Answer:
Generally, fresh eggs will lie on the bottom of the bowl of water. Eggs that tilt so that the large end is up are older, and eggs that float are rotten.
Explanation:
b. i. In a hydraulic press, a force of 200N is applied to master piston of area 25cm. If
the press is designed to produce a force of 5000N, determine the area of the slave
piston.
(4marks)
Answer:
625 cm²
Explanation:
The pressure is the same on both pistons.
F/A = F/A
200 N / 25 cm² = 5000 N / A
A = 625 cm²
An arrow is launched from P with a speed Vi = 25m / s. Knowing that the target Q is 10 m high, and the arrow reaches it as shown in the figure, we are asked to determine the distance X. (g = 10m / s2).
Answer:
20 m
Explanation:
Given in the y direction:
Δy = 10 m
v₀ = 25 m/s sin 37° = 15.0 m/s
a = -10 m/s²
Find: t
Δy = v₀ t + ½ at²
10 m = (15.0 m/s) t + ½ (-10 m/s²) t²
10 = 15t − 5t²
2 = 3t − t²
t² − 3t + 2 = 0
(t − 1) (t − 2) = 0
t = 1 or 2
Since the projectile reaches Q before it reaches the peak, we want the lesser time, so t = 1.
Given in the x direction:
v₀ = 25 m/s cos 37° = 20.0 m/s
a = 0 m/s²
t = 1 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.0 m/s) (1 s) + ½ (0 m/s²) (1 s)²
Δx = 20 m
explain relative velocity.
Answer:
The relative velocity of an object A with respect to another object B.
Explanation:
The relative velocity of an object A with respect to another object B is the velocity that object A would appear to have to an observer situated on object B moving along with it.
ride and average of 15mph for 30 miles, how long does it take?
Answer:
2 hrs
Explanation:
time = distance ÷ speed
If the absolute pressure inside the bottom of a container open to the atmosphere and filled with an unknown substance is 300 Pa. And the height of the container is 800.0 cm. What is the density of the substance?
Answer:
2.5 kg/m³
Explanation:
Absolute pressure = gauge pressure + atmospheric pressure
P = Pg + Pa
The gauge pressure caused by the weight of a fluid is called the static pressure. It is equal to the density of the fluid × acceleration due to gravity × depth of the fluid,
Pg = ρgh
Therefore:
P = ρgh + Pa
300 Pa = ρ (10 m/s²) (8.00 m) + 100 Pa
ρ = 2.5 kg/m³
we can catch a rolling ball but not a flying bullet?? give reason
Answer:
yeah this statement is tru
Explanation:
it is because the speed of the bullet is more than the speed of rolling ball .so from this reason we cannot catch a bullet.
A bullet will be moving much faster than a rolling ball. Even seeing a bullet in flight requires it to be extremely low velocity.
Supposing we launched a very fast dart from the Space Shuttle, pointed in some direction away from any planet, so that it could travel beyond the solar system. What would it be most likely to hit first after traveling outward for a while
If we launched a very fast dart from the Space Shuttle in a direction away from any planet, Assuming the dart is traveling at an extremely high speed (close to the speed of light), it might eventually encounter a cloud of interstellar gas or dust.
What does the space contain?Space is mostly empty, consisting of a vacuum with very low density. However, space also contains various astronomical objects, such as stars, planets, moons, asteroids, comets, and other celestial bodies.
There is also interstellar gas and dust scattered throughout space, which can sometimes form clouds that give birth to new stars. Additionally, space is permeated by electromagnetic radiation, including cosmic rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves.
Space also contains various forms of energy, including dark energy, which is believed to be responsible for the accelerating expansion of the universe, and dark matter, which is thought to make up the majority of the matter in the universe but cannot be directly observed. Overall, space is a vast and complex environment that continues to fascinate astronomers and scientists.
Here in this question,
Therefore, if launched a very fast dart from the Space Shuttle, is pointed in some direction away from any planet, it could travel beyond the solar system. it would be most likely to hit a cloud of interstellar gas or dust. first after traveling outward for a while.
To know more about the universal gravitation constant click:
brainly.com/question/858421
#SPJ2
Which may result from an increase in friction?
A: decreased traction
B: increased speed
C: reduced wear and tear
D: generation of heat
Answer:
Its Generation of Heat. or "D"Explanation:
Friction causes generation of heat and causes increased wear and tear.
The friction is a resistive force and is related to heat energy, so an increase in friction results in the generation of heat, so option D is correct.
What is friction?Two solid objects cannot roll or slide over one another due to the force of friction. Although frictional forces can be useful, such as the traction needed to walk without slipping, they can also present a large degree of resistance to motion. Automobile engines need about 20% of their power to overcome frictional forces in moving parts.
The fundamental source of friction between metals appears to be the adhesion forces between the contact zones of the surfaces, which are always microscopically uneven. Friction is produced by shearing, these "welded" seams, and the rubbing action of the rougher, tougher surface against the softer, smoother surface.
The friction is a resistive force trying to oppose the force applied As friction is related to heat when we increase the heat, the friction increases, and vice versa.
To know more about Friction:
https://brainly.com/question/28356847
#SPJ6
I REALLY NEED HELP WITH PHYSICS!! HELPPP!! I’m giving 50 points :)))
Answer:
59%
Explanation:
Data obtained from the question include the following:
Input temperature = 495 K
Output temperature = 293 K
Efficiency =?
The efficiency of the car engine can be obtained by multiplying the ratio of the output temperature to the input temperature by 100 as shown below:
Efficiency = output /input x 100
Efficiency = 293/495 x 100
Efficiency = 59.1 ≈ 59%
Therefore, the efficiency of the car engine is approximately 59%
what nuclear fission and nuclear fusion have in common? A. They’re both used in power plants B. they have less mass than their reactants C. they start with the same reactants D. their products have more mass than their reactants
Answer:
B. they have less mass than their reactants
Explanation:
In both nuclear fission and nuclear fusion, the products have less mass than their reactants. So, option B is correct.
What is meant by nuclear reaction ?Nuclear reaction is defined as the reaction that involves the collision between one or more atomic nuclei and a highly energetic subatomic particle to produce one or more nuclei along with the emission of a large amount of energy.
Here,
Nuclear fission and fusion are two types of nuclear reactions that involves the production of large amount of energy from atomic nuclei.
Nuclear fission is the nuclear reaction in which a heavier nucleus is split into two or more lighter nuclei, under radioactive condition, with the release of a massive amount of energy.
Nuclear fusion is the nuclear reaction in which two or more lighter nuclei nuclei fuse together under radioactive condition and forms a heavier nuclei and by releasing a large amount of energy.
In both nuclear fission and nuclear fusion, there occurs a release of large amount of energy. This is because most of the mass of the reactants is converted into energy which is known as the mass-energy. So the products of these nuclear reactions will have lesser mass than their reactants.
Hence,
In both nuclear fission and nuclear fusion, the products have less mass than their reactants.
To learn more about nuclear reactions, click:
https://brainly.com/question/12786977
#SPJ3
Your car's 32.5 W headlight and 2.00 kW starter are ordinarily connected in parallel in a 12.0 V system. What power (in W) would one headlight and the starter consume if connected in series to a 12.0 V battery
Answer:
Explanation:
the resistance of a electrical device
R = V² / P where V is volt and P is power .
The devices are in parallel so same volt will apply on them
So R₁ = 12² / 32.5 = 4.431 ohm
R₂ = 12² / 2 x 10³ = .072 ohm
when they are in series
Common Current in them = 12 / 4.431 + .072
= 2.6649 A
power consumed by first device when they are in series
= current² x resistance
= 2.6649² x 4.431 = 31.46 W
power consumed by other
= 2.6649² x .072 = .511 W
When we double the distance between a source of light and the
surface on which it falls, the amount of illumination on the surface
decreases to
(what fraction) of the
original illumination.
The amount of lighting on a surface drops to (1/4) of the initial illumination when the distance between a light source and the surface it falls on is doubled.
What is illumination?The amount of light or luminous flux that falls on a surface is known as illumination. It is expressed as lux or lumens per square meter.
The square of the distance has an inverse relationship with the light intensity;
[tex]\rm I = \frac{1}{r^2}[/tex]
Where,
I is the light intensity
r is the distance
Let r is the distance and I is the sound intensity for case 2;
r' = 2r
[tex]\rm I' = \frac{1}{(2r)^2} \\\\ I' = \frac{1}{4r^2} \\\\ I' = \frac{I}{4}[/tex]
When we double the distance between a source of light and the surface on which it falls, the amount of illumination on the surface decreases to(1/2) of the original illumination.
Hence the value of the fraction is 1/4.
To learn more about the illumination refer;
https://brainly.com/question/20160684
#SPJ2
Integrated Concepts:_______.
(a) Calculate the ratio of the highest to lowest frequencies of electromagnetic waves the eye can see, given the wavelength range of visible light is from 380 to 760 nm.
(b) Compare this with the ratio of highest (20,000 Hz) to lowest (20 Hz) frequencies the ear can hear.
a). frequency = (speed) / (wavelength)
The speed of light is around 3 x 10⁸ m/s.
For 380 nm (violet light), frequency = (3 x 10⁸ m/s) / (380 x 10⁻⁹ m)
Frequency = 7.89 x 10¹⁴ Hz
For 760 nm (red light), frequency = (3 x 10⁸ m/s) / (760 x 10⁻⁹/s)
Frequency = 3.94 x 10¹⁴ Hz
The ratio is 2 .
That's 1 octave, or 0.3 of a decade.
b). The ratio of highest/lowest sounds is (20,000 Hz/20 Hz) = 1,000
That's 3 decades, or about 10 octaves.
===> Speaking logarithmically ( ! ), ears are sensitive to a range of sound frequencies that's 10 times as wide as the range of light frequencies that eyes can detect.
The region of magnetic influence around either pole of a magnet is called the magnetic field. The magnetic field line points out from the south magnetic pole and in from the north magnetic pole. This statement is:
Answer:
This statement is not true
Explanation:
Because The normal magnetic field line points out from the north magnetic pole and in from the south magnetic pole.
Answer:
false
Explanation:
hope this helps :)
Please answer this question
Explanation:
m = kg. v=m/s. g=m/s^2. h= m
>>1/2mv^2=mgh
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m>>kg m^2/s^2=kg m^2/s^2 the fraction 1/2 won't be able to make any changes to to the dimensional expression of energy i.e half of energy is still energy therefore you can neglect the number .
>>kg m^2/s^2=kg m^2/s^2
>>J= J
Complete all four parts. 15 points. Will give brainliest! Show work!
Answer:
A. 5.08 secs.
B. 10.16 secs.
C. 126.50 m.
D. 373.36 m
Explanation:
Data obtained from the question include the following:
Initial velocity (u) = 65 m/s
Angle of projection θ = 50°
A. Determination of the time taken to reach the peak.
Initial velocity (u) = 65 m/s
Angle of projection θ = 50°
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
t = u•Sine θ/g
t = (65 × Sine 50) /9.8
t = 5.08 secs.
B. Determination of the total time spent by the ball in air.
Time (t) taken to reach the peak = 5.08 secs.
Total time (T) spent by the ball in air =?
T = 2t
T = 2 × 5.08
T = 10.16 secs
Therefore, the total time spent by the ball in air is 10.16 secs.
C. Determination of the maximum height.
Initial velocity (u) = 65 m/s
Angle of projection θ = 50°
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (H) =..?
H = u²•Sine² θ / 2g
H = 65² × (Sine 50)² / 2 × 9.8
H = 4225 × (Sine 50)² /19.6
H = 126.50 m
Therefore, the maximum height reached by the ball is 126.50 m.
D. Determination of the horizontal distance travelled by the ball.
Initial velocity (u) = 65 m/s
Angle of projection θ = 50°
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (R) =..?
R = u²•Sine 2θ / g
R = 65² × Sine (2×30) / 9.8
R = (4225 × Sine 60) / 9.8
R = 373.36 m
Therefore, the horizontal distance travelled by the ball is 373.36 m
plssss answer it i am stuck in between..prove that pascal is a derived unit using the formulae...
Answer:
See below
Explanation:
We know that the unit of pressure is Pascal.
We have,
Pressure = [tex] \frac{force}{area} [/tex]
[tex] = \frac{m \times g}{l \times b} [/tex]
[tex] = \frac{kg \: \times \: {meter \: per \: second \: }^{2} }{ {m}^{2} } [/tex]
[tex] = kg \: {m}^{ - 1} \: {s}^{ - 2} [/tex]
The unit of pressure i.e Pascal is derived unit because it is expressed depending on more than two units i.e kg / [ m × s × s ]
Hope this helps..
best regards!!
Please help! Will give brainliest. 10 points. Show work!
Answer:
421.83 m.
Explanation:
The following data were obtained from the question:
Height (h) = 396.9 m
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
First, we shall determine the time taken for the ball to get to the ground.
This can be calculated by doing the following:
t = √(2h/g)
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 396.9 m
Time (t) =.?
t = √(2h/g)
t = √(2 x 396.9 / 9.8)
t = √81
t = 9 secs.
Therefore, it took 9 secs fir the ball to get to the ground.
Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:
Time (t) = 9 secs.
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
s = ut
s = 46.87 x 9
s = 421.83 m
Therefore, the horizontal distance travelled by the ball is 421.83 m
A diver releases an air bubble of volume 3.0 cm3 from a depth of 18 m below the surface of a lake, where the temperature is 9.0 ∘C. Part A What is the volume of the bubble when it reaches just below the surface of the lake, where the temperature is 22 ∘C?
Answer:
Explanation:
We shall apply gas law formula to get the solution .
P₁ V₁ / T₁ = P₂ V₂ / T₂
P₁ = 10⁵ + 18 x 10³ x 9.8 where 10⁵ Pa is atmospheric pressure at surface
= 1.764 x 10⁵ + 10⁵
= 2.764 x 10⁵
2.764 x 10⁵ x 3 / ( 273 + 9 ) = 10⁵ x V₂ / ( 273 + 22 )
V₂ = 8.67 cm³
The governor of state A earns $53,745 more than the governor of state B. If the total of their salaries is $289,405, find the salaries of each.
Answer:
Sa is the salary of the governor of state A
Sb is the salary of the governor of state A
"The governor of state A earns $53,745 more than the governor of state B. "
This means that:
Sa = Sb + $53,745
"If the total of their salaries is $289,405,"
means that:
Sa + Sb = $289,405
Then we have two equations:
Sa = Sb + $53,745
Sa + Sb = $289,405
Now, we can replace the first equation into the second equation:
(Sb + $53,745) + Sb = $289,405
2*Sb = $289,405 - $53,745 = $235,660
Sb = ($235,660)/2 = $117,830
and:
Sa = Sb + $53,745 = $117,830 + $53,745 = $171,575
Governor of state A earns: $171,575
Governor of state B earns: $117,830
A snail at position 3 cm moves to position 20 cm in 8 seconds.
Answer: 17cm.
Explanation:
The equation you're using is:
Δd = df - di
Which means the change in position is equal to the final position minus the starting position. In this case that works out to 20cm - 3cm = 17cm. We're only interested in how much the snail moved, not how long it took to move, so even though they give a time it actually doesn't matter for this question.
CAN YOU HELP ME IN THE FOLLOWING EQUATION THE SPEED IS V = A + BT. DETERMINE THE DIMENSIONS OF A AND B
Answer:
A = [m/s]
B = [m/s²]
Explanation:
Assuming that V has SI units of m/s, then A and BT must also have units of m/s.
A = [m/s]
BT = [m/s]
Since T has SI units of s:
B [s] = [m/s]
B = [m/s²]
PLEASEEE HELP, thank you :)
Answer:
The answer is B.
Explanation:
Given that the current (Ampere) in a series circuit is same so we can ignore it. We can assume that the total voltage is 60V and all the 3 resistance are different, 20Ω, 40Ω and 60Ω. So first, we have to find the total resistance by adding :
Total resistance = 20Ω + 40Ω + 60Ω
= 120Ω
Next, we have to find out that 1Ω is equal to how many voltage by dividing :
120Ω = 60V
1Ω = 60V ÷ 120
1Ω = 0.5V
Lastly, we have to calculate the voltage at R1 so we have to multiply by 20 (R1) :
1Ω = 0.5V
20Ω = 0.5V × 20
20Ω = 10V
To get an idea how big a farad is, suppose you want to make a 1.0-F air-filled parallel-plate capacitor for a circuit you are building. To make it a reasonable size, suppose you limit the plate area to 1.4 cm2 .
Part A
What would the gap have to be between the plates?
Express your answer using two significant figures and include the appropriate units.
Part B
Is this practically achievable?
Is this practically achievable?
a. yes
b. no
Answer:
The gap between the plates will be 1.2 x 10^-15 m
No, this is not practically achievable.
Explanation:
Capacitance = 1.0 F
area of plate = 1.4 cm^2 = 1.4/10000 m^2 = m^2
distance = ?
We use the equation
[tex]C[/tex] = [tex]\frac{A}{d}[/tex]*ε
C is the capacitance
where A is the area
d is the distance of separation of plates
ε is the permeability of free space = 8.854×10^-12 F⋅m−1
substituting values, we have
1 = [tex]\frac{0.00014}{d}[/tex]* 8.854×10^-12
distance between plates = 1.2 x 10^-15 m
This is not practically achievable in real life
If an oxygen molecule traveling at the rms speed bounces back and forth between opposite sides of a cubical vessel of 0.10 m on a side, what is the average force the molecule exerts on one of the walls of the container? Assume the molecule’s velocity is perpendicular to the walls it hits.
Answer:
1.25x10^-19N
Explanation:see attached file pls
Two long, straight wires are parallel and 10 cm apart. One carries a current of 2.0 A, the other a current of 5.0 A. If the two currents flow in opposite directions, what is the magnitude and direction of the force per unit length of one wire on the other
Answer:
The magnitude and direction of the force per unit length of one wire on the other is 2 x 10⁻⁵ N/m, attractive force.
Explanation:
Given;
distance between the two parallel wires, r = 10 cm = 0.1 m
current in the first wire, I₁ = 2A
current in the second wire, I₂ = 5 A
The force per unit length on each wire can be calculated as;
[tex]\frac{F}{L} = \frac{\mu_oI_1I_2}{2\pi r}[/tex]
where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
[tex]\frac{F}{L} = \frac{\mu_oI_1I_2}{2\pi r} \\\\\frac{F}{L} = \frac{4\pi*10^{-7}*2*5}{2\pi *0.1} \\\\\frac{F}{L} = 2 *10^{-5} \ N[/tex]/ m
The direction of the force between the two wires is attractive since the current in the two wires are in opposite direction.
Therefore, the magnitude and direction of the force per unit length of one wire on the other is 2 x 10⁻⁵ N/m, attractive force.
An open container contained 150g of lead carbonate. After heating for 5 hours, the contents of the container were measured to have a mass of 98g.
How much mass was “lost” from the container? Where did it go?
Answer:
52 g was lost as carbon dioxide to the atmosphere
Explanation:
When lead carbonate is heated, it decomposes into two components:
1. Lead oxide
2. carbon dioxide
While the lead oxide remains a yellow solid in the heating container, the carbon dioxide escapes into the atmosphere as a gas. The equation of the reaction is as below:
[tex]PbCO_3_{(s)} --> PbO_{(s)} + CO_2_{(g)}[/tex]
Hence, if a 150 g lead oxide is heated in a container and the final mass is 98 g, it means 52 g (150 - 98) of the total mass has been lost as carbon dioxide to the atmosphere.
2. When backing straight or to the right: a. Position your right hand on the back of the passenger seat. b. Grip the steering wheel at the 12 o’clock position with your left hand. c. Move the wheel left or right in the direction in which you want the rear of the vehicle to go. d. All of the above
Answer:
Option d = all of the above.
Explanation:
This question is more of a driving lesson or tutorial Question and not that scientific, it is logical and the "rule" attached to reversing and driving that is operating of vehicles especially cars, trucks and so on.
All the options given in the Question from option 'a' to option 'c' are all correct when driving backwards that is reversing or backing . Driving backward(backing or reversing) is not as easy as during forward (drive mode).
=> " Position your right hand on the back of the passenger seat. Grip the steering wheel at the 12 o’clock position with your left hand"
REASON: FOR BALANCING.
=> " Move the wheel left or right in the direction in which you want the rear of the vehicle to go."
The above, given in the Question are all correct.
When backing straight or to the right, all of the mentioned options are correct and recommended practices are to Position your right hand on the back of the passenger seat. The correct option is option d.
a) Position your right hand on the back of the passenger seat: This is a technique used by some drivers to help them have a better sense of the vehicle's position and reference point while backing up.
b) Grip the steering wheel at the 12 o'clock position with your left hand: This hand position allows for better control and maneuverability of the steering wheel while backing up.
c) Move the wheel left or right in the direction in which you want the rear of the vehicle to go: This is the fundamental principle of steering while backing up. By turning the wheel in the desired direction, you can guide the rear of the vehicle in that direction.
Therefore, These practices can assist in improving control, visibility, and maneuverability while backing up, ensuring a safer and more effective backing maneuver. The correct option is option d.
To know more about the principle of steering:
https://brainly.com/question/29458022
#SPJ6
Help!
6. Assume a position vs time graph displays a horizontal line, what does this represent?
A. Constant Velocity
B. 0 Acceleration
if it is horizontal line, that means position is same but time is increasing.
velocity=0 . particle is not even moving
you (60 kg) are standing in a (500 kg) elevator that is moving upwards from a ground floor on a building what is the power rating of the motor that can lift this elevator if the elevator travels a distance of 20m upwards in 15 s
Explanation:
Power = work / time
Power = force × distance / time
P = (650 kg) (10 m/s²) (20 m) / (15 s)
P = 8667 W