Answer:
[tex]\boxed{-25x-y}[/tex]
[tex]\boxed{-p^2q +5pq^2}[/tex]
Step-by-step explanation:
[tex](-15x+6y)-(10x+7y)[/tex]
Distribute negative sign.
[tex]-15x+6y-10x-7x[/tex]
Combine like terms.
[tex]\boxed{-25x-y}[/tex]
[tex]2pq(p+q)- (3pq(p-q))[/tex]
Expand brackets.
[tex]2p^2 q+2pq^2 -(3p^2q-3pq^2)[/tex]
Distribute negative sign.
[tex]-3p^2q+3pq^2+2p^2q+2pq^2[/tex]
Combine like terms.
[tex]\boxed{-p^2q +5pq^2}[/tex]
Answer:
a. -25x - yb. pq ( - p + 5q )Step-by-step explanation:
a.
[tex] - 15x + 6y - (10x + 7y)[/tex]
When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression
[tex] - 15x + 6y - 10x - 7y[/tex]
Collect like terms
[tex] - 15x - 10x + 6y - 7y[/tex]
[tex] - 25x - y[/tex]
b.
[tex]2pq(p + q) - 3pq(p - q)[/tex]
Factor out pq from the expression
[tex]pq(2(p + q) - 3(p - q))[/tex]
Distribute 2 through the parentheses
[tex]pq \: (2p + 2q - 3(p - q)[/tex]
Distribute -3 through the parentheses
[tex]pq \: (2p + 2q - 3p + 3q)[/tex]
Collect like terms
[tex]pq( - p + 5q)[/tex]
Hope this helps...
Best regards!!
im not sure wether to replace the minus signs with addition, so if you could help me that would be nice :) 1.2y+4.5-3.4y-6.3
Answer:
-2.2y - 1.8
Step-by-step explanation:
We are to simplify the expression:
1.2y + 4.5 - 3.4y - 6.3
Collect like terms:
1.2y - 3.4y + 4.5 - 6.3
Simplify:
-2.2y - 1.8
That is the answer.
Factorize: 14x^6-45x^3y^3-14y^6
Answer:
(7x^3+2y^3)(2x^3−7y^3)
3 ( 1 - 20 ) + 10 = 4
Answer:
3(1 - 20) + 10 = 4
3 * (-19) + 10 = 4
-57 + 10 = 4
-47 = 4
Since the two are not equal, this statement is false/invalid.
Hope this helps!
Assume that the random variable X is normally distributed, with mean p = 100 and standard deviation o = 15. Compute the
probability P(X > 112).
Answer:
P(X > 112) = 0.21186.
Step-by-step explanation:
We are given that the random variable X is normally distributed, with mean [tex]\mu[/tex] = 100 and standard deviation [tex]\sigma[/tex] = 15.
Let X = a random variable
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean = 100
[tex]\sigma[/tex] = standard deviaton = 15
Now, the probability that the random variable X is greater than 112 is given by = P(X > 112)
P(X > 112) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{112-100}{15}[/tex] ) = P(Z > 0.80) = 1- P(Z [tex]\leq[/tex] 0.80)
= 1 - 0.78814 = 0.21186
The above probability is calculated by looking at the value of x = 0.80 in the z table which has an area of 0.78814.
The net of a solid is shown below:
Net of a square pyramid showing 4 triangles and the square base. The square base has side lengths of 3 inches. The height of each triangle attached to the square is 6 inches. The base of the triangle is the side of the square.
What is the surface area of the solid?
18 square inches
27 square inches
36 square inches
45 square inches
Answer:
The answer is 45 inches².
Step-by-step explanation:
First, you have to find the area of each triangle:
[tex]area = \frac{1}{2} \times base \times height[/tex]
[tex]let \: base = 3 \\ let \: height = 6[/tex]
[tex]area = \frac{1}{2} \times 3 \times 6[/tex]
[tex]area = \frac{1}{2} \times 18[/tex]
[tex]area = 9 \: \: {inches}^{2} [/tex]
Assuming that the formula for surface area of pyramid is Surface area = base area(area of square) × 4(area of triangle):
[tex]base \: area = 3 \times 3 = 9[/tex]
[tex]area \: of \: triangle = 9[/tex]
[tex]s.a = 9 + 4(9)[/tex]
[tex]s.a = 9 + 36[/tex]
[tex]s.a = 45 \: \: {inches}^{2} [/tex]
how many cups in 34 gallons
Answer:
544 cups
Step-by-step explanation:
1 gallon consists of about 16.0047 cups, 34x16 is 544
find the value of b here
Answer:
Step-by-step explanation:
We will start with the angle that measures 57 degrees. This angle is supplementary to the one next to it coming off the straight line. 180 - 57 = 123.
The rule for quadrilaterals is that same side angles are supplementary, so the angle next to the 123-degree angle (to the immediate left of that angle 123) is 57. THAT 57-degree angle is supplementary to angle b, so angle b = 180 - 57 which is 123. So C is your answer.
Answer:
do you think you can send me the work for the program
Step-by-step explanation:
i got 1 day left and im not close to finishing it please help me out please respond with any way to contact you thanks
The graph of f(x) = x2 has been shifted into the form f(x) = (x − h)2 + k: a parabola with the vertex 4, 1 What is the value of k?
Answer:
k = 1
Step-by-step explanation:
The equation of a parabola in vertex form is
f(x) = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (4, 1 ), thus k = 1
NEED HELP NOWWW Which of the following is a monomial?
O A. 9/x
O B. 20x - 14
O C. 11 x^2
D. 20^9 - 7x
Answer: C
Step-by-step explanation:
A monomial is a expression where in it is x to the power of something, and x cannot be a denominator
Please answer this in two minutes
Answer:
u = [tex]\sqrt{6}[/tex].
Step-by-step explanation:
This is a 45-45-90 triangle.
That means that there are two side lengths with lengths of x, and a hypotenuse with a length of xsqrt(2). We can then set up a proportion.
[tex]\frac{1}{\sqrt{3} } =\frac{\sqrt{2} }{u}[/tex]
1 * u = [tex]\sqrt{3} * \sqrt{2}[/tex]
u = [tex]\sqrt{6}[/tex].
Hope this helps!
What is the least number of colors you need to correct color in the sections of these pictures so that no two touching sections are the same color?
You would assume that in this figure, the number of colored sections with which are not colored with respect to a " touching " colored section, would be half of the total colored sections. However that is not the case, the sections are not alternating as they still meet at a common point. After all, it notes no two touching sections, not adjacent sections. Their is no equation to calculate this requirement with respect to the total number of sections.
Let's say that we take one triangle as the starting. This triangle will be the start of a chain of other triangles that have no two touching sections, specifically 7 triangles. If a square were to be this starting shape, there are 5 shapes that have no touching sections, 3 being a square, the other two triangles. This is presumably a lower value as a square occupies two times as much space, but it also depends on the positioning. Therefore, the least number of colored sections you can color in the sections meeting the given requirement, is 5 sections for this first figure.
Respectively the solution for this second figure is 5 sections as well.
What is the answer to 85% of 62
Answer:
52.7
Step-by-step explanation:
Of means multiply
85% * 62
.85 * 62
52.7
Turn the percentage into a decimal.
85% = 0.85
Multiply.
62 * 0.85 = 52.7
So, 52.7 is 85% of 62.
Best of Luck!
In a recent year 5 out of 6 movies cost between $50 and $99 million to make. At this rate, how many movies in a year with 687 new releases would you predict to cost between $50 and $99 million to make
Answer:
573 movies
Step-by-step explanation:
Here, we have 5 out of 6 movies having that cost
Therefore the rate we will be working with is 5/6
Now there are 687 new releases, the value that cost the given price range will be; 5/6 * 687 = 572.5 which is approximately 573
a man buys a dozen cameras for $1800.He sells them at a profit of $36 each.Express his profit as a percentage of his selling price.
Step-by-step explanation:
The solution is the document i sent please check through.
the sum of the first term of an ap is 240 and the sum of the next 4 term is 220 find the first term of the ap
Answer:
The common difference is -5/4
T(n) = T(0) - 5n/4,
where T(0) can be any number. d = -5/4
Assuming T(0) = 0, then first term
T(1) = 0 -5/4 = -5/4
Step-by-step explanation:
T(n) = T(0) + n*d
Let
S1 = T(x) + T(x+1) + T(x+2) + T(x+3) = 4*T(0) + (x + x+1 + x+2 + x+3)d = 240
S2 = T(x+4) + T(x+5) + T(x+6) + T(x+7) = 4*T(0) + (x+5 + x+6 + x+7 + x+8)d = 220
S2 - S1
= 4*T(0) + (x+5 + x+6 + x+7 + x+8)d - (4*T(0) + (x+1 + x+2 + x+3 + x+4)d)
= (5+6+7+8 - 1 -2-3-4)d
= 4(4)d
= 16d
Since S2=220, S1 = 240
220-240 = 16d
d = -20/16 = -5/4
Since T(0) has not been defined, it could be any number.
A circle has a radius of 21 inches. What is the length of the arc intercepted by a central angle that measures 4π/7 radians? Express the answer in terms of π .
Answer:
12π inches
Step-by-step explanation:
s = rθ
s = (21) (4π/7)
s = 12π
The length of the arc will be;
⇒ Arc = 37.68 inches
What is Circle?
The circle is a closed two dimensional figure , in which the set of all points is equidistance from the center.
Given that;
The central angle = 4π/7
And, A circle has a radius of 21 inches.
Now,
We know that in circle;
⇒ Arc = Radius × Angle
Substitute all the values, we get;
⇒ Arc = 21 × 4π/7
⇒ Arc = 3 × 4 × 3.14
⇒ Arc = 37.68 inches
Thus, The length of the arc will be;
⇒ Arc = 37.68 inches
Learn more about the circle visit:
https://brainly.com/question/1294687
#SPJ2
Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two sides
of this triangle?
O 5cm and 8 cm
O 6 cm and 7 cm
O 7 cm and 2 cm
8 cm and 9 cm
Answer:
Choice D - 8cm and 9cm.
Step-by-step explanation:
The other sides are not greater than 13.
A: 5 + 8 = 13
B: 6 + 7 = 13
C: 7 + 2 = 9
However, D is greater than 13 and is the correct answer.
D: 8 + 8 = 16.
Option d: 8 cm and 9 cm.
There is a theorem in mathematics stating:
" The sum of length of two sides of any triangle is greater than the rest third side"
According to that theorem, first three given options cant form the sides of the given triangle whose one side is 13 cm.
The 4th option has 8 cm and 9 cm for which we have:
8 + 9 > 13
Thus this option follows the theorem.
Hence fourth option is correct.
For more information, refer this link:
https://brainly.com/question/14444468
students enter school in the morning through doors on opposite sides of cafeteria. At Ms. Logrieco's door,35 students enter in the first 10 minutes. At Mr. Riley's door,22 students enter in the first 8 mins. If students continue to arrive at school at the same rate,how many students do you expect to be in the cafeteria after 24 minutes?
Ms. Logrieco's door: 35 students per 10 minutes
Mr. Riley's door: 22 students per 8 minutes
Time Frame: 24 minutes
35 x 2 = 70
35 x 2/5 = 14
70 + 14 = 84
22 x 3 = 66
84 + 66 = 150
Thus, we can expect for 150 students to be in the cafeteria after 24 minutes.
Evaluate w+(-x)-2/3 where w= 5/9 and x=4/3
Answer:
-1/24
Step-by-step explanation:
Plug in X and W
5/8 - 4/3 - 2/3.
Combine like terms.
5/8 - 2/3.
Solve.
-1/24
Answer:
- 2 1/10
Step-by-step explanation:
Please answer this question now
Answer:
e =7.1
Step-by-step explanation:
[tex]Hypotenuse = 10\\Opposite =e\\Adjacent =7\\\\Using\:Pythagoras\:Theorem\\Hypotenuse^2=Opposite^2+Adjacent^2\\10^2 =e^2 + 7^2\\100 =e^2+49\\100-49=e^2\\\\51 =e^2\\\sqrt{51} =\sqrt{e^2}\\ e = 7.141\\\\e = 7.1[/tex]
Consider the y-intercepts of the functions:
f(x) = |x – 1] + 2
g(x) =
(x + 3)
h(x) = (x + 1) -3
1
What is the ordered pair location of the greatest y-intercept of the three functions?
Answer:
+3, 0
Step-by-step explanation:
y-intercept for f(x) is when x = 0, so it is +1, 0
y-intercept for g(x) is when x = 0, so it is +3, 0
y-intercept for h(x) is when x = 0, so it is -2, 0
The y-intercept of a function is the point where x = 0.
The ordered pair that represents the greatest y-intercept is (0,3)
The functions are given as:
[tex]\mathbf{f(x) = |x - 1| + 2}[/tex]
[tex]\mathbf{g(x) = (x + 3)}[/tex]
[tex]\mathbf{h(x) = (x + 1) - 3}[/tex]
Set x = 0, and solve the functions
[tex]\mathbf{f(x) = |x - 1| + 2}[/tex]
Substitute 0 for x
[tex]\mathbf{f(0) = |0 - 1| + 2}[/tex]
[tex]\mathbf{f(0) = |- 1| + 2}[/tex]
Remove absolute brackets
[tex]\mathbf{f(0) = 1 + 2}[/tex]
[tex]\mathbf{f(0) = 3}[/tex]
[tex]\mathbf{g(x) = (x + 3)}[/tex]
Substitute 0 for x
[tex]\mathbf{g(0) = (0 + 3)}[/tex]
[tex]\mathbf{g(0) = 3}[/tex]
[tex]\mathbf{h(x) = (x + 1) - 3}[/tex]
Substitute 0 for x
[tex]\mathbf{h(0) = (0 + 1) - 3}[/tex]
[tex]\mathbf{h(0) = 1 - 3}[/tex]
[tex]\mathbf{h(0) = - 2}[/tex]
Hence, the ordered pair that represents the greatest y-intercept is (0,3)
Read more about ordered pairs at:
https://brainly.com/question/3309631
How can 2182 be written as the sum of four consecutive whole numbers?
Answer:
544 + 545 + 546 + 547
explanation: if the numbers are consecutive whole numbers then it would be near the ¼ of the given number
Benjamin decides to treat himself to breakfast at his favorite restaurant. He orders chocolate milk that
costs $3.25. Then, he wants to buy as many pancakes as he can, but he wants his bill to be at most $30
before tax. The restaurant only sells pancakes in stacks of 4 pancakes for $5.50.
Let S represent the number of stacks of pancakes that Benjamin buys.
1) Which inequality describes this scenario?
Answer:
[tex]\bold {3.25+5.50S \le 30}[/tex] is the correct answer.
Step-by-step explanation:
Given that
Chocolate milk already ordered for the cost of $3.25.
Maximum bill that Benjamin wants = $30
Cost of a stack pancake = $5.50
Number of stacks of pancakes bought = S
It is given that all the money available is to be spent on 1 chocolate milk and S number of stacks of pancakes.
Cost of 1 pancake = $5.50
Cost of S number of stacks of pancakes = [tex]\text{Number of stacks of pancakes} \times \text{Cost of each pancake}[/tex]
i.e. [tex]S \times 5.50 = 5.50S[/tex]
So, total money spent = $3.25+5.50S
Now, this money should be lesser than or equal to $30 because maximum bill that Benjamin wants is $30.
So, the inequality can be written as:
[tex]\bold{3.25+5.50S \le 30}[/tex]
PLEASE HELP!! laboratory tests show that the lives of light bulbs are normally distributed with a mean of 750 hours and a standard deviation of 75 hours. find the probability that a randomly selected light bulb will last between 900 and 975 hours.
Answer:
P = 0.0215 = 2.15%
Step-by-step explanation:
First we need to convert the values of 900 and 975 to standard scores using the equation:
[tex]z = \frac{x - \mu}{\sigma}[/tex]
Where z is the standard value, x is the original value, [tex]\mu[/tex] is the mean and [tex]\sigma[/tex] is the standard deviation. So we have that:
standard value of 900: [tex]z = \frac{900 - 750}{75} = 2[/tex]
standard value of 975: [tex]z = \frac{975 - 750}{75} = 3[/tex]
Now, we just need to look at the standard distribution table (z-table) for the values of z = 2 and z = 3:
z = 2 -> p_2 = 0.9772
z = 3 -> p_3 = 0.9987
We want the interval between 900 and 975 hours, so we need the interval between z = 2 and z = 3, so we just need to subtract their p-values:
P = p_3 - p_2 = 0.9987 - 0.9772 = 0.0215
So the probability is 0.0215 = 2.15%
Answer:
2.35 babyyyyyyyyyyy
Step-by-step explanation:
Acellus sux
The cost of importing five dozen china dinner sets, billed at $32 per set, and paying a duty of 40%, is
Answer:
duty = 64
Total cost is 224
Step-by-step explanation:
First find the cost of the 5 sets
5 * 32 = 160
Then find the duty
160 * 40%
160 * .4 = 64
Add this to the cost of the sets
160+64 =224
Solve for p. Reduce any fractions to lowest terms. Don't round your answer, and don't use mixed fractions. -31p+79 > -59p+81
Answer:
The answer is
p > 1/14Step-by-step explanation:
-31p+79 > -59p+81
Group like terms
Send the constants to the right side of the expression and those with variables to the left side
That's
- 31p + 59p > 81 - 79
Simplify
We have
28p > 2
Divide both sides by 28
We have the final answer as
p > 1/14Hope this helps you
What’s a possible value of an integer that is less than 14 units from 29 but no more than or equal to 18
Answer:
15, 16, 17, 18
Step-by-step explanation:
29-14=15
15, 16, 17, 18 are less than or equal to 18
The radius of a cylindrical water tank is 5.5 ft, and it’s height is 10 ft. What is the volume of the tank?
Answer:
950.33 ft³
Step-by-step explanation:
The volume of a cylinder is denoted by: V = πr²h, where r is the radius and h is the height.
Here, the radius is r = 5.5 ft and the height is h = 10 ft. Plug these into the formula:
V = πr²h
V = π * 5.5² * 10 ≈ 950.33 ft³
The answer is thus 950.33 ft³.
~ an aesthetics lover
Which is the best description of the equivalency of the two expressions? Expression 1 Expression 2 5 x squared minus 2 x minus 4 + 6 x + 3 6 x squared minus 6 x + 6 minus x squared + 10 x minus 7 The two expressions are not equivalent because when x = 2, the two expressions do not have the same value. The two expressions are not equivalent because when they are simplified, they do not have the same coefficients for the x squared and x terms. They are equivalent because the sum of the constants is the same in both expressions. They are equivalent because when x = 2, the two expressions have the same value.
Answer:
The correct option is (D).
Step-by-step explanation:
The two expressions are:
[tex]\text{Exp}_{1}=5x^{2}-2x-4+6x+3\\\\\text{Exp}_{2}=6x^{2}-6x+6-x^{2}+10x-7[/tex]
On simplifying both the expressions we get:
[tex]\text{Exp}_{1}=5x^{2}+4x-1\\\\\text{Exp}_{2}=5x^{2}+4x-1[/tex]
Compute the value of both expressions for x = 2 as follows:
[tex]\text{Exp}_{1}=5(2)^{2}+4(2)-1=27\\\\\text{Exp}_{2}=5(2)^{2}+4(2)-1=27[/tex]
The value of both expressions are same for x = 2.
Thus, the correct option is:
"They are equivalent because when x = 2, the two expressions have the same value."
Answer:
d
Step-by-step explanation:
Martin took 16s to run 120m. What was his speed in m/s ?