Answer:
A
Step-by-step explanation:
............................ ....
Aiden is trying to pick up some lawn mowing jobs over the weekend to make extra money for a school trip. Each lawn in his neighborhood takes an average of 40 minutes to mow, and Aiden has no more than 11 hours, or 660 minutes, of available time to mow lawns. If Aiden mows his grandparents' farm which takes him 110 minutes, and x represents the number of lawns he mows in his neighborhood, which inequality represents this situation?
A.
40x + 110 ≤ 660
B.
110x + 40 ≤ 660
C.
110x + 40 ≥ 660
D.
40x + 110 ≥ 660
Answer:
A.
Step-by-step explanation:
40x is the number of lawns he can do, less the time to do his grandparents time (added to other law time) and he has 660 mins of less to complete them.
Answer:
a. 40x + 110 ≤ 660
Step-by-step explanation:
Consider the Equation y > 3x + 1 (a) Find an ordered pair that satifies the equation (b) Is the equation a Releation? explain (c) Is the equation a Function? explain
Answer:
(a) (1,5)
(b) Every subset of a cartesian product is a relation, therefore this is a relation.
(c) The relation IS NOT a function.
Step-by-step explanation:
(a)
(1,5)
Notice that 3(1) +1 = 4 < 5 therefore (1,5) is an order pair that satisfies the equation.
(b)
Every subset of a cartesian product is a relation, therefore this is a relation.
(b)
A relation is a function of the following condition holds
if (a,b) and (c,b) belong to the relation then (a=c)
In this case, (1,5), (0,5) belong to the relation but 0 is different than 5, therefore the relation IS NOT a function.
Help thank you!!!!!!!
[tex] v = \sqrt{4900} + \sqrt{8100} = 70 + 90 = 160[/tex]
Answer: D. 160
In a class full of men and women, 5 9 of the class are women. What is the ratio of men to women in its simplest form?
a man is 3 times as old as his son . the sum of their ages is 48 years .how old is the son ? how old is the dad?
Answer:
son is 12
dad is 36
Step-by-step explanation:
Say the son is x years old.
Then the father is 3x. Also 3x+x must be 48.
So 4x = 48 => x= 48/4 = 12
Let x be how old the son is. We know that the dad is 3 times older and their sum is 48. Creating an equation to represent this situation gives us:
[tex]x+3x=48[/tex]
[tex]4x=48[/tex]
Divide both sides by 4
[tex]x=12[/tex]
The son is 12 years old, but we want to find the age of the dad. Since we know the dad is 3 times older, multiply 12 with 3
[tex]12 \times 3 = 36[/tex]
The dad is 36 years old. Let me know if you need any clarifications, thanks!
(SAT Prep) Find the value of x.
Answer:
x = 65°
Step-by-step explanation:
Naming the sides of the parallelogram formed ABCD as shown in the attached image to this solution.
Angle A = 2x (vertically opposite angles are equal)
Angle A = Angle C (opposite angles of a parallelogram are equal)
Angle A = Angle C = 2x
(Angle C) + 50° = 180° (Sum of angles on a straight line is 180°)
2x + 50° = 180°
2x = 180° - 50° = 130°
x = (130°/2) = 65°
Hope this Helps!!!
Answer:
65 degrees
Step-by-step explanation:
6th grade math, help me please
Answer:
1. 2/5
Step-by-step explanation:
When it says the ratio is 5 to 2, that means 5 is always first:
5 : 2 is correct
5/2 is correct
10 : 4 is correct (multiplied 2 on both sides)
2/5 is incorrect because 2 is first. That means that this ratio would be 2 to 5, not 5 to 2.
Answer:
2/5
Step-by-step explanation:
because you are not supposed to flip the two numbers. You need to keep them in the same order.
Sorry, if this isn't the greatest answer. Its my first time.
There are three points on a line, A, B, and C, so that AB = 12 cm, BC = 13.5 cm. Find the length of the segment AC . Give all possible answers.
Answer:
AC = 25.5 or 1.5
Step-by-step explanation:
If they are on a line and they are in the order ABC
AB + BC = AC
12+13.5 = AC
25.5 = AC
If they are on a line and they are in the order CAB
CA + AB = BC
AC + 12 =13.5
AC = 13.5 -12
AC = 1.5
If they are on a line and they are in the order ACB
That would mean that AB is greater than BC and that is not the case
Can someone Give me the answer?
Answer:
(0,5)
Step-by-step explanation:
The solution to the system is where the two graphs intersect
From the graph, the graphs intersect at x = 0 and y =5
Step-by-step explanation:
I have trouble with these types of questions as well, but hopefully this might help.
According to medical data, the ages at which patients have their first knee replacement surgery
follows a normal distribution. The average age for a first knee replacement is 58 years of age, with a
standard deviation of 8.25 years. Therefore, doctors can expect the middle 68% of their knee
replacement surgery patients to be between what ages?
Answer:
The doctors can expect the middle 68 % of their knee replacement surgery patients to be between 49.75 years and 66.25 years.
Step-by-step explanation:
68 % of the knee replacement surgery patients implies that the ages lies within x = x₀ ± σ where x₀ = mean age = 58 years and σ = standard deviation = 8.25 years
So, the ages lies between x₀ + σ and x₀ - σ
So, the ages lie between 58 - 8.25 = 49.75 years
and 58 + 8.25 = 66.25 years
So the doctors can expect the middle 68 % of their knee replacement surgery patients to be between 49.75 years and 66.25 years.
Solve the quadratic equation 4x2 – x = 8 using the quadratic formula.
Answer:
[tex]1x=\frac{1\sqrt{129} }{8}[/tex]
Step-by-step explanation:
In between the 1 and the [tex]\sqrt{129}[/tex] goes this symbol: ±
hope this helps!
Does this graph show a function? Explain how you know.
O A. No; there are yvalues that have more than one x-value.
ОО
B. Yes; there are no y-values that have more than one x-value.
C. No; the graph fails the vertical line test.
ОО
D. Yes; the graph passes the vertical line test.
It is possible to draw a single straight line to pass through more than one point on the red curve. Therefore, the graph fails the vertical line test. We have cases where one input leads to more than one output.
A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five. The study involved a large random sample of mothers and children and was conducted over several years. What is the population of interest in this survey
Answer: Parents and children ( till the age of 5) of Norway
Step-by-step explanation:
The population in a survey is the group of people sharing common features or characteristics as per the researcher point of view.Here, A large study of over 2000 parents and children in Norway found that toddlers who regularly slept less than 10 hours per night or woke frequently (three or more times) at night tended to experience more emotional and behavioral problems when they reached age five.
Since the study involved a large random sample of mothers and children and was conducted over several years.
So, the population of interest in this survey is "Parents and children ( till the age of 5) of Norway".
Helpppp asapppppp....
Answer:
C.
Step-by-step explanation:
So, here's what you need to remember:
If we have a function f(x) and a factor k:
k(f(x)) will be a vertical stretch if k is greater than 1, and a vertical compression if k is greater than zero but less than 1.
f(kx) will be a horizontal compression if k is greater than 1, and a horizontal stretch if k is greater than zero but less than 1.
We are multiplying 0.5 to the function. In other words: 0.5f(x).
This is outside the function, so it's vertical.
0.5 is less than 1, so this would be a vertical compression
4. Simplify the following.
3
a. 2-X5-:11
3
x5
5
6
7
Answer:
[tex]1 \frac{1}{4} [/tex]Step-by-step explanation:
[tex]2 \frac{3}{7} \times 5\frac{5}{6} \div 11 \frac{1}{3} [/tex]
Convert the mixed number to an improper fraction
[tex] \frac{17}{7} \times \frac{35}{6} \div \frac{34}{3} [/tex]
To divide by a fraction, multiply the reciprocal of that fraction
[tex] \frac{17}{7} \times \frac{35}{6} \times \frac{3}{34} [/tex]
Reduce the number with the G.C.F 7
[tex]17 \times \frac{5}{6} \times \frac{3}{34} [/tex]
Reduce the numbers with the G.C.F 17
[tex] \frac{5}{6} \times \frac{3}{2} [/tex]
Reduce the numbers with the G.C.F 3
[tex] \frac{5}{2} \times \frac{1}{2} [/tex]
Multiply the fraction
[tex] \frac{5}{4} [/tex]
In mixed fraction:
[tex]1 \frac{1}{4} [/tex]
Hope this helps..
Good luck on your assignment...
Safegate Foods, Inc., is redesigning the checkout lanes in its supermarkets throughout the country and is considering two designs. Tests on customer checkout times conducted in two stores where the two new systems have been installed result in the following summary of the data: System A System B Size 120 100 mean 4.1 minutes 3.4 minutes Standard Deviation 2.2 minutes 1.5 minutes Test at the 0.05 level of significance to determine whether the population mean checkout times of the two systems differ. Which system is preferred?
Use both the critical and p-value approach.
Hypotheses:
Decision rule:
Calculations:
Conclusions:
Answer:
the answer would be calculations
Step-by-step explanation:
because they have do determine if the check out times differ between the two systems so they need to calculate the difference between the two
Find the left critical value for 95% confidence interval for σ with n = 41. 26.509 24.433 55.758 59.342
Answer: 59.342
Step-by-step explanation:
The chi-square critical values are used to find the confidence interval for σ.
Left critical value = [tex]\chi^2_{\alpha/2, n-1}[/tex] [i.e. chi-square value from chi-square table corresponding to degree of freedom n-1 and significance level of [tex]\alpha/2[/tex]]
To find : left critical value for 95% confidence interval for σ with n = 41.
Significance level : [tex]\alpha=1-0.95=0.05[/tex]
degree of freedom = 41-1=40
Now, the left critical value for 95% confidence interval for σ with n = 41 is the chi-square value corresponding to degree of freedom n-1 and [tex]\alpha/2=0.025[/tex]
=59.342 [from chi-square table ]
Because of a manufacturing error, 3 cans of regular soda were accidentally filled with diet soda and placed into a 24-pack. Suppose that two cans are randomly selected from the 24-pack. Determine the probability that at least one contain regular soda.
Answer:
161/184 or 0.875
Step-by-step explanation:
Total number of cans = 24 cans
Total number of diet soda = 3 cans
Total number of regular soda = 21 cans
We are asked to find the probability that:that at least one contain regular soda if two cans are selected randomly
We have two ways for this happening
a) two of the cans are regular soda
b) one of the cans is regular , while one is diet
Hence,
Probability (that at least one contain regular soda) = Probability(that two of the cans are regular soda) + Probability ( one of the cans is regular , while one is diet)
Probability(that two of the cans are regular soda) = 21/24 × 20/23
= 35/46
Probability ( one of the cans is regular , while one is diet) = 21/24 × 3/23
= 21/184
Probability (that at least one contain regular soda) = 35/46 + 21/184
We find the Lowest common multiple of the denominators = 184
= 35/46 + 21/184
= (35 × 4) + (21 × 1)/184
= 140 + 21/184
= 161/184
= 0.875
Therefore, the probability that at least one can contains regular soda = 161/184 or 0.875
what is 4 1/3 x 4 1/5=
Answer:
18 1/5
Step-by-step explanation:
Hey there!
Well to multiply them let's make them improper.
13/3 * 21/5
13*21 = 273
3*5 = 15
273/15
Simplified
18 1/5
Hope this helps :)
Answer:
[tex]\huge\boxed{4\dfrac{1}{3}\times4\dfrac{1}{5}=18\dfrac{1}{5}}[/tex]
Step-by-step explanation:
[tex]4\dfrac{1}{3}\times4\dfrac{1}{5}\\\\\bold{STEP\ 1}\\\text{convert the mixed numbers to the improper fractions}\\\\4\dfrac{1}{3}=\dfrac{4\times3+1}{3}=\dfrac{12+1}{3}=\dfrac{13}{3}\\\\4\dfrac{1}{5}=\dfrac{4\times5+1}{5}=\dfrac{20+1}{5}=\dfrac{21}{5}\\\\\bold{STEP\ 2}\\\text{simplify fractions}\\\\4\dfrac{1}{3}\times4\dfrac{1}{5}=\dfrac{13}{3}\times\dfrac{21}{5}=\dfrac{13}{1}\times\dfrac{7}{5}\\\\\bold{STEP\ 3}\\\text{multiply numerators and denominators}\\\\=\dfrac{13\times7}{1\times5}=\dfrac{91}{5}[/tex]
[tex]\bold{STEP 4}\\\text{convert the improper fraction to the mixed number}\\\\=\dfrac{91}{5}=\dfrac{90+1}{5}=\dfrac{90}{5}+\dfrac{1}{5}=18\dfrac{1}{5}[/tex]
Suppose a city official conducts a hypothesis test to test the claim that the majority of voters oppose a proposed school tax. Assume that all of the conditions fro proceeding with a one-sample test on proportions have been met. The calculated test statistic is approximately 1.23 with an associated p-value of approximately 0.1093. Choose the conclusion that provides the best interpretation for the p-value at a significance level of alpha = 0.05.
A. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is surprising (or considered unusual) and could not easily happen by chance.
B. If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance
C. The p-value should be considered extreme: therefore, the hypothesis test proves that the null hypothesis is true
D. none of the above
Answer:
The correct option is (B).
Step-by-step explanation:
The p-value is well-defined as per the probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic.
In this case, we need to test the claim that the majority of voters oppose a proposed school tax.
The hypothesis can be defined as follows:
H₀: The proportion of voters opposing a proposed school tax is not a majority, i.e. p ≤ 0.50.
Hₐ: The proportion of voters opposing a proposed school tax is a majority, i.e. p > 0.50.
It is provided that the test statistic value and p-value are:
z = 1.23
p-value = 0.1093
The probability, [under the null-hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was the truly observed value of the test statistic is 0.1093.
The significance level of the test is:
α = 0.05
The p-value of the test is larger than the significance level of the test.
p-value = 0.1093 > α = 0.05
The null hypothesis will not be rejected.
Concluding that there is not enough evidence to support the claim.
Thus, the correct option is:
"If the null hypothesis is true, then the probability of getting a test statistic that is as or more extreme than the calculated test statistic of 1.23 is 0.1093. This result is not surprising (or considered unusual) and could easily happen by chance"
Suppose that you have $100. You have two options for investing your money.
Option 1: Increase by $10 each year
Year
Amount
1
100
110
Type:
a =
b =
Answer:
Option One:
type : linear growth
a : 120
b : 130
Option 2:
type: linear growth
d : 121
e : 133
Step-by-step explanation:
its right on EDG 2020
Option One:
type: linear growth
a: 120
b: 130
Option 2:
type: linear growth
d: 121
e: 133
What is linear and exponential growth?Linear growth occurs with the aid of including an equal amount in each unit of time. An exponential increase happens while a preliminary population will increase by the same percent or issue over the same time increments or generations.
What is the distinction between linear and exponential?Linear and exponential relationships vary within the way the y-values change whilst the x-values increase with the aid of a steady quantity: In linear dating, the y-values have identical variations. In an exponential relationship, the y-values have identical ratios.
Learn more about Linear growth here: brainly.com/question/4025726
#SPJ2
When dividing 336 by the natural number n> 10, the remainder is 2. Then the remainder obtained by dividing 2007 by n is
Answer:
3
Step-by-step explanation:
336 / n = k + 2/n, where k is an integer
336 = kn + 2
334 = kn
2007 / n
(2004 + 3) / n
(334×6 + 3) / n
334×6/n + 3/n
6k + 3/n
The remainder is 3.
Solve 2x2 – 6x + 10 = 0 by completing the square.
Answer: x = 6.32 or -0.32
Step-by-step explanation:
2x² - 6x + 10 = 0
No we divide the expression by 2 to make the coefficient of x² equals 1
We now have
x² - 3x + 5 = 0
Now we remove 5 to the other side of the equation
x² - 3x = -5
we add to both side square of half the coefficient of x which is 3
x² - 3x + ( ⁻³/₂)² = -5 + (⁻³/₂)²
(x - ³/₂)² = -5 + ⁹/₄
Resolve into fraction
(x - ³/₂)² = ⁻¹¹/4
Take the roots of the equation
x - ³/₂ = √¹¹/₄
x - ³/₂ = √11/₂
x = ³/₂ ± 3.32/₂
= 3+ 3.32 or 3 - 3.32
= 6.32 or - 0.32
The average flight time from Seattle (SEA) to New York (JFK) is 4.3 hours. The distance between them is 2421 miles. The average flight time going the other way, JFK to SEA is 5.5 hours. The difference is due to the jet stream. Translate this situation to a system of equations and find the average speed of the jet and the average speed of the jet stream.
Answer:
Speed of the jet is 563.02 miles/hr
Speed of the jet stream is 122.83 miles/hr
Step-by-step explanation:
The average time for going from Seattle to New York is 4.3 hours
The distance between these places is 2421 miles
The average time for going back (impaired by jet stream) is 5.5 hours
If we designate the speed of the jet = v
and the speed of the jet stream = u
then on the return trip, the relative speed of the jet = v - u
Also, recall that distance = speed x time
For the going trip, the distance covered by the jet = 4.3 x v = 2421 miles
For the return trip, the distance covered by the jet = 5.5 x (v - u) = 2421 miles
= 5.5(v - u)
these translate into the following equation written below
4.3v = 2421 ....equation 1
5.5(v - u) = 2421 ....equation 2
solving, equation 1, we'll have
4.3v = 2421
v = 2421/4.3 = 563.02 miles/hr this is the speed of the jet
substituting the value of v into equation 2, we'll have
5.5(v - u) = 2421
5.5(563.02 - u) = 2421
3096.61 - 5.5u = 2421
3096.61 - 2421 = 5.5u
675.61 = 5.5u
u = 675.61/5.5
u = 122.83 miles/hr this is the speed of the jet stream
A small fruit basket with 6 apples and 6 oranges costs $7.50. A different fruit basket with 10 apples and 5 oranges costs $8.75. If x is the cost of one apple and y is the cost of one orange, the system of equations below can be used to determine the cost of one apple and one orange. 6x+6y=7.50 10x+5y=8.75 What is the cost of one apple?
Answer:
$0.50
Step-by-step explanation:
Let's remove common factors from the equations.
x + y = 1.25 . . . . divide the first equation by 62x +y = 1.75 . . . divide the second equation by 5Subtracting the first equation from the second, we find the cost of an apple:
(2x +y) -(x +y) = 1.75 -1.25
x = 0.50
The cost of one apple is $0.50.
how could you correctly rewrite the equation 4(5+3)=2(22-6) using the distributive property?
We can correctly rewrite the equation: 4(5+3) = 2(22-6) by distributing each side.
4(5+3) = 2(22-6)
4(8) = 2(16)
32 = 32
Once you finish distributing each side, you can check to see if it is equal on both sides.
In our case it is since they both equal 32 after distributing the terms.
Find the standard divisor to two decimal places (hundredth) for the given population and number of representative seats.
Population : 140,000
# seats : 9
A) 15,555.56
B) 17,055.56
C) 13,056
D) 14,055.56
E) 16,055
Answer:
A
Step-by-step explanation:
A divisor refers to a number by which another number is to be divided.
So what this question is practically asking us is that which of the values in the options to 2 decimal places is the result dividing the population by the number of seats
Thus we have;
140,000/9 = 15,555.55555 which to 2 decimal places is 15,555.56
1. Manuel quiere fabricar banderitas chilenas para venderlas en los partidos de la selección nacional. Si se demora 1 hora en hacer 45 banderitas y trabaja 5 horas diarias. ¿Cuántos días se demorará en fabricar 1800 banderitas?
Answer:
[tex]\large \boxed{\text{Eight days}}[/tex]
Step-by-step explanation:
1. Calculate the hours
[tex]\text{Hours} = \text{1800 flags} \times \dfrac{\text{1 h}}{\text{45 flags}} = \textbf{40 h}[/tex]
2. Calculate the days
[tex]\text{Days} = \text{40 h} \times \dfrac{\text{1 da}}{\text{5 h}} = \text{8 da}\\\\\text{It will take $\large \boxed{\textbf{eight days}}$ to make 4500 flags.}[/tex]
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model. The silver model requires 1 minute in a grinder and 3 minutes in a bonder. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder. Because of maintenance procedures, the grinder can be operated no more than 30 hours per week and the bonder no more than 50 hours per week. The company makes $5 on each silver pen and $7 on each gold pen. How many of each type of pen should be produced and sold each week to maximize profits?
Answer:
Optimal production = 600 gold pens
Revenue = 600*7 = $4200 gold pens
Step-by-step explanation:
The Fine Line Pen Company makes two types of ballpoint pens: a silver model and a gold model.
A. The silver model requires 1 minute in a grinder and 3 minutes in a bonder.
B. The gold model requires 3 minutes in a grinder and 4 minutes in a bonder.
Because of maintenance procedures,
C. the grinder can be operated no more than 30 hours per week and
D. the bonder no more than 50 hours per week.
The company makes
E. $5 on each silver pen and
F. $7 on each gold pen.
How many of each type of pen should be produced and sold each week to maximize profits?
Solution:
We will solve the problem graphically, with number of silver pens, x, on the x axis, and number of gold pens, y, on the y axis, i.e.
1. From A and C, the maximum number of silver pens
x <= 30*60 / 1 = 1800 and
x <= 50*60 /3 = 1000 ....................(1) bonder governs
2. from A & D, the maximum number of gold pens
y <= 30*60 / 3 = 600 .....................(2) grinder governs
y <= 50*60 / 4 = 750
3. From D,
x + 3y <= 30*60 = 1800 ...................(limit of grinder) ..... (3)
3x + 4y <= 50*60 = 3000 .................(limit of bonder) .......(4)
Need to maximize profit,
Z(x,y) = 5x+7y, represented by parallel lines y = -5x/7 + k such that all constraints of (3) and (4) are satisfied.
The maximum is obtained when Z passes through (360,480), i.e. at intersection of constraints (3) and (4). Using slope intercept form,
(y-480) = -(5/7)(x-360)
or y=-(5/7)x + (737+1/7) [the purple line] which violates the red line, so not a solution.
Next try the point (0,600)
(y-600) = -(5/7)(x-0), or
y = 600 - (5/7)x [the black line]
As we can see all point on the black (in the first quadrant) satisfy the constraints, so it is a feasible solution, and is the optimal solution, with a revenue of
Revenue = 600*7 = 4200 gold pens
The measure of ∠1 is 150°. What are the measures of ∠4, ∠3 and ∠2?
Answer:
∠1 is 150°
∠2 is 30°
∠3 is 150°
∠4 is 30°
Step-by-step explanation:
∠1 is vertically opposite to ∠3 so they are equal
360° - (150° + 150°) = 360° - 300° = 60°
∠2 and ∠4 must sum to 60°
Step-by-step explanation:
From the question
∠1 is opposite to ∠ 3 and vertically opposite angles are equal
So
∠1 = ∠ 3
That's
∠ 3 = 150°∠ 3 and ∠ 4 are on a straight line and angles on a straight line add up to 180°
So to find ∠4, subtract ∠3 from 180°
That's
∠ 4 = 180 - ∠ 3
∠ 4 = 180 - 150
∠ 4 = 30°Since ∠ 4 and ∠ 2 are opposite they are also equal
That's
∠ 4 = ∠ 2
Therefore
∠ 2 = 30°Hope this helps you