Answer:
The answer is
[tex]y = \frac{4}{5} x - 6[/tex]
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
From the question
m / slope = 4/5
c / y intercept = - 6
Substituting the values into the above formula
We have the final answer as
[tex]y = \frac{4}{5} x - 6[/tex]
Hope this helps you
Answer:
the correct answer is C.
Step-by-step explanation:
i got it right on edge 2020
Can someone help me ASAP???!!
Answer:
25x ²−49y ²
Step-by-step explanation:
We need to find product of (5x+7)(5x−7y)
By using identity (a+b)(a−b)=a −b ²
We have a=5x,b=7y
Thus (5x+7y)(5x−7y)=(5x) ²−(7y)
let me know if it was helpful
25x² - 49y²
Step-by-step explanation:
To Find:
The product of (5x - 7y)(5 x + 7)
How to solve:
Just need to use the formula of a² - b² = (a+b)(a-b)
let's assume a = 5x and b = 7x
Solution:
(5x - 7y)(5 x + 7) = (5x)² - (7y)²
= 25x² - 49y²
Hence required answer is 25x² - 49y².
The number of people contacted at each level of a phone tree can be represented by f(x) = 3^x where x represents the level.
What is x when f(x) = 27?
A. X = 2; At level 2, 27 people will be contacted.
B. x = 24; At level 24, 27 people will be contacted.
C. x = 3; At level 3, 27 people will be contacted.
D. x = 9; At level 9,27 people will be contacted.
Answer:
3
Step-by-step explanation:
Answer:
c is the correct answer
Step-by-step explanation:
Graph this compound inequality: 2.5 < x < 4.5
-5 4
-3
-2
-1 0
+ ++ +
1 2 3 4 5
o
Drag a point to the number line.
Answer:
Please find the attached the required inequality graph
Step-by-step explanation:
Given that inequality is 2.5 ≤ x ≤ 4.5, we have;
The region in the given inequality is the region between 2.5 and 4.5 inclusive
Therefore, to represent 2.5 ≤ x ≤ 4.5 on the number line, we have;
A closed circle (representing the less than or equal to inequality symbol, showing inclusiveness) at 2.5, another closed circle at 4.5 (representing the less than or equal to inequality symbol, showing inclusiveness) and the region between 4.5 and 2.5 shaded.
What is 5,000 - 245( 30/2))?
Answer:
1,325
Step-by-step explanation:
30 /2
= 155,000 - 245(15)
= 5,000 - 3,675
= 1,325
Answer:
1,325
Step-by-step explanation:
The text classifies information systems as either operations or management support information systems. Which one of the following would not be classified as an operations support system?
A. Transaction processing systems
B. Process control systems
C. Enterprise collaboration systems
D. Decision support systems
Answer:
D. Decision support systems
Step-by-step explanation:
Operation Support System, sometimes referred to a group of computer programs that is used by the communications service provider for carrying out various operations or functions, such as monitoring, controlling, analyzing and managing a telephone or computer network.
It is often used by professionals such as Network planners, service designers, operations, architects and engineering teams in the service provider.
There are however, types of Operation Support System which are being used for different and specific purpose. They are classified into the following categories:
1. Transaction Processing Systems
2. Process control system
3. Enterprise collaboration system
4. Enterprise Resource
Hence, from the question above, the DECISION SUPPORT SYSTEM is not classified as Operation Support System.
3. In the diagram, PRST and PQWV are rectangles. Q, V
and U are midpoints of PR, PU and PT respectively.
Find the area of the shaded region.
======================================================
Work Shown:
A = area of trapezoid RSTU
A = height*(base1+base2)/2
A = ST*(UT+RS)/2
A = 14*(5+10)/2
A = 105 square cm
-----------------------
B = area of rectangle PQWV
B = length*width
B = WV*PV
B = 7*2.5
B = 17.5 square cm
If you're curious how I got PV = 2.5, you basically cut PT = 10 in half twice. So you go from 10 to 5, then from 5 to 2.5; which works because we have a bunch of midpoints.
-----------------------
C = total shaded area
C = A + B
C = 105 + 17.5
C = 122.5
According to the rational root theorem, which of the following are possible
roots of the polynomial function below?
F(x) = 6x3 - 7x2 + 2x + 8
Answer:
18- 14+8=3x
4+8=3x
12=3x
12/3=2x/3
x=4
Answer:
2/3, -8, -1/6, 4.
Step-by-step explanation:
Step-by-step explanation:
The rational root theorem states that if the leading coefficient is taken to be an and the constant coefficient is taken to be a0 the possible roots of the equation can be expressed as :
Now, from the given options, the possible choices can be :
A, B, C and E
D can be there because after taking any pair the rational root can't be 3
F can't be possible because an does't have 4 in its factors so denominator cannot be 4.
You have a standard number cube. What is the probability of rolling a number less than 3, and then rolling a prime number? A. 1/3 B. 1/2 C. 1/36 D. 1/6
Hey Mate !
Your Answer is given in the snip below !!
Please do mark me as brainliest !!!
(ANSWER= (D) [tex]\frac{1}{6}[/tex] )
Explanation
Answer:
You have a standard number cube.
What is the probability of rolling a number less than 3, and then rolling a prime number?
D. 1/6
Please help me!!!!!! I do not understand...
Answer:
the second one........the shape of the conic section os circle
Find the product. (5p + 2)2^
Answer:
25p^2 + 4 + 20p
Step-by-step explanation:
(5p + 2)^2 = (5p)^2 + (2)^2 + 2 × 5p × 2
= 25p^2 + 4 + 20p
What is the difference? StartFraction 2 x + 5 Over x squared minus 3 x EndFraction minus StartFraction 3 x + 5 Over x cubed minus 9 x EndFraction minus StartFraction x + 1 Over x squared minus 9 EndFraction StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction StartFraction (x + 5) (x + 4) Over x cubed minus 9 x EndFraction StartFraction negative 2 x + 11 Over x cubed minus 12 x minus 9 EndFraction StartFraction 3 (x + 2) Over x squared minus 3 x EndFraction
Answer:
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]First option is the correct option.
Step-by-step explanation:
[tex] \frac{2x + 5}{ {x}^{2} - 3x } - \frac{3x + 5}{ {x}^{3} - 9x } - \frac{x + 1}{ {x}^{2} - 9 } [/tex]
Factor out X from the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x( {x}^{2} - 9)} - \frac{x + 1}{ {x}^{2} - 9} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] , factor the expression
[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x(x - 3)(x + 3) } - \frac{x + 1}{(x - 3)(x + 3)} [/tex]
Write all numerators above the Least Common Denominators x ( x - 3 ) ( x + 3 )
[tex] \frac{(x + 3) \times (2x - 5) - (3x + 5) - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Multiply the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - (3x + 5) - x(x + 1)}{x(x - 3)(x + 3)} [/tex]
When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]
Distribute -x through the parentheses
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x }{x(x - 3)(x + 3)} [/tex]
Using [tex] {a}^{2} - {b}^{2} = (a + b)(a - b)[/tex] , simplify the product
[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x}{x( {x}^{2} - 9)} [/tex]
Collect like terms
[tex] \frac{ {x}^{2} + 7x + 15 - 5}{x( {x}^{2} - 9)} [/tex]
Subtract the numbers
[tex] \frac{ {x}^{2} + 7x + 10}{ x({x}^{2} - 9)} [/tex]
Distribute x through the parentheses
[tex] \frac{ {x}^{2} + 7x + 10}{ {x}^{3} - 9x} [/tex]
Write 7x as a sum
[tex] \frac{ {x}^{2} + 5x +2x + 10 }{ {x}^{3} - 9x } [/tex]
Factor out X from the expression
[tex] \frac{x(x + 5) + 2x + 10}{ {x}^{3} - 9x} [/tex]
Factor out 2 from the expression
[tex] \frac{x( x + 5) + 2(x + 5)}{ {x}^{3} - 9x } [/tex]
Factor out x + 5 from the expression
[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]
Hope this helps...
Best regards!!
The difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
The expression is given as:
[tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex]
Factorize the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x^2 - 9)} - \frac{x + 1}{x^2 - 9}[/tex]
Apply the difference of two squares to the denominators
[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x - 3)(x + 3)} - \frac{x + 1}{(x - 3)(x + 3)}[/tex]
Take LCM
[tex]\frac{(2x + 5)(x + 3) - 3x - 5 -x(x + 1) }{x(x - 3)(x + 3)}[/tex]
Expand the numerator
[tex]\frac{2x^2 +6x + 5x + 15 - 3x - 5 -x^2 - x }{x(x - 3)(x + 3)}[/tex]
Collect like terms
[tex]\frac{2x^2 -x^2 - x +6x + 5x - 3x+ 15 - 5 }{x(x - 3)(x + 3)}[/tex]
Simplify
[tex]\frac{x^2+7x+ 10 }{x(x - 3)(x + 3)}[/tex]
Factorize the numerator
[tex]\frac{(x+5)(x+ 2) }{x(x - 3)(x + 3)}[/tex]
Expand the denominator
[tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Hence, the difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/2972832
please help ASAP. Which statement below is NOT true for the graph of a quadratic function? a) the axis of symmetry intersects the parabola at the vertex b) when the coefficient of x^2 is positive, the vertex of the parabola is a minimum point c)The vertex of a parabola is its highest or lowest level d) the parabola is symmetrical about the y-axis
Answer:
Step-by-step explanation:
All of these statements about a vertical parabola with known vertex are true.
The statement which is not always true about the graph of a quadratic function is option d) the parabola is symmetrical about the y-axis.
What is Parabola?A parabola is a open U shaped curve on a plane where all the points on the curve will be at an equal distance from a fixed point called focus and a fixed line called directrix.
Vertex of a parabola is the point where the parabola intersects with it's line of symmetry. So the vertex will always lie at the maximum point or the minimum point.
Axis of symmetry is the line that passes through the vertex of a parabola.
Graph of the quadratic equation will always be a parabola.
When the coefficient of x² is positive, then the vertex of the parabola will be at a minimum point and if the coefficient is negative, then the vertex will be at a maximum point.
The parabola is symmetrical to y axis only if the vertex of the parabola lies on the Y axis. So it will not be always true.
Hence the statement the parabola is symmetrical about the y-axis is not always true.
Learn more about Parabola here :
https://brainly.com/question/1440592
#SPJ3
Audrey charges a flat fee of $4 for each delivery plus a certain amount,in dollars per mile, for each mile she drives. For a distance of 30 miles, Curtis and Audrey charge the same amount
HELP ME PLEASEEEE! Thank you
Answer:
A. Yes
B. Yes
C. No
Step-by-step explanation:
We can substitute each value in to the equation and see if the sides match up. Let's start with a.
[tex]4\cdot(2)-3 = -2\cdot(2)+9\\8-3 = -4+9\\5 = 5[/tex]
So, n = 2 works for equation a. Let's try B.
[tex]9\cdot(\frac{10}{3}) - 19 = 3\cdot(\frac{10}{3}) + 1\\\\\\\frac{90}{3} -19 = \frac{30}{3} + 1 \\ 30 - 19 = 10 + 1\\11 = 11[/tex]
So, m = [tex]\frac{10}{3}[/tex] works for B. Now let's try C.
[tex]3(30+8) = 2\cdot(30)-6\\3(38) = 60-6\\114 \neq 54[/tex]
So y = 30 doesn't work for C.
Hope this helped!
If –3 + i is a root of the polynomial function f(x), which of the following must also be a root of f(x)?
Answer:
Step-by-step explanation:
REcall that f(x) is a polynomial whose one of its roots is -3+i. The fundamental algebra theorem states that any polynomial of degree n has n complex roots. In the real case, it can be also interpreted as any polynomial can be factored in factors of degree at most 2.
Consider that given a polynomial of degree 2 of the form [tex]ax^2+bx+c[/tex] the solutions are given by
[tex] x = \frac{-b \pm \sqrt[]{b^2-4ac}}{2a}[/tex]
In this case, the fact that x is real or complex depends on the number [tex]b^2-4ac[/tex] which is called the discriminant. When this number is negative, we have that x is a complex root. Let say that [tex]b^4-4ac<0[/tex] and that [tex]\sqrt[]{b^4-4ac}=di[/tex], so the roots are given by
[tex] x_1 = \frac{-b + di}{2a}, x_2 = x_1 = \frac{-b - di}{2a}[/tex]
this means that, whenever we have a complex root, the other root is the complex conjugate. Recall that the complex conjugate of a complex number of the form a+bi is obtained by changing the sign of the imaginary part, that is a-bi.
So, in our case since -3+i is a root, then -3-i necessarily is another root.
If -3 + i is a root then -3 - i is too.
Therefore, the answer is -3 - i
heLp would be appreciated for the image below :))
Answer:
A
Step-by-step explanation:
The line from the vertex to the base is a perpendicular bisector and divides the isosceles triangle into 2 right triangles.
Using Pythagoras' identity in either of the 2 right triangles, then
([tex]\frac{1}{2}[/tex] x )² + 3² = ([tex]\sqrt{45}[/tex] )²
[tex]\frac{1}{4}[/tex] x² + 9 = 45 ( subtract 9 from both sides )
[tex]\frac{1}{4}[/tex] x² = 36 ( multiply both sides by 4 to clear the fraction )
x² = 144 ( take the square root of both sides )
x = [tex]\sqrt{144}[/tex] = 12 → A
Which equation represents a line that is perpendicular to line FG? A. y=-1/2x+5 B. y=1/2x+2 C. y=-2x-3 D. y=2x-6
The equation of line which is perpendicular to the line FG is
y = -2x -3.
What is equation of line?
The equation of line is an algebraic form of representing the set of points, which together form a line in a coordinate system.
Formula for finding the equation of line from two points [tex](x_{1} ,y_{1} ) and (x_{2}, y_{2} )[/tex][tex](y -y_{1}) = \frac{y_{2}-y_{1} }{x_{2} -x_{1} } (x-x_{1} )[/tex]
What is the slope of two perpendicular lines?If [tex]m_{1}[/tex] be the slope of one line, then the slope of the perpendicular line is [tex]\frac{-1}{m_{1} }[/tex].
What is the slope intercept form of a line ?The slope intercept form of the line is given by y = mx + b
Where, m is the slope of a line.
According to the given question
We have a line FG and the coordinates of points F and G are (-5,1) and (9,8) respectively.
Therefore, the slope of the line FG = [tex]\frac{8-1}{9+5}=\frac{7}{14} =\frac{1}{2}[/tex]
⇒ The slope of the line which is parallel to line FG is -2
Now, from the given option of the equation of line , y = -2x -3 has a slope of -2 .
Hence, the equation of line which is perpendicular to the line FG is
y = -2x -3.
Learn more about the equation of a perpendicular line here:
https://brainly.com/question/20712656
#SPJ2
What is the approximate angle between two position vectors if their terminal points are (5, -2) and (7, 3)?
Hi,
Answer:
[tex]Angle=\frac{pi}{4}[/tex] = π/4 = 45°
Have a good day.
A television set costs $350 cash. When bought on hire purchse, a deposit of $35 is required, followed by 12 monthly payments of $30. How much is saved by paying cash?
Answer:
$45
Step-by-step explanation:
find the hire purchase price: 12 months x $30 = $360 + $35 deposit = $395
difference: 395 - 350 = $45
verify the trigonometric identity: tan(2π - x) = tan(-x)
Answer:
See Below
Step-by-step explanation:
Taking Right Hand Side to verify the identity:
tan ( 2π - x)
Resolving Parenthesis
tan 2π + tan (-x)
We know that tan 2π = 0
0 + tan (-x)
=> tan(-x) = Left Hand Side
Hence Proved
Answer:
[tex]\boxed{ \sf {view \: explanation}}[/tex]
Step-by-step explanation:
[tex]\Rightarrow \sf tan ( 2\pi - x)=tan(-x)[/tex]
[tex]\sf Apply \ distributive \ law.[/tex]
[tex]\Rightarrow \sf tan (2\pi) + tan (-x) =tan(-x)[/tex]
[tex]\sf Apply : tan(2\pi) =0[/tex]
[tex]\Rightarrow \sf 0 + tan (-x) =tan(-x)[/tex]
[tex]\Rightarrow \sf tan (-x) =tan(-x)[/tex]
[tex]\sf Hence \ verified.[/tex]
(a) use the pythagorean theorem to determine the length of the unknown side of the triangle, (b) determine the perimeter of the triangle, and (c) determine the area of the triangle. the figure is not drawn to scale.
the length of the unknown side is ____
the perimeter of the triangle is ____
the area of the triangle is ___
Answer/Step-by-step explanation:
a. Unknown side, b, using the Pythagorean theorem is solved as shown below.
[tex] b^2 = c^2 - a^2 [/tex]
[tex] b^2 = 45^2 - 27^2 [/tex]
[tex] b^2 = 1,296 [/tex]
[tex]b = \sqrt{1,296}[/tex]
[tex] b = 36 [/tex]
Unknown side, b, = 36 km
b. Perimeter of the triangle = sum of all the sides of the ∆ = [tex] 36 + 45 + 27 [/tex]
[tex] perimeter = 108 km [/tex]
c. Area of triangle = ½*base*height
where,
Base = 36 km
Height = 27 km
[tex] Area = \frac{1}{2}*36*27 [/tex]
[tex] Area = 18*27 [/tex]
[tex] Area = 486 km^2 [/tex]
How many terms are in the expression shown?
2n + 5 – 3p + 4q
1
2
3
4
Step-by-step explanation: A term can be a number, a variable, or a number times one or more variables.
So in this expression, the terms are +2n, +5, -3p, and +4q.
This means that there are 4 terms.
The answer is D - 4 :)
A smaller number is 3 less than half a larger number. The larger number is 10 times 1 less than the smaller number. Let x represent the smaller number, and let y represent the larger number. Which equations can be used to model the situation? Check all that apply. x = one-half y minus 3 2 x minus y = negative 6 2 x minus y = negative 3 x = one-half (y minus 3) y = 10 (x minus 1)
Answer: x=one-half y minus
Step-by-step explanation:
Answer:
x=1/2 y-3
Step-by-step explanation:
Instructions: Find the missing side. Round your answer to the
nearest tenth
Answer:
x = 64Step-by-step explanation:
To find x we use tan
tan∅ = opposite / adjacent
From the question
The adjacent is x
The opposite is 30
So we have
tan 25° = 30/x
x tan 25 = 30
Divide both sides by tan 25
x = 30/tan 25
x = 64.34
x = 64 to the nearest tenth
Hope this helps you
Gemma wants to draw a triangle with side lengths of 4 inches, 12 inches, and 17 inches. Which statement is true? This triangle exists because the sum of any two side lengths is greater than the length of the third side. This triangle exists because the sum of 4 and 12 is less than 17. This triangle does not exist because the sum of any two side lengths is greater than the length of the third side. This triangle does not exist because the sum of 4 and 12 is less than 17.
Answer:
The triangle inequality states that the sum of the lengths of the two shortest sides of a triangle must be greater than the length of the largest side. Because 4 + 12 > 17 is not a true statement, the answer is "This triangle does not exist because the sum of 4 and 12 is less than 17."
Answer:
This triangle does not exist due to the fact that the sum of 4 and 12 is less than 17
Step-by-step explanation:
The triangle formaction rule states that the 2 smaller sides must be able to combine and be greater than the greatest side.
Triangle
Sides - 3, 4, 5
3+4=7
Meaning the two smaller sides add up to because greater than 5.
Non-Triangle
Sides - 5, 6, 13
5+6=11
This means that this is not a triangle because the smaller sides ‘5 and 6’ do not add up to become greater than 13.
Gemma’s Triangle
Sides - 4, 12, 17
4+12=16
Hence, Gemma‘s figure is not a triangle because the 2 smaller sides ‘4 and 12’ don‘t add up to be greater than 17.
Calculate the shaded region
。☆✼★ ━━━━━━━━━━━━━━ ☾
First find the area of the sector.
For that, use this equation:
area = [tex]\frac{x }{360} * \pi r^{2}[/tex]
where 'x' is the angle and 'r' is the radius
Sub the values in
area = [tex]\frac{56}{360} * \pi15^2[/tex]
Solve:
area = [tex]35\pi[/tex]
It is easier to keep it in terms of pi until the end
Now, calculate the area of the triangle within the sector
area = 1/2 ab x sinC
where 'a' and 'b' are the radius (side lengths) and C is the angle
thus,
area = 1/2(15 x 15) x sin(56)
area = 93.27 (to 2 d.p)
Now subtract the area of the triangle from the area of the sector
[tex]35\pi[/tex] - 93.27 = 16.6857
This would give you a final answer of 16.69 units^2
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
In a school, half of the 300 students saw Zootopia, 180 students saw Finding Dory, and 45 students did not see either movie. How many students saw both movies?
Answer:
150
Step-by-step explanation:
Answer:
150 = half of 300
± 180
230
soooo 230 students
Step-by-step explanation:
Solve for x. 3 1 2 140
Answer:
Hey there!
Angle QRS is 70, and since it is located on the circle, we have a useful formula. If 141x-1 is called y, then 70 is half of that.
Thus, we have 141x-1=140
141x=141
x=1
Hope this helps :)
Andrew's bicycle has tires with a radius of 7 inches. What is the area of one of the bicycle tires, in terms of π?
Answer:
49π
Step-by-step explanation:
The formula for the area of a circle is,
[tex]\pi r^2[/tex]
If the radius is 7 inches we need to plug that in for r in the formula.
π(7)^2
7*7 = 49
Thus,
the area in terms of pi is 49π.
Hope this helps :)
Answer:
49πStep-by-step explanation:
[tex]r = 7\\A = ?\\A =\pi r^2\\A =\pi7^2\\A = 49\pi[/tex]
evaluate 1/2^-2x^-3y^5 for x=2 and y=-4
Answer:
[tex] - \frac{1}{32} [/tex]Step-by-step explanation:
Given,
x = 2
y = - 4
Now, let's solve:
[tex] \frac{1}{ {2}^{ - 2} \: {x}^{ - 3} \: {y}^{5} } [/tex]
plug the values
[tex] \frac{1}{ {2}^{ - 2} \: {(2)}^{ - 3} \: {( - 4)}^{5} } [/tex]
A negative base raised to an odd power equals a negative
[tex] \frac{1}{ {2}^{ - 2} \times {2}^{ - 3} \times {( - 4}^{5}) } [/tex]
Determine the sign of the fraction
[tex] - \frac{1}{ {2}^{ - 2} \times {2}^{ - 3} \times {4}^{5} } [/tex]
Write the expression in exponential form with a base of 2
[tex] - \frac{1}{ {2}^{ - 2} \times {2}^{ - 3} \times {2}^{10} } [/tex]
Calculate the product
[tex] - \frac{1}{ {2}^{5} } [/tex]
Evaluate the power
[tex] - \frac{1}{32} [/tex]
Hope this helps...
Best regards!!