = 4.002603 + 2.014102

m = 1.988501

q = 1.988501  × 3 × 10⁸

q = 5.9 × 10⁸ J

To learn more about James Chadwick here

https://brainly.com/question/14559793

#SPJ4

2.345 x 10² grams of H3PO4 will need how many grams of Mg(OH)2 in the reaction below?

(Mg = 24.31 g/mol; O = 16.00 g/mol; H = 1.01 g/mol; P = 30.97 g/mol)

3Mg(OH)2 + 2H3PO4 =
1Mg3(PO4)2 + 6H2O

Answers

Taking into account definition of reaction stoichiometry, 209.36 grams of Mg(OH)₂ are needed.

Reaction stoichiometry

In first place, the balanced reaction is:

3 Mg(OH)₂ + 2 H₃PO₄ → Mg₃(PO₄)₂ + 6 H₂O

By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:

Mg(OH)₂: 3 moles H₃PO₄: 2 molesMg₃(PO₄)₂: 1 mole H₂O: 6 moles

The molar mass of the compounds is:

Mg(OH)₂: 58.33 g/moleH₃PO₄: 98 g/moleMg₃(PO₄)₂: 262.87 g/moleH₂O: 18.02 g/mole

Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

Mg(OH)₂: 3 moles× 58.33 g/mole= 174.99 gramsH₃PO₄: 2 moles× 98 g/mole= 196 gramsMg₃(PO₄)₂: 1 mole× 262.87 g/mole= 262.87 gramsH₂O: 6 moles× 18.02 g/mole= 108.12 grams

Mass of Mg(OH)₂ needed

The following rule of three can be applied: If by reaction stoichiometry 196 grams of H₃PO₄ react with 174.99 grams of Mg(OH)₂, 2.345×10² grams of H₃PO₄ react with how much mass of Mg(OH)₂?

mass of Mg(OH)₂= (2.345×10² grams of H₃PO₄× 174.99 grams of Mg(OH)₂)÷ 196 grams of H₃PO₄

mass of Mg(OH)₂= 209.36 grams

Finally, 209.36 grams of Mg(OH)₂ is required.

Learn more about reaction stoichiometry:

brainly.com/question/24741074

#SPJ1

Boyle's Law: Air trapped in a cylinder fitted with a piston occupies 136.5 mL at 1.05 atm pressure. What is the volume of air when the pressure is increased to 1.42 atm by applying force to the piston?

Answers

Boyle's Law states that the pressure and volume of a gas are inversely proportional, as long as the temperature remains constant. This means that we can use the formula:

P1V1 = P2V2

where P1 and V1 are the pressure and volume at the initial state, and P2 and V2 are the pressure and volume at the final state.

We are given:

P1 = 1.05 atm
V1 = 136.5 mL
P2 = 1.42 atm

We can solve for V2:

P1V1 = P2V2

V2 = (P1V1) / P2

V2 = (1.05 atm x 136.5 mL) / 1.42 atm

V2 = 100.9 mL (rounded to one decimal place)

Therefore, the volume of air when the pressure is increased to 1.42 atm is about 100.9 mL.

The process of boiling is considered to be a (1) chemical change, because a new substance is formed (2) chemical change, because a new substance is not formed (3) physical change, because a new substance is formed (4) physical change, because a new substance is not formed

Answers

Answer:

physical change, because a new substance is not formed

Explanation:

Answer:

4) physical change, because a new substance is not formed

a physical change is where you can change the look and feel of whatever and get it back to what it was before but a chemical change. is a change where you can not get back to what it was originally

Explanation:

please give me brainliest

when solid mercury(i) chloride reacts with ammonia, two precipitates form. write the chemical formula for each of the precipitates. first precipitate: second precipitate:

Answers

When solid mercury(I) chloride (Hg₂Cl₂) reacts with ammonia (NH₃), two precipitates form: white mercurous ammonium chloride (HgNHCl) and black mercuric nitride (Hg₃N₂).

The chemical equation for the reaction is:

Hg₂Cl₂(s) + 2NH₃(aq) → HgNH₂Cl(s) + Hg₃N₂(s) + 2HCl(aq)

The first precipitate, mercurous ammonium chloride, is a white solid that forms because of the reaction between Hg₂Cl₂ and NH₃. It is also known as white precipitate and has a molecular formula of HgNH₂Cl.

The second precipitate, mercuric nitride, is a black solid that forms because of the reaction between the excess ammonia and the Hg²⁺ ions produced by the Hg₂Cl₂. The molecular formula of mercuric nitride is Hg₃N₂.

To learn more about nitride follow the link:

https://brainly.com/question/24004315

#SPJ4

PLEASE ANSWER 50 POINTS!!!!!
How many grams of NH3 form when 22g H2 react completely?
3H2 + N2 ---> 2NH3
H2: 2 g/mol NH3: 17 g/mol
22g H2 ----> gNH3

Answers

You should write 22 gram H2 and each mol has 2 gram and we have 3 mol.On the other side we have X gram NH3 and each mol has 17 grams and we have 2 mol of NH3

Answer:

mass of NH₃ formed when 22g of H₂ react completely = 124.67 grams

Explanation:

3H₂ + N₂ → 2NH₃

What is stoichiometry

The ratio of coefficients of reactants and products in the above reaction equation (3 : 1 : 2), is known as the stoichiometry of the reaction.

A stoichiometric amount of a reagent is the the optimum amount or ratio where, assuming that the reaction proceeds to completion, all of the reagent is consumed, there is no deficiency of the reagent, and there is no excess of the reagent. Thus if the stoichiometry of a reaction is known, as well as the mass of one of the substances, then it is possible to calculate the mass of any of the other substances.

What is a mole?

The mole is a unit of amount of substance established by the International System of Units, to make expressing amounts of reactant or product in a reaction more convenient. As defined by Avogadro's Constant, a mole is 6.022×10²³ amounts of something. The mole is used in stoichiometric calculations, instead of the mass.

Converting between mass and moles

To convert from mass to moles, we need to divide the mass present in grams, by the molar mass of the substance (the sum of the molar masses of the individual elements comprising the compound), in g/mol, to get the moles. This can be represented by the formula: n = m/M, where n = number of moles, m = mass, M = molar mass.

So if we have 22 g of H₂ gas, which reacts completely, and therefore is a stoichiometric amount, then converting this to moles:

n(H₂) = m/M = 22/2 = 11 mol.

Using our stoichiometry, we can see that the ratio of H₂ to NH₃ = 3 : 2.

Therefore, for every 3 moles of H₂ used, we produce 2 moles of NH₃.

n(NH₃) = 2/3 × n(H₂) = 2/3 × 11 = 7.333 mol.

Finally, converting moles back to mass we get:

m(NH₃) = n×M = 7.333×17 = 124.67 grams

∴ mass of NH₃ formed when 22g of H₂ react completely = 124.67 grams

an experimental plot of ln(k) vs. 1/t is obtained in lab for a reaction. the slope of the best-fit line for the graph is -2905 k. what is the value of the activation energy for the reaction in kj/mol?

Answers

Multiplying the slope (-2905 k) by the gas constant (0.008314 kJ/mol K) gives the activation energy: 24.1 kJ/mol.

The slant of the best-fit line for the diagram of ln(k) versus 1/T is equivalent to - Ea/R, where Ea is the actuation energy for the response, R is the gas consistent, and T is the temperature in Kelvin. To decide the actuation energy, we really want to improve this condition to address for Ea.

Ea = - slant x R

We realize that the slant of the best-fit line is - 2905 K, and R is 8.314 J/(mol·K). In any case, the slant should be changed over completely to units of J/(mol·K) by duplicating by 1000, since we need the actuation energy in units of kJ/mol. Accordingly:

Ea = - (- 2905 K x 8.314 J/(mol·K)) x (1/1000 kJ/J)

Ea = 24.1 kJ/mol

The initiation energy for the response is 24.1 kJ/mol. This worth addresses the base energy expected for the reactants to defeat the energy hindrance and structure items. The higher the initiation energy, the more slow the response rate, as well as the other way around.

To learn more about activation energy , refer:

https://brainly.com/question/30578051

#SPJ4

Calculate the heat capacity, in joules per degree of 28.4 g of water. Specific heat of H2O() = 4.184 J/g.°C a) 28.4 J/°C b) 119 J/°C Oc) 6.8 J/°C d) 0.147J/°C

Answers

The heat capacity of 28.4 g of water is 118.8976 J/°C. The closest option to this answer is option b) 119 J/°C.

To calculate the heat capacity of 28.4 g of water, we need to use the formula:

Heat capacity = mass x specific heat

where mass is given as 28.4 g and specific heat of water is given as 4.184 J/g.°C.

So, substituting the values in the formula, we get:

Heat capacity = 28.4 g x 4.184 J/g.°C
Heat capacity = 118.8976 J/°C


To calculate the heat capacity of 28.4 g of water, you need to multiply the mass of water (m) by its specific heat (c). The formula for heat capacity (Q) is:

Q = m × c

Given:
m = 28.4 g
c = 4.184 J/g.°C

Substitute the values and perform the calculation:

Q = 28.4 g × 4.184 J/g.°C = 118.8 J/°C

The closest answer among the given options is:

b) 119 J/°C

To learn more about mass of water click here

brainly.com/question/26789700

#SPJ11

What is wrong with the electron level diagrams/electron configurations below?

Answers

Answer:

a.) Instead of configuring all up before some down, all of the configurations were placed as up and down, leaving two spots empty in the 2p sublevel.

b.) There is a missing s sublevel for row 3.

c.) There are two up arrows in one of the lines.

d.) When you get to the "d" section you must subtract the number you're using by 1. So, it's supposed to be 2d to the power of 10.

Pi bonding occurs in each of the following species EXCEPT...
(A) CO2 (B) C2H4 (C) CN− (D) C6H6 (E) CH4

Answers

CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

The answer is (E) CH4.



Pi bonding refers to the sharing of electrons between two atoms that occurs when two atomic orbitals with parallel electron spins overlap. Pi bonds are formed by the sideways overlap of two p orbitals.

In the given options, all except CH4 have pi bonds:

(A) CO2 has two pi bonds between the carbon atom and the oxygen atoms.
(B) C2H4 has a double bond between the two carbon atoms, which consists of one sigma bond and one pi bond.
(C) CN− has a triple bond between the carbon and nitrogen atoms, consisting of one sigma bond and two pi bonds.
(D) C6H6 has six pi bonds due to the delocalized pi electron system in the benzene ring.

In contrast, CH4 has only sigma bonds between the carbon and hydrogen atoms, and no pi bonds.

Visit to know more about Sigma bonds:-

brainly.com/question/31377841

#SPJ11

How many moles of h2 can be produced from x grams of mg in magnesium-aluminum alloy? the molar mass of mg is 24. 31 g/mol?

Answers

The number of moles of H₂ that can be produced from x grams of Mg is (x / 24.31)

The balanced chemical equation for the reaction between Mg and HCl is,

Mg + 2HCl → MgCl₂ + H₂

This equation shows that 1 mole of Mg reacts with 2 moles of HCl to produce 1 mole of H₂. Therefore, the number of moles of H₂ that can be produced from x grams of Mg can be calculated as follows:

Calculate the number of moles of Mg in x grams:

Number of moles of Mg = mass of Mg / molar mass of Mg

Number of moles of Mg = x / 24.31

Use the mole ratio between Mg and H₂ to calculate the number of moles of H₂ produced:

Number of moles of H₂ = Number of moles of Mg × (1 mole of H₂ / 1 mole of Mg)

Number of moles of H₂ = (x / 24.31) × (1/1)

To know more about moles, here

brainly.com/question/26416088

#SPJ4

explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases

Answers

The concentrations of major species in a mixture of weak and strong acids and bases are determined by their dissociation behavior and interaction in a solution, influencing the overall pH and buffering capacity.

The relationship among the concentrations of major species in a mixture of weak and strong acids and bases can be understood through their dissociation and interaction in a solution.

Strong acids, such as HCl, fully dissociate in water, releasing a high concentration of H+ ions. Similarly, strong bases, like NaOH, dissociate completely, releasing a high concentration of OH- ions.

Weak acids, such as acetic acid (CH3COOH), only partially dissociate in water, releasing a smaller concentration of H+ ions. Likewise, weak bases, like ammonia (NH3), partially dissociate, releasing a smaller concentration of OH- ions.

When a mixture of weak and strong acids and bases is present, the strong species will react first due to their higher concentrations of H+ or OH- ions. This reaction will affect the pH of the solution, as well as the concentrations of the weak species, as they will be buffered by the strong species.

To learn more about buffering capacity click here

brainly.com/question/24188850

#SPJ11

someone help please its a sience testtt

Answers

The equator of the sun rotates faster than the poles.

How does the rotation of the equator of the sun differ from the rotation of the poles of the sun?

The equator of the sun rotates faster than its poles. This is known as differential rotation, and it is due to the fact that the sun is not a solid body, but is composed of gas and plasma. The equatorial regions of the sun rotate faster because they are farther from the center of the sun, where the gravitational pull is stronger, and thus experience less resistance to their motion.

The period of rotation of the equator of the sun is shorter than that of the poles. The equator rotates once every 25.4 days, while the poles rotate once every 36 days.

Learn more about the sun:https://brainly.com/question/17376727

#SPJ1

what is the molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water? question 36 options: 0.00220 m 2.20 m 12.9 m 129 m

Answers

, the molar concentration of the solution is 2.202 M. molar concentration of a solution that contains 45.0 g of nacl dissolved in 350.0 ml of water

To calculate the molar concentration of a solution, we need to first determine the number of moles of the solute present in the solution, and then divide that by the volume of the solution in liters.

The molar mass of NaCl is 58.44 g/mol. Therefore, the number of moles of NaCl in 45.0 g can be calculated as:

mole= mass / molar mass = 45.0 g / 58.44 g/mol = 0.7709 mol

Next, we need to convert the volume of the solution from milliliters to liters:

volume = 350.0 ml = 0.3500

Finally, we can calculate the molar concentration (M) of the solution as:

M = moles / volume = 0.7709 mol / 0.3500 L = 2.202 M

Learn more about concentration  here:

https://brainly.com/question/30665317

#SPJ11

a buffer solution has 0.750 m h2co3 and 0.650 m hco3−. if 0.020 moles of hcl is added to 275 ml of the buffer solution, what is the ph after the addition? the pka of carbonic acid is 6.37.

Answers

The pH after the addition of the 0.020 moles of HCl is added to 275 ml of the buffer solution is 6.40.

A buffer solution is an acidic or basic aqueous solution made up of a combination of a weak acid and its conjugate base, or vice versa (more specifically, a pH buffer or hydrogen ion buffer). When a modest amount of a strong acid or base is applied to it, the pH hardly changes at all.

A multitude of chemical applications employ buffer solutions to maintain pH at a practically constant value. Numerous biological systems employ buffering to control pH in the natural world.

275mL buffer 1L/1,1000 mL 0.75 mol H2CO3/ 1L Solution = 0.206 mol H2CO3

275 mL buffer 1L/ 1,000 mL 0.65 mol HCO3- / 1L Solution= 0.179 mol HCO3-

pH = 6.37 + log(0.179 mol + 0.020 mol / 0.206 mol + 0.020 mol)

pH = 6.37 + 0.0293

pH =  6.40.

Learn more about Buffer solution:

https://brainly.com/question/27371101

#SPJ4

explain why conjugation of coupling reagent or the number of aromatic rings in the nucleophile makes a bigger difference in determining the lambda max of an azo dye? g

Answers

The lambda max (λmax) of an azo color is the wavelength at which the color retains light most unequivocally.

It is decided by the electronic structure of the color atom, which in turn depends on the nature and position of the chromophores and auxochromes within the atom.

A chromophore could be a gathering of iotas in an atom that retains light due to the nearness of delocalized π electrons.

An autochrome may be a gathering of molecules in an atom that changes the electronic properties of the chromophore and impacts the absorption spectrum of the particle.

In azo dyes, the chromophore is the azo gather (-N=N-), which incorporates a tall molar termination coefficient and assimilates emphatically within the unmistakable locale of the electromagnetic range.

The auxochromes are ordinarily fragrant rings, amino bunches, or carboxylic corrosive bunches, which can give or pull back electrons from the chromophore and move the λmax of the color.

When a coupling reagent is included in an azo color response, it responds with a diazonium salt to make an unused azo color. The structure of the coupling reagent can influence the λmax of the coming about color by modifying the electronic properties of the chromophore.

For case, a coupling reagent with an electron-donating gather can increment the electron thickness on the chromophore and move the λmax to a longer wavelength, while a coupling reagent with an electron-withdrawing bunch can diminish the electron thickness on the chromophore and move the λmax to a shorter wavelength.

The number of fragrant rings within the nucleophile can moreover influence the λmax of the azo dye. Fragrant rings are electron-rich and can give electrons to the chromophore, expanding its electron thickness and moving the λmax to a longer wavelength.

Hence, a nucleophile with different fragrant rings will have a more prominent impact on the λmax of the color than a nucleophile with only one fragrant ring.

In rundown, both the conjugation of the coupling reagent and the number of fragrant rings within the nucleophile can impact the electronic structure of the azo color and move its λmax.

Be that as it may, the impact of the nucleophile is ordinarily more critical since it specifically influences the electron thickness of the chromophore. 

To know more about coupling reactions refer to this :

https://brainly.com/question/19561214

#SPJ4

true or false a pure substance (such as h2o or iron) can only exist in three phases (solid, liquid, and gas)

Answers

A pure substance (such as H₂O or iron) can only exist in three phases (solid, liquid, and gas) - True.

A kind of matter with a predictable chemical composition and physical characteristics is referred to as a chemical substance. According to certain texts, a chemical compound cannot be physically divided into its component parts without rupturing chemical bonds. Chemical compounds, alloys, and simple substances (substances made up of a single chemical element) are all examples of chemical substances.

To distinguish them from mixes, chemical compounds are frequently referred to as 'pure'. Pure water is a popular illustration of a chemical substance; regardless of whether it is separated from a river or created in a lab, it has the same characteristics and hydrogen to oxygen ratio. Other chemicals that are frequently found in their purest forms are refined sugar (sucrose), gold, table salt (sodium chloride), and diamond (carbon). In reality, though, no material is completely pure, and chemical purity is determined by the chemical's intended application.

Learn more about Pure substance:

https://brainly.com/question/18452279

#SPJ4

Other Questions
which element moves a story along and creates reader interst? cultural values, point of view, theme, conflict the factor market and the product market are essentially the same thing.group startstrue or false by what feature is euthanasia distinguished from other behaviors that result in the death of an innocent person? Choose the correct statement(s) that accurately explain(s) impulse conduction to the myocardium. Check all that apply. Check All That Apply Firing of the SA node excites atrial cardiomyocytes and stimulates the two atria to contract almost simultaneously In the AV node, the signal slows down to about 0.05 m/sec because the cardiomyocytes have fewer op junctions over which the signal con be transmitted The entire ventricular myocardium depolarizes within 200 msec after the SA node fires, causing the ventricles to contact one after another Signals travel through the AV bundle and Purkinje fibers at a speed of 4 msec, the fastest in the conduction system The delay at the AV node is essential because it gives the atria time to fill with blood before they begin to contract (Cost of equity) The common stock for the Bestsold Corporation sells for $56. If a new issue is sold, the flotation costs are estimated to be 8 percent. The company pays 80 percent of its earnings in dividends, and a $7.20 dividend was recently paid. Earnings per share 6 years ago were $7.00. Earnings are expected to continue to grow at the same annual rate in the future as during the past 6 years. The firm's marginal tax rate is 32 percent. Calculate the cost of (a) internal common equity and (b) external common equity. a. What is the firm's cost of internal common equity?a. What is the firm's cost of internal commonequity?____% (Round to two decimal places.)b. What is the firm's cost of external commonequity?____% (Round to two decimal places.) he ________ specifier is a special set of characters that specify how a value should be formatted. Income tax is calculated based on:O A. gross income.O B. net income minus profits. C. net income minus deductions.D. gross income minus deductions. This type of evacuation is used in case of tornados and other severe storms. a. Shelter-in-place evacuation b. Building evacuation c. Vertical evacuation d. Horizontal evacuation e. Local evacuation the practice of spreading ideas to help one's cause or to harm an opposing cause propagandatrue or false in this recursive function, what is the role of the helper function computesign? The first leg of Hannahs route is from her house (A) to the bakery (B). How much distance will she cover in this part of her run? Explain using coordinate subtraction Tiktaalik is a genus of fish that date back to 375 million years ago. They had wrist-like bone structures at the tips of their fins, a neck, and bony structures over their gills that may have allowed them to breathe air. What does this evidence suggest? A. Fish used to live on land. B. Amphibians evolved from fish. C. Lungs and gills evolved at the same time. D. Fish and land animals used to look the same. An object has temperature of 2310 C. Calculate the wavelength this object emits the most. Give the answer in micrometers with twosignificant figures. Malcolm Manufacturing, Inc. just paid a $2.00 annual dividend (that is, D0 = 2.00). There will be nodividend payment for the next two years (i.e., at t = 1 and t = 2). In year three (t = 3), the dividend isexpected to be $5.00. The dividend will then grow at 10% annually for the next 3 years (i.e., at t = 4, t= 5 and t = 6) and thereafter (i.e., beginning at t = 7) dividends will grow at a rate of 3% annuallyforever. Assuming a required return of 14%, what is the current price of the stock? lowe's maintains extra inventory of roofing nails in case the weekly delivery from its regional distribution center is delayed. this type of inventory is called . Which word is misspelled here ?Round Provinciala performance FaienceRobe 22. The passage is written from the perspectiveof someone who is(A) actively engaged in conductingpetrochemical research.(B) an advocate for the production of purelysynthetic oil.(C) a prospector involved in the search forunderwater oil deposits.(D) knowledgeable about oil deposits andthe oil-mining industry. the problem with the truman administrations policy toward controlling the aggression of the soviet union was that it took a __________ approach instead of a _____________ approach. why is 0.5 used in place of p when determining the minimum sample size necessary for a proportion confidence interval? what is the average defection rate for grocery store shoppers in a local area of a large city if customers spend $100 per visit, customers shop 60 weeks per year, the grocery store has a 4 percent gross margin, and the value of a loyal customer is estimated at $3,000 per year? a. 8% b. 9% c. 10% d. 11% e. 12%