write balanced half-reactions for the following redox reaction: 2co2(aq) 2no2(g) 2h2o(l)

Answers

Answer 1

This half-reaction, nitrogen in NO2 is reduced from an oxidation state of +4 to +2, and gains 4 electrons to become NO.

The coefficients in front of NO2, H+, electrons, and NO are chosen to balance the number of atoms and charge on both sides.

There are a couple of ways to approach balancing redox reactions, but one common method is the half-reaction method. In this method, the overall reaction is split into two half-reactions, one oxidation and one reduction, which are balanced separately and then combined to give the overall balanced reaction.

Here are the half-reactions for the redox reaction given:

Oxidation half-reaction: 2CO2(aq) → 4CO3^2-(aq) + 4e^-

In this half-reaction, carbon in CO2 is oxidized from an oxidation state of +4 to +6, and loses 4 electrons to become CO3^2-. The coefficient 2 in front of CO2 balances the number of carbon atoms on both sides, and the coefficient 4 in front of the electrons balances the charge.

Reduction half-reaction: 2NO2(g) + 4H+(aq) + 4e^- → 2NO(g) + 2H2O(l)

In this half-reaction, nitrogen in NO2 is reduced from an oxidation state of +4 to +2, and gains 4 electrons to become NO. The coefficients in front of NO2, H+, electrons, and NO are chosen to balance the number of atoms and charge on both sides.

Overall balanced reaction:

Adding the two half-reactions together, we can cancel out the electrons and get the balanced overall reaction:

2CO2(aq) + 2NO2(g) + 4H+(aq) → 4CO3^2-(aq) + 2NO(g) + 2H2O(l)

Learn more about half-reaction here:

https://brainly.com/question/10668307

#SPJ11


Related Questions

At constant pressure, the following reaction 2NO2(g)------>N2O4(g) is exothermic. the reaction (as written) isa) always spontaneousb) spontaneous at low temperatures, but not high temperaturesc) spontaneous at high temperatures, but not low temperaturesd)never spontaneouse) cannot tell

Answers

The correct answer is (c) spontaneous at high temperatures, but not low temperatures.At constant pressure, the spontaneity of a reaction is determined by the change in Gibbs free energy (∆G).

If ∆G is negative, the reaction is spontaneous and if it is positive, the reaction is non-spontaneous.

In the given reaction, 2NO2(g) ------> N2O4(g), the reaction is exothermic, which means that it releases heat.

This indicates that the products have lower energy than the reactants. However, this alone does not determine the spontaneity of the reaction. The change in entropy (∆S) also plays a role in determining the spontaneity.
In this case, the reaction involves a decrease in the number of moles of gas (2 moles of NO2 gas to 1 mole of N2O4 gas), which leads to a decrease in entropy (∆S<0). Thus, the spontaneity of the reaction depends on the temperature. At low temperatures, the decrease in entropy dominates and makes the reaction non-spontaneous (∆G>0). At high temperatures, the decrease in Gibbs free energy (∆G<0) due to the exothermic nature of the reaction dominates, making the reaction spontaneous. Therefore, the correct answer is (c) spontaneous at high temperatures, but not low temperatures.

learn more about reaction

https://brainly.com/question/29762834

#SPJ11

for the auto-ionization of water, δrh∘=5.58×104 j/mol. 2h2o(l)↽−−⇀h3o (aq) oh−(aq)kw=1.0×10−14 at 25∘c assuming that δrh∘ is constant over the temperature range 25–100°c, calculate kw at 52 ∘c.

Answers

The value of kw at 52°C is 8.3×10^-12.  The van't Hoff equation relates the change in equilibrium constant to the change in temperature.

ln(K2/K1) = -(ΔH°/R)[(1/T2) - (1/T1)]

where K1 and K2 are the equilibrium constants at temperatures T1 and T2, respectively, ΔH° is the standard enthalpy change, and R is the gas constant.

In this case, we want to find kw at 52°C, so we need to use the van't Hoff equation to calculate the equilibrium constant at 25°C and 52°C, and then use the equation kw = [H3O+][OH-] to find kw at 52°C.

First, let's calculate the equilibrium constant at 25°C (298 K) using the known value of kw:

kw = [H3O+][OH-] = 1.0×10^-14

[H3O+] = [OH-] = sqrt(kw) = 1.0×10^-7 M

The equilibrium constant expression for the auto-ionization of water is:

K = [H3O+][OH-]/[H2O]^2

At 25°C, we can assume that the concentration of water is 55.6 M (the density of water is 1 g/mL, and the molar mass of water is 18 g/mol), so:

K1 = (1.0×10^-7)^2/(55.6)^2 = 1.8×10^-16

Now we can use the van't Hoff equation to find the equilibrium constant at 52°C (325 K):

ln(K2/K1) = -(ΔH°/R)[(1/T2) - (1/T1)]

ln(K2/1.8×10^-16) = -(5.58×10^4 J/mol)/(8.314 J/(mol·K))[1/325 K - 1/298 K]

ln(K2/1.8×10^-16) = 17.49

K2/1.8×10^-16 = e^17.49

K2 = 2.6×10^-1

Finally, we can use the equilibrium constant to calculate kw at 52°C:

kw = [H3O+][OH-] = K[H2O]^2

kw = (2.6×10^-1)(55.6)^2

kw = 8.3×10^-12

Therefore, the value of kw at 52°C is 8.3×10^-12.

Learn more about temperature here:

https://brainly.com/question/12035620

#SPJ11

when deciding if a substituion reactoin is unimolecular or bimoleculrar the most important factor to consider is

Answers

When determining if a substitution reaction is unimolecular or bimolecular, the most important factor to consider is the rate-determining step of the reaction.

The rate-determining step is the slowest step in the reaction mechanism and the one that limits the overall rate of the reaction.

In an unimolecular substitution reaction, the rate-determining step involves only one molecule, typically the substrate itself. For example, in the case of an S<sub>N</sub>1 reaction, the rate-determining step involves the dissociation of the leaving group to form a carbocation intermediate. This step is independent of the concentration of the nucleophile and therefore the reaction rate depends only on the concentration of the substrate.

In contrast, in a bimolecular substitution reaction, the rate-determining step involves two molecules, typically the substrate and the nucleophile. For example, in the case of an S<sub>N</sub>2 reaction, the rate-determining step involves the simultaneous attack of the nucleophile on the substrate and the expulsion of the leaving group. This step is dependent on both the concentration of the substrate and the concentration of the nucleophile.

Therefore, to determine if a substitution reaction is unimolecular or bimolecular, it is important to consider the mechanism of the reaction and identify the rate-determining step. If the rate-determining step involves only one molecule, the reaction is likely to be unimolecular, whereas if the rate-determining step involves two molecules, the reaction is likely to be bimolecular.

Learn more about substitution reaction here:

https://brainly.com/question/10143438

#SPJ11

Which of the following species has a Lewis structure with a molecular geometry similar to SO3?Answers:a) NH3b) ICl3c) CO32-d) SO32-e) PCl3

Answers

The species with a Lewis structure that has a molecular geometry similar to SO3 is option (c) CO32-. SO3 has a trigonal planar geometry, meaning it has three electron domains around the sulfur atom with no lone pairs.

Similarly, CO32- has a trigonal planar geometry, with three electron domains around the central carbon atom and no lone pairs.
Option (a) NH3 has a trigonal pyramidal geometry, with three electron domains around the central nitrogen atom and one lone pair. Option (b) ICl3 has a T-shaped geometry, with three electron domains around the central iodine atom and two lone pairs. Option (d) SO32- has a trigonal planar geometry, with three electron domains around the central sulfur atom and one lone pair. Option (e) PCl3 has a trigonal pyramidal geometry, with three electron domains around the central phosphorus atom and one lone pair.
Overall, it is important to note that molecular geometry is determined by the number of electron domains around the central atom, which includes both bonding pairs and lone pairs of electrons.

learn more about  sulfur atom

https://brainly.com/question/2805594

#SPJ11

What is the percentage of SiO2 in a sample weighing 7.69 g if 3.27 g of SiO2 have been recovered?A)42.5 %B)52.0%C)60 %D)67%

Answers

The percentage of [tex]SiO_{2}[/tex] in a sample weighing 7.69 g if 3.27 g of [tex]SiO_{2}[/tex] have been recovered is option D) 67%.

To arrive at this answer, we can use the formula:
Percentage of [tex]SiO_{2}[/tex] = (Mass of recovered [tex]SiO_{2}[/tex] ÷ Mass of sample) x 100
Plugging in the values given in the question, we get:
Percentage of [tex]SiO_{2}[/tex] = (3.27 g ÷ 7.69 g) x 100 = 42.5%
However, this is the percentage of [tex]SiO_{2}[/tex] recovered, not the percentage of [tex]SiO_{2}[/tex] in the original sample. To find the latter, we can use the fact that the mass of [tex]SiO_{2}[/tex] in the original sample must be equal to the mass of [tex]SiO_{2}[/tex] recovered:
Mass of [tex]SiO_{2}[/tex] in original sample = Mass of [tex]SiO_{2}[/tex] recovered
Let x be the percentage of [tex]SiO_{2}[/tex] in the original sample. Then we can set up the equation:
x% of 7.69 g = 3.27 g
Solving for x, we get:
x = (3.27 g ÷ 7.69 g) x 100 = 42.5%
So the percentage of [tex]SiO_{2}[/tex] in the original sample is 42.5%, which means that option A is incorrect.
To get the main answer, we need to calculate the percentage of the sample that is not [tex]SiO_{2}[/tex]:
Percentage of other substances = 100% - Percentage of [tex]SiO_{2}[/tex]
Percentage of other substances = 100% - 42.5% = 57.5%
This means that the original sample was 57.5% other substances and 42.5% [tex]SiO_{2}[/tex].
Now we can use this information to find the percentage of [tex]SiO_{2}[/tex] in a sample weighing 7.69 g if 3.27 g of SiO2 have been recovered:
Percentage of [tex]SiO_{2}[/tex] = (Mass of [tex]SiO_{2}[/tex] in sample ÷ Sample mass) x 100
Let y be the mass of the sample that is not [tex]SiO_{2}[/tex]. Then we can set up the equation:
3.27 g = 0.425(7.69 g) + y
Solving for y, we get:
y = 7.69 g - 3.27 g/0.425 = 12.56 g
So the mass of the sample that is not [tex]SiO_{2}[/tex] is 12.56 g.
Now we can calculate the mass of [tex]SiO_{2}[/tex] in the original sample:
Mass of SiO2 in sample = 0.425(7.69 g) = 3.27 g
Since 3.27 g of [tex]SiO_{2}[/tex] have been recovered, the mass of [tex]SiO_{2}[/tex] in the remaining sample is:
3.27 g + 3.27 g = 6.54 g
Therefore, the percentage of [tex]SiO_{2}[/tex] in the remaining sample is:
Percentage of [tex]SiO_{2}[/tex] = (6.54 g ÷ 20.25 g) x 100 = 32.3%
This means that the sample weighing 7.69 g originally contained 42.5% [tex]SiO_{2}[/tex] and the remaining sample after 3.27 g of [tex]SiO_{2}[/tex] was recovered contains 32.3% [tex]SiO_{2}[/tex].

For more information on percentage weight by weight kindly visit to

https://brainly.com/question/1751356

#SPJ11

If a buffer solution is 0.170 M in a weak acid (Ka=5.5×10−5) and 0.430 M in its conjugate base, what is the pH?

Answers

First, find the pKa by taking the negative logarithm of Ka:
pKa = -log(5.5 x 10^-5) = 4.26


Next, plug in the concentrations of the acid ([HA] = 0.170 M) and the conjugate base ([A-] = 0.430 M) into the equation:
pH = 4.26 + log (0.430/0.170) ≈ 4.87
The Henderson-Hasselbalch equation is used to calculate the pH of buffer solutions containing a weak acid and its conjugate base. The equation accounts for the relative concentrations of the acid and conjugate base, as well as the acidity constant of the weak acid (Ka).


Summary: The pH of the buffer solution containing 0.170 M weak acid with Ka = 5.5 x 10^-5 and 0.430 M conjugate base is approximately 4.87.

Learn more about acid click here:
https://brainly.com/question/25148363

#SPJ11

a 10.5 g sample of a substance with specific heat 0.385 is cooled by removing 133 j of heat. by how much does the temperature of the substance decrease?

Answers

A 10.5 g sample of a substance with specific heat 0.385 is cooled by removing 133 j of heat.  32.47°C is the temperature of the substance decrease

To find how much the temperature of the substance decreases, we can use the formula:
Q = mcΔT
Where Q is the heat removed (133 J), m is the mass of the substance (10.5 g), c is the specific heat of the substance (0.385 J/g°C), and ΔT is the change in temperature that we want to find.

It is determined that 654.5 joules of heat are needed to raise the temperature of a 100 g chunk of copper from 18 °C to 35 °C.
Rearranging the formula to solve for ΔT, we get:
ΔT = Q / (mc)
Plugging in the values we have:
ΔT = 133 J / (10.5 g x 0.385 J/g°C)
ΔT = 32.47°C
Therefore, the temperature of the substance decreases by 32.47°C.

Learn more about heat here

https://brainly.com/question/31037751

#SPJ11

what is the stereochemical relationship between the salts formed by tartaric acid

Answers

Tartaric acid has two chiral centers, and therefore can exist as four possible stereoisomers: meso-tartaric acid, D-tartaric acid, L-tartaric acid, and DL-tartaric acid. Meso-tartaric acid is not optically active because it has a plane of symmetry that divides the molecule into two mirror-image halves.

This means that it is achiral and does not rotate plane-polarized light. D- and L-tartaric acid are enantiomers, which means that they are non-superimposable mirror images of each other. They rotate plane-polarized light in opposite directions and have identical physical properties except for their effect on plane-polarized light. DL-tartaric acid is a racemic mixture of the D- and L-tartaric acid enantiomers and is optically inactive.

When tartaric acid is deprotonated, it forms a salt with a cation such as sodium or potassium. The stereochemistry of the salt depends on the stereochemistry of the tartaric acid used to form it. For example, if D-tartaric acid is used, the resulting salt will have the same absolute configuration as the D-tartaric acid molecule. The same is true for L-tartaric acid. The meso-tartaric acid can form a salt with either D or L tartaric acid and the product is called a racemic salt.

Learn more about tartaric acid here:

https://brainly.com/question/24244696

#SPJ11

it takes 48.0 j to raise the temperature of an 11.9 g piece of unknown metal from 13.0 ∘c to 24.9 ∘c . what is the specific heat for the metal? express your answer with the appropriate units.

Answers

The specific heat of the unknown metal is approximately 0.338 J/(g·°C).The specific heat (c) of a substance is defined as the amount of heat required to raise the temperature of 1 gram of the substance by 1 degree Celsius.

To find the specific heat of the unknown metal, we can use the formula:

q = mcΔT

where q is the amount of heat transferred, m is the mass of the metal, c is the specific heat of the metal, and ΔT is the change in temperature.

In this problem, we are given the following information:

q = 48.0 J

m = 11.9 g

ΔT = 24.9 °C - 13.0 °C = 11.9 °C

Substituting these values into the formula, we get:

48.0 J = (11.9 g) c (11.9 °C)

Solving for c, we get:

c = 48.0 J / (11.9 g × 11.9 °C) ≈ 0.338 J/(g·°C)

Therefore, the specific heat of the unknown metal is approximately 0.338 J/(g·°C).

Learn more about metal here:

https://brainly.com/question/18153051

#SPJ11

What is the ratio of the probability of finding a molecule moving with the average speed to the probability of finding a molecule moving with 3 times the average speed? How does this ratio depend on temperature?

Answers

The ratio of the probability of finding a molecule moving with the average speed to the probability of finding a molecule moving at 3 times the average speed depends on the Maxwell-Boltzmann distribution.

This distribution describes the probability of a molecule having a specific speed based on temperature and molecular mass. The ratio of these probabilities can be expressed as P(v)/P(3v), where P(v) represents the probability of a molecule moving at average speed and P(3v) represents the probability of a molecule moving at 3 times the average speed. As temperature increases, the Maxwell-Boltzmann distribution becomes wider, and the peak shifts towards higher speeds. This means that at higher temperatures, the probability of finding a molecule moving at 3 times the average speed will increase compared to lower temperatures. Therefore, the ratio P(v)/P(3v) will decrease with increasing temperature.

To know more about Maxwell-Boltzmann distribution

https://brainly.com/question/31428655

#SPJ11

for the reaction given in part a, δs∘rxn is 33.0 j/k . what is the standard gibbs free energy of the reaction, δg∘rxn ? express your answer numerically in kilojoules.

Answers

The standard Gibbs free energy change of the reaction is 0.04 kJ/mol, which can be expressed numerically as 0.04 kJ.

\We can use the relationship between Gibbs free energy change, enthalpy change, and entropy change to solve for the standard Gibbs free energy change of the reaction:

ΔG° = ΔH° - TΔS°

where ΔH° is the standard enthalpy change of the reaction, ΔS° is the standard entropy change of the reaction, T is the temperature in Kelvin, and ΔG° is the standard Gibbs free energy change of the reaction.

We are given that ΔS° = 33.0 J/K. However, we need to convert this to kJ/K, since the units of ΔG° are kJ/mol:

ΔS° = 33.0 J/K * (1 kJ/1000 J) = 0.033 kJ/K

We are not given the value of ΔH°, so we cannot calculate ΔG° directly. However, we can use the fact that at equilibrium, ΔG° = 0. This allows us to set up the equation:

0 = ΔH° - TΔS°

Solving for ΔH°, we get:

ΔH° = TΔS° = (298 K) * (0.033 kJ/K) = 9.87 kJ/mol

Therefore, the standard enthalpy change of the reaction is 9.87 kJ/mol. To calculate the standard Gibbs free energy change of the reaction, we can substitute the values into the equation:

ΔG° = ΔH° - TΔS°

= (9.87 kJ/mol) - (298 K)(0.033 kJ/K)

= 9.87 kJ/mol - 9.83 kJ/mol

= 0.04 kJ/mol

Therefore, the standard Gibbs free energy change of the reaction is 0.04 kJ/mol, which can be expressed numerically as 0.04 kJ.

Learn more about reaction here:

https://brainly.com/question/31257177

#SPJ11

suggest why polonium-210 and astatine-211 are the isotopes of those elements with the longest half-lives.

Answers

Polonium-210 and astatine-211 are isotopes of their respective elements with the longest half-lives because they have a balanced number of protons and neutrons in their nuclei.

This balanced ratio of particles in the nucleus makes the isotopes more stable, and less likely to decay into other elements. Additionally, both polonium and astatine are relatively heavy elements, which makes it more difficult for them to decay through the emission of particles. Therefore, these isotopes have longer half-lives compared to other isotopes of the same elements. In both cases, the balance between the protons and neutrons in their nuclei provides relatively more stability compared to other isotopes of polonium and astatine. As a result, these isotopes undergo radioactive decay at a slower rate, leading to their longer half-lives. Therefore, these isotopes have longer half-lives compared to other isotopes of the same elements.

Learn more about isotopes here:

https://brainly.com/question/21536220

#SPJ11

How many mL of 2.5 M HCI are required to neutralize 15 mL of 5.0 M NaOH?

Answers

To determine the amount of HCl required to neutralize 15 mL of 5.0 M NaOH, we need to use the equation: M1V1 = M2V2, 30 mL of 2.5 M HCl is required to neutralize 15 mL of 5.0 M NaOH.

To determine the amount of HCl required to neutralize 15 mL of 5.0 M NaOH, we need to use the equation:

M1V1 = M2V2

where M1 is the molarity of the acid, V1 is the volume of the acid, M2 is the molarity of the base, and V2 is the volume of the base.

In this case, we know that the molarity of NaOH is 5.0 M, the volume of NaOH is 15 mL, and we want to find the volume of HCl required to neutralize it, which we'll call V1.

First, we need to calculate the number of moles of NaOH:

5.0 M * 0.015 L = 0.075 moles NaOH

Since HCl and NaOH react in a 1:1 ratio, we know that we'll need 0.075 moles of HCl to neutralize the NaOH.

Next, we need to find the volume of 2.5 M HCl that contains 0.075 moles of HCl:

2.5 M = 2.5 moles/L

0.075 moles / 2.5 moles/L = 0.03 L = 30 mL

Therefore, 30 mL of 2.5 M HCl is required to neutralize 15 mL of 5.0 M NaOH.

For more such questions on equation

https://brainly.com/question/13847161

#SPJ11

which of the following choices is the best explanation for why it does not matter how much water you added when dissolving the acid or when carrying out the titration? the titration equivalence point occurs when the moles of acid present in the sample have been exactly neutralized by the moles of base added. additional water added to the reaction vessel has no effect on the moles of base added. water is neither a reactant nor a product of the neutralization reaction and therefore does not affect the measurement. the volume of the sample plus titrant is constant throughout the titration even if external water is added. none of the above.

Answers

The correct option is C, The best explanation for why it does not matter how much water you added when dissolving the acid or when carrying out the titration is: water is neither a reactant nor a product of the neutralization reaction and therefore does not affect the measurement.

Titration is a common laboratory technique used in chemistry to determine the concentration of an unknown solution by reacting it with a solution of known concentration. The process involves slowly adding the known solution, called the titrant, to the unknown solution, called the analyte, until the reaction is complete.

Titration is typically carried out using an indicator, which changes color when the reaction is complete, indicating the endpoint of the titration. The most commonly used indicators include phenolphthalein, bromothymol blue, and methyl orange. Titration is widely used in a variety of applications, including in the pharmaceutical industry to measure the potency of drugs, in environmental testing to measure the concentration of pollutants, and in food science to determine the acidity of foods and beverages.

To know more about Titration refer to-

brainly.com/question/31483031

#SPJ4

How much CaCl2 will be produced if you start with 140.0g of Ca(OH)2 and 115.6g of HCI?
Ca(OH)2 + 2HCI ---> CaCl2 + 2H2O


please help

Answers

209.8 g CaCl₂ will be produced if you start with 140.0g of Ca(OH)₂ and 115.6g of HCI.

Calculate the moles of each reactant using their respective molar masses:

Moles of Ca(OH)₂ = 140.0 g / 74.09 g/mol

= 1.891 mol

Moles of HCl = 115.6 g / 36.46 g/mol

= 3.172 mol

According to the balanced chemical equation, the stoichiometric ratio between Ca(OH)₂ and HCl is 1:2. This means that for every 1 mole of Ca(OH)₂, 2 moles of HCl react completely.

Moles of HCl (3.172 mol) than required to react with all the Ca(OH)₂ (1.891 mol). This means that HCl is in excess and Ca(OH)₂ is limiting the reaction.

Using the stoichiometric ratio, calculate the theoretical yield of CaCl₂:

Moles of CaCl₂ = 1.891 mol Ca(OH)₂ x (1 mol CaCl₂ / 1 mol Ca(OH)₂)

= 1.891 mol CaCl₂

To convert moles to grams, use the molar mass of CaCl₂:

Mass of CaCl₂ = 1.891 mol x 110.98 g/mol

= 209.8 g

Therefore, the theoretical yield of CaCl₂ is 209.8 g.

To learn more about CaCl₂, follow the link:

https://brainly.com/question/30657830

#SPJ1

What is the pH of a 0.24 mg/ml solution of CsOH

Answers

To find the pH of a solution of CsOH, we need to first determine the concentration of hydroxide ions (OH-) in the solution.

CsOH is a strong base that completely dissociates in water to produce Cs+ ions and OH- ions. Since the given concentration is in milligrams per milliliter (mg/ml), we need to convert it to molarity (mol/L) first. The molar mass of CsOH is 168.92 g/mol, so:

0.24 mg/ml = 0.24 g/L = 0.24/168.92 mol/L = 0.00142 M

Therefore, the concentration of OH- ions is also 0.00142 M, and the pOH can be calculated as:

pOH = -log[OH-] = -log(0.00142) = 2.847

Finally, we can use the relationship between pH and pOH:

pH + pOH = 14

To solve for pH:

pH = 14 - pOH = 14 - 2.847 = 11.153

Therefore, the pH of a 0.24 mg/ml solution of CsOH is 11.153.

Final answer:

To find the pH, we first need to convert the concentration of CsOH to molarity. Since CsOH is a strong base, we compute the pOH first, and then find the pH using the relationship pH + pOH = 14.

Explanation:

To solve this problem, we first need to find the concentration of the CsOH solution in molarity (M). Given that CsOH has a molar mass of approximately 197.02 g/mol, the molarity can be found by converting milligrams to grams and milliliters to liters, and then using the formula M = n/V. The formula gives us the concentration in moles per liter.

Since pH measures the acidity or basicity of a solution, and CsOH is a strong base that fully dissociates in water, we note that in this case, it would be more appropriate to find the pOH (the measure of hydroxide ion concentration) first. This is done with the formula pOH = -log[OH-].

Finally, we can find the pH using the relation pH + pOH = 14 at 25°C (a typical standard temperature).

Learn more about pH here:

https://brainly.com/question/31418182

#SPJ2

Calculate the solubility of Pb(IO3)2 solution in which the concentration of IO3- is 0. 015 M. Ksp for Pb(IO3)2 = 3. 2 x 10-13.

Select one:

Answers

The solubility of Pb(IO₃)₂ in a solution with IO₃- concentration of 0.015 M is 1.12 x 10⁻⁴ M.

The solubility of Pb(IO₃)₂ can be calculated using the Ksp expression:

Ksp = [Pb2+][IO₃-]₂

We are given the Ksp value as 3.2 x 10⁻¹³ and the concentration of IO₃- as 0.015 M. Let x be the solubility of Pb(IO₃)₂ in moles per liter.

At equilibrium, the concentration of Pb² and IO₃- in the saturated solution will be equal to x. Therefore, we can write:

Ksp = [Pb2+][IO₃-]₂ = x * (2x)² = 4x³

Substituting the given values, we get:

3.2 x 10⁻¹³ = 4x³

Solving for x, we get:

x = (3.2 x 10⁻¹³ / 4)^(1/3) = 1.12 x 10⁻⁴ M

Therefore, the solubility of Pb(IO₃)₂ in a solution with IO₃- concentration of 0.015 M is 1.12 x 10⁻⁴ M.

To know more about solubility follow the link:

https://brainly.com/question/31493083

#SPJ4

14.Calculate the [H+] and the [OH-] of a substance that has a pH of 5.45.

Answers

Answer:  [H+] = 2.24 x 10^-6 M    [OH-] = 4.46 x 10^-9 M.

Explanation for [H+]: To find [H+], we can use the formula pH = -log[H+]. Solving for [H+] gives [H+] = 2.24 x 10^-6 M.

Explanation for [OH-]: To find [OH-], we can use the fact that the product of [H+] and [OH-] is always equal to 1.0 x 10^-14 at 25°C. We can first find [H+] using the formula pH = -log[H+]. Solving for [H+] gives [H+] = 2.24 x 10^-6 M. Plugging this value into the expression [H+][OH-] = 1.0 x 10^-14 gives [OH-] = 4.46 x 10^-9 M.

The [H⁺] is 3.54 × 10⁻⁶ and [OH⁻] is 2.8 × 10⁻⁹ of a substance that has a pH of 5.45.

pH is defined as the negative logarithm of H⁺ ion concentration.

pH is a measure of how acidic or basic a substance is. In our everyday routine, we encounter and drink many liquids with different pH. Water is a neutral substance. Soda and coffee are often acidic.

The pH is an important property, since it affects how substances interact with one another and with our bodies. In our lakes and oceans, pH determines what creatures are able to survive in the water.

Given,

pH = 5.45

pH = - log [H⁺]

[H⁺] = 3.54 × 10⁻⁶M

[H⁺] × [OH⁻] = 10⁻¹⁴

[OH⁻] = 2.8 × 10⁻⁹M

Learn more about pH, here:

https://brainly.com/question/15289741

#SPJ1

match each property of a liquid to what it indicates about the relative strength of the intermolecular forves in that liquid high boiling point
high vapor pressure
high surface tension
high viscosity"

Answers

Match these properties of a liquid to what they indicate about the relative strength of the intermolecular forces in that liquid.

1. High boiling point: This indicates strong intermolecular forces, as more energy is required to overcome the forces and change the liquid into a gas.
2. High vapor pressure: This suggests weaker intermolecular forces, as the liquid molecules easily escape into the vapor phase, leading to higher vapor pressure.
3. High surface tension: This indicates strong intermolecular forces, as the molecules at the surface of the liquid are held together tightly, creating a high surface tension.
4. High viscosity: This suggests strong intermolecular forces, as the molecules in the liquid experience more resistance to flow due to the strong interactions between them.

Learn more about vapor here:

https://brainly.com/question/20899075

#SPJ11

The picture below shows a closed system before and after undergoing a change.
System before change
System after change
What was changed in the system?

Answers

Answer:

Based on your description, it seems that the change in the system is that the water in the container was heated. This could have caused a change in temperature and possibly a change in the physical state of the water (from liquid to gas).

Explanation:

Why can we use a gas mixture, such as air, to study the general behavior of an ideal gas under ordinary conditions

Answers

We can use a gas mixture, such as air, to study the general behavior of an ideal gas under ordinary conditions because air closely approximates the properties of an ideal gas.

An ideal gas is a theoretical concept that assumes that gas particles have zero volume and do not interact with each other except through perfectly elastic collisions. Although no real gas exactly follows these assumptions, air behaves very similarly to an ideal gas under most conditions.
Air is composed of a mixture of gases, primarily nitrogen and oxygen, that behave like ideal gases. These gases have relatively low molecular weights, so they move rapidly and can be compressed and expanded easily. Additionally, air at standard temperature and pressure (STP) has a density and pressure that are close to those of an ideal gas.
Therefore, by studying the behavior of air, we can gain insight into the general behavior of an ideal gas. This allows us to make predictions and perform calculations related to the behavior of gases under ordinary conditions, such as in a car engine or in a balloon. While it's important to note that real gases do not perfectly follow the assumptions of ideal gases, studying the properties of air can provide a good approximation for many practical applications.

learn more about gas

https://brainly.com/question/29419487

#SPJ11

4.68 l of n2(g) is mixed with 3.79 l of h2(g) and reacts with 100% yield. what volume of nh3(g) is produced? assume all gases are at the same temperature and pressure.

Answers

The volume of [tex]NH_3[/tex] produced is 7.55 L, assuming constant temperature and pressure. [tex]H_2[/tex] is the limiting reactant, and all of it will be consumed in the reaction, producing 0.338 moles of [tex]NH_3[/tex].

The balanced equation for the reaction between nitrogen gas and hydrogen gas to form ammonia gas is:

[tex]$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}}$[/tex]

From the equation, we see that 1 mole of [tex]N_2[/tex] reacts with 3 moles of [tex]H_2[/tex] to produce 2 moles of [tex]NH_3[/tex]. Therefore, we need to determine the limiting reactant to calculate the volume of [tex]NH_3[/tex] produced.

To do this, we can use the ideal gas law, which states that the number of moles of a gas is directly proportional to its volume, assuming constant temperature and pressure. Therefore, we can convert the given volumes of [tex]N_2[/tex] and [tex]H_2[/tex] to moles and compare their ratios to determine the limiting reactant.

Using the ideal gas law, we can calculate the number of moles of [tex]N_2[/tex]:

[tex]$n(N_2) = \dfrac{V(N_2)}{V_m(N_2)}$[/tex]

[tex]$n(H_2) = \dfrac{V(H_2)}{V_m(H_2)}$[/tex]

Substituting the given values into these equations, we get:

[tex]n(N_2)[/tex] = 4.68 L / 22.4 L/mol = 0.209 moles

[tex]n(H_2)[/tex] = 3.79 L / 22.4 L/mol = 0.169 moles

Since the stoichiometric ratio of [tex]N_2[/tex] to [tex]H_2[/tex] is 1:3, we can see that [tex]H_2[/tex] is the limiting reactant, as we only have 0.169 moles of [tex]H_2[/tex], which is less than the amount required to react with all of the [tex]N_2[/tex] (0.209 moles). Therefore, all of the [tex]H_2[/tex] will be consumed in the reaction, and we can calculate the volume of [tex]NH_3[/tex] produced using the number of moles of [tex]NH_3[/tex] formed, which is twice the number of moles of [tex]H_2[/tex] consumed:

[tex]$n(NH_3) = 2 \times n(H_2) = 2 \times 0.169 , \text{moles} = 0.338 , \text{moles}$[/tex]

Using the ideal gas law again, we can calculate the volume of [tex]NH_3[/tex]:

[tex]$V(NH_3) = n(NH_3) \times V_m(NH_3)$[/tex]

where Vm([tex]NH_3[/tex]) is the molar volume of [tex]NH_3[/tex] at the same temperature and pressure.

Substituting the given values, we get:

[tex]V(NH_3)[/tex] = 0.338 moles x 22.4 L/mol = 7.55 L

To learn more about limiting reactants

https://brainly.com/question/14225536

#SPJ4

what is e at 25°c for the reaction?

Answers

The ΔG in kJ at 25∘C is −422.83kJ. To calculate the change in Gibbs free energy (ΔG) for the given reaction at 25°C, we will use the Nernst equation.

It is given by ΔG = -nFE₀

where:
- ΔG is the change in Gibbs free energy (in J)
- n is the number of electrons transferred (in moles)
- F is the Faraday constant, approximately 96,485 C/mol
- E₀ is the standard cell potential (in V)

First, identify the number of electrons transferred (n) in the balanced reaction:
Cr(s) + 3Ag⁺(aq) → 3Ag(s) + Cr³⁺(aq)

In this reaction, Chromium (Cr) loses 3 electrons (oxidation) and each Silver ion (Ag⁺) gains 1 electron (reduction), for a total of 3 electrons transferred.

Now, plug the values into the Nernst equation:
ΔG = - (3 mol e⁻) (96,485 C/mol e⁻) (1.50 V)
ΔG = -434,182.5 J

Since we want the answer in kJ, divide by 1000:
ΔG = -434.18 kJ (approximately)

Thus, the closest answer to this value among the provided options is (d) -422.83 kJ.

Learn more about Gibbs free energy here:

https://brainly.com/question/13318988

#SPJ11

The full question is:

The E∘ at 25∘C for the following reaction at the indicated concentration is 1.50 V. Calculate the ΔG in kJ at 25∘C : Cr(s) + 3Ag⁺(aq,0.1M) → 3Ag(s) + Cr³⁺(aq,0.1M)

a. -140.94

b. -295

c. -212

d. −422.83kJ

at 3278c, the equilibrium concentrations are [ch3oh] 5 0.15 m, [co] 5 0.24 m, and [h2] 5 1.1 m for the reaction ch3oh1 g2mco1 g2 1 2h2 1 g2 calculate kp at this temperature.

Answers

At chemical equilibrium, the equilibrium constant of a chemical reaction is the value of its reaction quotient, a state proceeds by a dynamic chemical system after enough time has passed at which its composition has no quantifiable tendency towards further change.

To calculate the equilibrium constant (Kp) at [tex]3278^{0} C[/tex], we can use the following equation:

[tex]Kp=(Pco)^{2} * PH^{2} /Pch^{2}oh[/tex]


where P represents the partial pressure of each gas in the reaction. We can convert the concentrations given in the problem to partial pressures using the ideal gas law:

[tex]P = nRT/V[/tex]

where n is the number of moles of gas, R is the gas constant, T is the temperature in Kelvin, and V is the volume. At equilibrium, the number of moles of each gas will be constant, so we can use the given concentrations to calculate the number of moles and then use the ideal gas law to find the partial pressures.
[tex][ch_{3} oh]=0.15M[/tex][tex]
[tex][co]=0.24M[/tex]

[tex][h_{2} ]=1.1M[/tex]

The molar mass of each gas is:

[tex]Mch_{3} oh=32.04g/mol[/tex]
[tex]Mco=28.01g/mol[/tex]
[tex]Mh_{2} =2.02g/mol[/tex]

We can calculate the number of moles of each gas using the given concentrations and the volume of the system:

[tex]nch_{3} oh=0.15mol/L*1L=0.15mol[/tex]

[tex]nco=0.24mol/L*1L=0.24mol[/tex]
[tex]nh_{2} =1.1mol/L*1L=1.1mol[/tex]

Using the ideal gas law, we can convert the number of moles to partial pressures:

[tex]Pch_{3} oh=nch_{3} oh*R*T/V=0.15mol*0.08206L atm/mol K*3551K/1L=4.73atm[/tex]

[tex]Pco=nco*R*T/V=0.24mol*0.08206L atm/mol K*3551K/1L=7057atm[/tex]
[tex]PH_{2} =nh_{2} *R*T/V=1.1 mol*0.08206Latm/molK*3551K/1L=34.98atm[/tex]

Now we can plug these values into the equation for Kp:
[tex]kp=(Pco)^{2} *PH_{2} /Pch_{3} oh[/tex]
[tex]p=(7.57atm)^{2} *2*34.98atm/4.73atm[/tex]
kp=4.95*[tex]10^{4}[/tex]

Therefore, the equilibrium constant (Kp) at [tex]3278^{0} C[/tex] for the reaction [tex]ch_{3} oh_{1}  g_{2} mco_{1} g_{21} 2h_{2} 1g_{2}[/tex] is [tex]4.95*10^{4}[/tex].

Learn more about equilibrium constants here:

https://brainly.com/question/10038290

#SPJ11

PLEASE HELP!!!!!!

If 10.0 liters of ethane gas are used, how many liters of oxygen gas will be needed for the above reaction at STP?

2C2H6 (g) + 702(g) - 4C02(g) + 6H20 (g)
A 35.0 liters
B 2.85 liters
C 70.0 liters
D 1.4 liters

Answers

35 liters of oxygen gas will be needed for the reaction at STP and the correct option is option A.

STP stands for standard temperature and pressure. STP refers to a specific pressure and temperature used to report on the properties of matter.

According to IUPAC(International Union of Pure and Applied Chemistry), it is defined as -

Temperature of 0 degree celsius (273K)Pressure of 1 atm

It is generally needed to test and compare physical and chemical processes where temperature and pressure plays an important role as they keep on varying from one place to another.

One mole of a gas under STP conditions occupies a volume of 22.4L.

Given,

Volume of ethane = 10 L

We know that,

1 mole of a gas occupies 22.4 L of volume

so, 10 L is occupied by 10 / 22.4 = 0.446 moles of ethane

From the reaction, 2 moles of ethane use 7  moles of oxygen

so, 1 mole uses 7/2 = 3.5 moles of oxygen

0.446 moles will use 3.5 × 0.446 = 1.561 moles of oxygen

Volume occupied by oxygen = 1.561 × 22.4

= 35 L

Thus, the ideal selection is option A.

Learn more about STP, here:

https://brainly.com/question/24050436

#SPJ1

which one of the following diatomic molecules is least likely to exist? select all that apply and briefly explain your reasoning. i. li2 ii. be2 iii. b2

Answers

Out of the three diatomic molecules given, the least likely to exist is Be2. This is because Be2 would have to form with two valence electrons, which would lead to an unstable molecular bond. Beryllium has two valence electrons, which are in the 2s orbital.


Li2 and B2 are more likely to exist as diatomic molecules because they both have valence electrons in their outermost energy level, allowing for the formation of stable covalent bonds. Lithium has one valence electron in the 2s orbital, and therefore, it can form a covalent bond with another lithium atom by sharing this valence electron. Boron has three valence electrons in the 2s and 2p orbitals, and can form a covalent bond with another boron atom by sharing one of these valence electrons.

In summary, Be2 is least likely to exist as a diatomic molecule due to its inability to form stable covalent bonds and violate the octet rule. Li2 and B2 are more likely to exist as diatomic molecules due to their ability to form stable covalent bonds with valence electrons in their outermost energy level.

To know more about diatomic molecules visit:-

https://brainly.com/question/11815815

#SPJ11

select the option that correctly expresses the rate of the following general reaction in terms of the change in concentration of each of the reactants and products: a (g) 2b (g) → c (g)

Answers

The correct option that expresses the rate of the given general reaction in terms of the change in concentration of each of the reactants and products is: Rate = -1/2 ∆[A] / ∆t = -∆[B] / ∆t = 1/∆[C] / ∆t Option D is correct.

In the given reaction, the stoichiometric coefficients of the reactants and products are used to determine the rate expression. The rate is expressed in terms of the change in concentration of each species over time (∆[X] / ∆t). Since the coefficient of A is 1 and the coefficient of B is 2, the rate of change of A is divided by 1/2 (∆[A] / ∆t) and the rate of change of B is divided by 1 (∆[B] / ∆t). The coefficient of C is 1, so the rate of change of C is divided by 1 (∆[C] / ∆t). Therefore, the rate expression is:

Rate = -1/2 ∆[A] / ∆t = -∆[B] / ∆t = 1/∆[C] / ∆t

This means that the rate of the reaction is directly related to the change in concentration of any of the reactants or products.

Learn more about rate of the reaction here

https://brainly.com/question/13782336

#SPJ11

The Complete question is

select the option that correctly expresses the rate of the following general reaction in terms of the change in concentration of each of the reactants and products: a (g) 2b (g) → c (g)

A. Rate = − Δ[A] Δt = − 2 1 Δ[B] Δt = Δ[C] Δt

B. Rate = − Δ[A] Δt = − Δ[B] Δt = Δ[C] Δt

C. Rate = − Δ[A] Δt = − 1 2 Δ[B] Δt = Δ[C] Δt

D.-1/2 ∆[A] / ∆t = -∆[B] / ∆t = 1/∆[C] / ∆t

Propose a structure for an amine of formula C4H9N, which liberates a gas when treated with NaNO2 and HCl. The 13C NMR spectrum is as follows, with attached protons in parentheses: ? 14(2), ? 34.3(2), ? 50.0(1).

Answers

Based on the given 13C NMR spectrum and the information about the liberation of gas upon treatment with [tex]NaNO_2[/tex] and HCl, a possible structure for the amine of formula [tex]C_4H_9N[/tex] is tert-butylamine.

The given 13C NMR spectrum indicates the presence of three different types of carbon atoms in the molecule. The chemical shift at δ 14 corresponds to a quaternary carbon, whereas the chemical shifts at δ 34.3 and δ 50.0 correspond to two different types of tertiary carbons. Based on the given information, a possible structure for the amine of formula [tex]C_4H_9N[/tex] could be tert-butylamine [tex](CH_3)_3CNH_2[/tex].

When tert-butylamine is treated with [tex]NaNO_2[/tex] and HCl, it liberates nitrogen gas ([tex]N_2[/tex]) due to the reaction of [tex]NaNO_2[/tex] with the amine group. The chemical shift at δ 14 corresponds to the quaternary carbon in the tert-butyl group, whereas the chemical shifts at δ 34.3 and δ 50.0 correspond to the two different types of tertiary carbons in the molecule.

To learn more about butylamine follow the link:

https://brainly.com/question/7731807

#SPJ4

The correct question is:

Propose a structure for an amine of formula [tex]C_4H_9N[/tex], which liberates a gas when treated with [tex]NaNO_2[/tex] and HCl. The 13C NMR spectrum is as follows, with attached protons in parentheses: δ 14(2), δ 34.3(2), δ 50.0(1).

when the change in free eneergy for a reaction is positive the correct statement for the equilbrium constant Keq: a. Keq = 1. b. Keq > 1. c. Keq < 1

Answers

When the change in free energy for a reaction is positive, it means that the reaction is non-spontaneous and requires energy to proceed. In terms of the equilibrium constant (Keq), this indicates that the products of the reaction are less favored than the reactants at equilibrium.

Therefore, the correct statement for Keq would be c. Keq < 1.  Keq is the ratio of the concentrations of products to reactants at equilibrium. If Keq is less than 1, it means that the concentration of reactants is greater than the concentration of products at equilibrium. This is consistent with a non-spontaneous reaction since the system will tend to favor the reactants over the products. On the other hand, if Keq is greater than 1, it means that the concentration of products is greater than the concentration of reactants at equilibrium. This is consistent with a spontaneous reaction since the system will tend to favor the products over the reactants. Finally, if Keq is equal to 1, it means that the concentrations of products and reactants are equal at equilibrium, indicating a balanced system where neither the reactants nor products are favored.

To know more about equilibrium constant

https://brainly.com/question/3159758

#SPJ11

will the bond length in a cation be higher or lower than a ground state

Answers

The bond length in a cation can vary depending on the specific situation. In general, the bond length in a cation tends to be shorter than the bond length in the ground state due to the loss of an electron.

When an atom loses an electron to become a cation, it becomes positively charged, and the remaining electrons are held more tightly to the nucleus. This stronger attraction between the positively charged nucleus and the remaining electrons leads to a shorter bond length.

However, there are exceptions to this general rule, and the bond length in a cation can sometimes be longer than the bond length in the ground state. This can occur when the cation is in a highly excited state, or when the cation is interacting with other molecules or ions in a complex system.

So, in summary, the bond length in a cation can be higher or lower than the bond length in the ground state, depending on the specific circumstances.

To know more about bond length, refer

https://brainly.com/question/16012396

#SPJ11

Other Questions
the underlying premise of neuromodulation is that the brain is an electrochemical organ that can be modulated by the use of devices that employ electricity.a.trueb.false No measurements are done after the spheres touh, but we know that the two spheres are identical.Before contact: sphere A= 1.4nC and sphere B=-5.9nCWhat is the charge on sphere B after contact, in nC? A wall 24 inches is conrete, 5 inches is brick, and 9 inches is limestone. What fracrion of the wall is concrete? a gear box has an input speed of 2,000.00 rev/min clockwise and an output speed of 500.00 rev/min anticlockwise. the input power is 40.161 kw and the efficiency is 0.600. determine the input torque in nm where can inheritance be used in rdf? select all that apply. You have an SRS of six observations from a Normally distributed population. What critical value would you use to obtain an 80% confidence interval for the mean of the population? (a) 1.440 (b) 1.476 (c) 2.015 find the length of the curve of x(t)=2t,y(t)=3t1, for t[0,4]. Calculate the area of the shape below. 7.6cmx11cm square What is the primary cause of poor air quality in Mexico City?O gas emissions from drillingO pollution from car exhaustO particulates from erosionOdust from deforestation a ________ is the basic building block of a movie. a. scene b. sequence c. shot d. take e. setup The reading on your electric bill shows the amount of power you have used in a month. True False Aqueous potassium chloride will react with which one of the following in an exchange (metathesis) reaction?lead nitratesodium bromidebarium nitratesodium chloridecalcium nitrate You are the security analyst for a small corporate network. You previously configured the branchvpn1 server as a remote access server to allow vpn connections. Members of the sales department connect to the server to upload their sales reports as they work from home or on the road. In this lab, your task is to create and configure a network policy to allow members of the sales department to remotely connect using the following parameters: you wish to search a linked list of length n, where each element contains a key k along with a hash value h(k). each key is a long character string. how might you take advantage of the hash values when searching the list for an element with a given key? The density of milk is 1.03g/cm3. What is the mass of 405 cm3 of milk? 1. By signing the agreement sent by Walter W. Fulton, to what would Mr. Wagner be agreeing? which of the following workers is the most productive? a. $10 wages, 1 part produced b. $100 wages, 21 parts produced c. $30 wages, 5 parts produced d. $500 wages, 110 parts produced e. $50 wages, 10 parts produced g if the risk-free rate is 3.9 percent and the expected market return is 11.4 percent, what is the expected return of a stock that has a beta of 1.24? multiple choice 11.73% 18.04% 19.54% 15.62% 13.20% which is not considered a bailment group of answer choices dry cleaners coat check self service car wash staying at a hotel/motel pls help meh, been stuck on this for a long time-