Answer:
462.61 yards.
Step-by-step explanation:
To solve, you need to find the measurement of the angle that forms a 90 degree angle with the 23.9 degree angle.
90 - 23.9 = 66.1 degrees.
Now that you have the angle, you can use TOA to solve for x (TOA = Tangent; Opposite over Adjacent).
tan(66.1) = x / 205
x / 205 = tan(66.1)
x = tan(66.1) * 205
x = 2.256628263 * 205
x = 462.6087939
So, you are about 462.61 yards from the cabin.
Hope this helps!
Write your answer as a whole number or a mixed number in simplest form. Include the correct unit in your answer
Answer:
15 pt
Step-by-step explanation:
to convert qt to pt you multiply by 2 so 7 and 1/2 times 2 is 15
21. In the figure given below, AC is parallel to DE. Find the valuesof xy and z and hence find the 2DBE.
21-70X
509
Answer:
X= 50°
Y= 70°
Z= 30°
BDE= 30°
2BDE= 60°
Step-by-step explanation:
(2x -70 )+z+(2x+20)=180...(sum of angle on a straight line)
2x -70 = BDE... alternate angles
Y + (2x-70)+(50+x-20) = 180...(sum of angles in a triangle)
X-20 = z ... alternate and opposite angles
(2x -70 )+z+(2x-+20)=180
2x-70 + x-20 +2x +20= 180
5x -70= 180
5x = 250
X= 50°
X-20 = z
50-20= z
30° = z
2x -70 = BDE
2(50) -70 = BDE
100-70 = BDE
30°= BDE
Y + (2x-70)+(50+x-20)
Y + 100-70 +50 +50 -20 = 180
Y + 200-90=180
Y= 70°
2BDE = 2*30
2BDE= 60°
Four buses carrying 198 students from the same school arrive at a football stadium. The buses carry, respectively 90, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the four bus drivers is also randomly selected. Let Y denote the number of students on her bus. a) Which of E[X] or E[Y] do you think is larger
Answer:
E[x] is larger
Step-by-step explanation:
I think E[x] is larger because the expected number of students on the bus of a randomly chosen student is larger.
This is because the higher the number of students present in a bus, the higher the probability that a randomly selected student would have been on that bus.
Whereas, for every driver to be chosen, the probability of any bus being chosen is 1/4 irrespective of the number of students in that particular bus
Question 3 (5 points)
POINT
-POINT A
POINT B
What are the coordinates of the point labeled B in the graph shown above?
A) (3, 2)
B) (-3,2)
OC) (-2,3)
D) (-2, -3)
Question 4 (5 points)
Answer:
(D) -2,-3
Step-by-step explanation:
From the origin, we can find the current position of point B by counting.
B is 2 to the left of the y-axis, meaning that it's x value is -2.
B is 3 down of the x-axis, making it's y value -3.
Therefore, the coordinates of point B are -2,-3.
Hope this helped!
Answer: (D) -2,-3
Step-by-step explanation:
Could someone answer the question with the photo linked below? Then explain how to solve it?
Answer:
Hey there!
Pythagorean Theorem:
[tex]a^2+b^2=c^2\\[/tex]
Let 6 be a, and 11 be b.
[tex]6^2+11^2=c^2\\[/tex]
[tex]36+121=c^2\\[/tex]
[tex]157=c^2[/tex]
[tex]\sqrt{157} =c[/tex]
Hope this helps :)
Answer:
[tex]12.529[/tex]
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} \\ {6}^{2} + {11}^{2} = {c}^{2} \\ 36 + 121 = {c}^{2} \\ 157 = {c}^{2} \\ \sqrt{157} = {c}^{2} \\ c = 12.529[/tex]
[tex]hope \: it \: helps \: < 3[/tex]
A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock
Answer:
-1.031 m/s or [tex]\frac{-\sqrt{17} }{4}[/tex]
Step-by-step explanation:
We take the length of the rope from the dock to the bow of the boat as y.
We take x be the horizontal distance from the dock to the boat.
We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s
We need to find the rate of change of the horizontal distance from the dock to the boat = [tex]\frac{dx}{dt}[/tex] = ?
for x = 4
Applying Pythagorean Theorem we have
[tex]1^{2} +x^{2} =y^{2}[/tex] .... equ 1
solving, where x = 4, we have
[tex]1^{2} +4^{2} =y^{2}[/tex]
[tex]y^{2} = 17[/tex]
[tex]y = \sqrt{17}[/tex]
Differentiating equ 1 implicitly with respect to t, we have
[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]
substituting values of
x = 4
y = [tex]\sqrt{17}[/tex]
[tex]\frac{dy}{dt}[/tex] = -1
into the equation, we get
[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]
[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s
The dot plots show the number of hours a group of fifth graders and seventh graders spent playing outdoors over a one-
week period.
Time Spent Playing Outdoors
for Fifth Graders and Seventh Graders
.
5th Grade
0
ta
1 2 3 4 5
Hours
7
8
9 10
7th Grade
.
Answer: B
Step-by-step explanation:
Answer:B
Step-by-step explanation: I took the edge quiz and it was right.
What is the value of s in the equation 3 r equals 10 plus 5 s, when r equals 10? 4 8 100 200
Answer
4Step-by-step explanation:
Given,
r = 10
Let's create an equation,
[tex]3r = 10 + 5s[/tex]
plugging the value of r
[tex]3 \times 10 = 10 + 5s[/tex]
Multiply the numbers
[tex]30 = 10 + 5s[/tex]
Move 5s to L.H.S and change its sign
Similarly, Move 30 to R.H.S and change its sign.
[tex] - 5s = 10 - 30[/tex]
Calculate
[tex] - 5s = - 20[/tex]
The difference sign ( - ) should be cancelled on both sides
[tex]5s = 20[/tex]
Divide both sides of the equation by 5
[tex] \frac{5s}{2} = \frac{20}{5} [/tex]
Calculate
[tex]s = 4[/tex]
The value of s is 4.
Hope this helps..
Best regards!!
Answer:
A. 4 (on edgenuity)
Step-by-step explanation:
A train travels 45 feet in 1/10 if a second. How far will it travel in 3.5 seconds
Answer:
1575 ft
Step-by-step explanation:
Convert 1/10 to decimal to make the math simpler.
1/10 = 0.1
Divide 3.5 by 0.1.
3.5/0.1 = 35
Multiply 35 by 45.
35 × 45 = 1575
The train will travel 1575 feet in 3.5 seconds.
The distance covered by the train in 3.5 seconds will be 1575 feet.
What is speed?The distance covered by the particle or the body in an hour is called speed. It is a scalar quantity. It is the ratio of distance to time.
We know that the speed formula
Speed = Distance/Time
A train travels 45 feet in 1/10 in a second.
Then the speed will be
Speed = 45 / (1/10)
Speed = 45 x 10
Speed = 450 feet per second
The distance covered by the train in 3.5 seconds will be
Distance = 450 x 3.5
Distance = 1575 feet
More about the speed link is given below.
https://brainly.com/question/7359669
#SPJ2
Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is:
Answer: $323.33
Step-by-step explanation:
($17,000 + $4,900 - $2,500) ÷ 60 months = $323.33 per month
↓ ↓ ↓
price finance down payment
At time, t=0, Billy puts 625 into an account paying 6% simple interest. At the end of year 2, George puts 400 into an account paying interest at a force of interest, δt=16+t for t≥2. If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
Answer:
26
Step-by-step explanation:
Given that:
At time, t=0, Billy puts 625 into an account paying 6% simple interest
At the end of year 2, George puts 400 into an account paying interest at a force of interest, 1/(6+t), for all t ≥ 2.
If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
In order to calculate n;
Let K constant to be the value of time for both accounts
At time, t=0, the value of time K when Billy puts 625 into an account paying 6% simple interest is:
[tex]K = 625 \times (1+ 0.06 K)[/tex]
[tex]K = 625 +37.5 K[/tex]
At year end 2; George amount of 400 will grow at a force interest, then the value of [tex]K = 400 \times e^{\int\limits^2_k {\dfrac{1}{6+t}} \, dx }[/tex]
[tex]K =400 \times \dfrac{6+K}{6+2}[/tex]
[tex]K =400 \times \dfrac{6+K}{8}[/tex]
[tex]K =50 \times ({6+K})[/tex]
[tex]K =300+50K[/tex]
Therefore:
If K = K
Then:
625 + 37.5 = 300 +50 K
625-300 = 50 K - 37.5 K
325 = 12.5K
K = 325/12.5
K = 26
the amounts in both accounts at the end of year n = K = 26
please factor!
7x^2+27xy-4y^2
What is the inverse of the function below?
f(x) = x-5
A. f^-1(x) = x + 5
B. f^-1(X) = x-5
C. f^-1(x) = -x + 5
D. f^-1(x) = -x-5
Answer:
f^-1(x) = x + 5
Step-by-step explanation:
f(x) = x-5
y = x-5
Exchange x and y
x = y-5
Solve for y
x+5 = y-5+5
x+5 =y
The inverse is x+5
Translate the following into an algebraic expression: A number is 30% of 20% of the number x.
Answer: 0.06x
Step-by-step explanation:
An algebraic expression is an expression consist of integer constants, variables, and algebraic operations.The given statement: A number is 30% of 20% of the number x.
The required algebraic expression would be:
30% of 20% of x
[tex]=\dfrac{30}{100}\times \dfrac{20}{100}\times x[/tex] [we divide a percentage by 100 to convert it into decimal]
[tex]=\dfrac{6}{100}\times x\\\\=0.06x[/tex]
Hence, the required algebraic expression would be :
0.06x
6th grade math, help me please.
Answer:
B Kim rode 3 more miles per week than Eric rode.
Simba Travel Agency arranges trips for climbing Mount Kilimanjaro. For each trip, they charge an initial fee of $100 in addition to a constant fee for each vertical meter climbed. For instance, the total fee for climbing to the Shira Volcanic Cone, which is 3000 meters above the base of the mountain, is $400.Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.Complete the equation for the relationship between the total fee and vertical distance.
Answer:
[tex]y(x)=100+0.1x[/tex]
Step-by-step explanation:
Let y represent the total fee (in dollars) of a trip where they climbed x vertical meters.
We know that there is an initial fee of $100, so we know that if we climb x=0 meters, we have a fee of y(0)=100.
[tex]y(0)=100[/tex]
As there is a constant fee (lets called it m) for each vertical meter climbed, we have a linear relationship as:
[tex]y(x)-y(0)=m(x-0)\\\\\\y(x)-100=mx\\\\\\y(x)=100+mx[/tex]
We know that for x=3000, we have a fee of $400, so if we replace this in the linear equation, we have:
[tex]y(3000)=100+m(3000)=400\\\\\\100+3000m=400\\\\3000m=400-100=300\\\\m=300/3000=0.1[/tex]
Then, we have the equation for the total fee in function of the vertical distance:
[tex]y(x)=100+0.1x[/tex]
On an uphill hike Ted climbs at 3mph. Going back down, he runs at 5mph. If it takes him forty minutes longer to climb up than run down, then what is the length of the hike?
Answer:
10 miles
Step-by-step explanation:
3 mi/1 hr x (h hours + 2/3 hr) = 5 mi/1 hr x h hours
3h + 2 = 5h
2 = 2h
h = 1 hour
3mi/hr x 1 2/3 hr = 5 miles
5 mi/hr x 1 hr = 5 miles
He hiked 10 miles. (
The pressure applied to a leverage bar varies inversely as the distance from the object. If 150 pounds is required for a distance of 10 inches from the object how much pressure is needed for a distance of 3 inches
Answer:
500 pounds
Step-by-step explanation:
Let the pressure applied to the leverage bar be represented by p
Let the distance from the object be represented by d.
The pressure applied to a leverage bar varies inversely as the distance from the object.
Written mathematically, we have:
[tex]p \propto \dfrac{1}{d}[/tex]
Introducing the constant of proportionality
[tex]p = \dfrac{k}{d}[/tex]
If 150 pounds is required for a distance of 10 inches from the object
p=150 poundsd=10 inches[tex]150 = \dfrac{k}{10}\\\\k=1500[/tex]
Therefore, the relationship between p and d is:
[tex]p = \dfrac{1500}{d}[/tex]
When d=3 Inches
[tex]p = \dfrac{1500}{3}\\\implies p=500$ pounds[/tex]
The pressure applied when the distance is 3 inches is 500 pounds.
Find the vertical and horizontal asymptotes, domain, range, and roots of f (x) = -1 / x-3 +2.
Answer:
Vertical asymptote: [tex]x=3[/tex]
Horizontal asymptote: [tex]f(x) =2[/tex]
Domain of f(x) is all real numbers except 3.
Range of f(x) is all real numbers except 2.
Step-by-step explanation:
Given:
Function:
[tex]f (x) = -\dfrac{1 }{ x-3} +2[/tex]
One root, [tex]x = 3.5[/tex]
To find:
Vertical and horizontal asymptote, domain, range and roots of f(x).
Solution:
First of all, let us find the roots of f(x).
Roots of f(x) means the value of x where f(x) = 0
[tex]0= -\dfrac{1 }{ x-3} +2\\\Rightarrow 2= \dfrac{1 }{ x-3}\\\Rightarrow 2x-2 \times 3=1\\\Rightarrow 2x=7\\\Rightarrow x = 3.5[/tex]
One root, [tex]x = 3.5[/tex]
Domain of f(x) i.e. the values that we give as input to the function and there is a value of f(x) defined for it.
For x = 3, the value of f(x) [tex]\rightarrow \infty[/tex]
For all, other values of [tex]x[/tex] , [tex]f(x)[/tex] is defined.
Hence, Domain of f(x) is all real numbers except 3.
Range of f(x) i.e. the values that are possible output of the function.
f(x) = 2 is not possible in this case because something is subtracted from 2. That something is [tex]\frac{1}{x-3}[/tex].
Hence, Range of f(x) is all real numbers except 2.
Vertical Asymptote is the value of x, where value of f(x) [tex]\rightarrow \infty[/tex].
[tex]-\dfrac{1 }{ x-3} +2 \rightarrow \infty[/tex]
It is possible only when
[tex]x-3=0\\\Rightarrow x=3[/tex]
[tex]\therefore[/tex] vertical asymptote: [tex]x=3[/tex]
Horizontal Asymptote is the value of f(x) , where value of x [tex]\rightarrow \infty[/tex].
[tex]x\rightarrow \infty \Rightarrow \dfrac{1 }{ x-3} \rightarrow 0\\\therefore f(x) =-0+2 \\\Rightarrow f(x) =2[/tex]
[tex]\therefore[/tex] Horizontal asymptote: [tex]f(x) =2[/tex]
Please refer to the graph of given function as shown in the attached image.
what is this? 15.8 = d/25
Answer:
395
Step-by-step explanation:
15.8=d/25
multiply both sides by 25 to remove the denominator
25×15.8=d
d=395
Please help, I don’t need an explanation, just the answer.
Answer:
x=2 y=4
Step-by-step explanation:
Katie wants to create a rectangular frame for a picture. She has 60 inches of material. If she wants the length to be 3 more than 2 times the width what is the largest possible length
Answer:
Largest possible length is 21 inches.
Step-by-step explanation:
Given:
Total material available = 60 inches
Length to be 3 more than twice of width.
To find:
Largest possible length = ?
Solution:
As it is rectangular shaped frame.
Let length = [tex]l[/tex] inches and
Width = [tex]w[/tex] inches
As per given condition:
[tex]l = 2w+3[/tex] ..... (1)
Total frame available = 60 inches.
i.e. it will be the perimeter of the rectangle.
Formula for perimeter of rectangle is given as:
[tex]P = 2 \times (Width + Length)[/tex]
Putting the given values and conditions as per equation (1):
[tex]60 = 2 \times (w+ l)\\\Rightarrow 60 = 2 \times (w+ 2w+3)\\\Rightarrow 60 = 2 \times (3w+3)\\\Rightarrow 30 = 3w+3\\\Rightarrow 3w = 27\\\Rightarrow w = 9 \ inch[/tex]
Putting in equation (1):
[tex]l = 2\times 9+3\\\Rightarrow l = 21\ inch[/tex]
So, the answer is:
Largest possible length is 21 inches.
what is 20% of 50naira?
Answer:
10
Step-by-step explanation:
To find 20% of 50 you need to times 20 with 50 and divide by 100.
20×50÷100
=10
8,5,15,18,3,what's next
13 since i think it's when a single didget number has a 1 at the beginning. i might be wrong thoough
What is viscosity?
O A measure of the oil's quality
O An oil's resistance to flow at different temperatures
A reference to synthetic oil; all oils with viscosity are synthetic
O A new motor oil ingredient
< BACK
NEXT
>
Answer:
viscosity is the state of being thick, sticky, and semifluid in consistency, due to internal friction.
"cooling the fluid raises its viscosity"
a quantity expressing the magnitude of internal friction, as measured by the force per unit area resisting a flow in which parallel layers unit distance apart have unit speed relative to one another.
plural noun: viscosities
"silicone oils can be obtained with different viscosities"
Step-by-step explanation:
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. hope this helps you :)
Answer:
O An oil's resistance to flow at different temperatures
Step-by-step explanation:
Internal friction of a moving fluid .
Which linear inequality is represented by the graph?
Answer:
A. y ≤ 1/2x + 2
Step-by-step explanation:
Well look at the graph,
It is a solid line with it shaded down,
meaning it is y ≤,
So we can cross out B. and D.
So the y intercept is 2, we know this because the y intercept is the point on the line that touches the y axis.
now the slope can be found by seeing how far away each points are from each other,
Hence, the answer is A. y ≤ 1/2x + 2
The mean number of words per minute (WPM) typed by a speed typist is 149149 with a standard deviation of 1414 WPM. What is the probability that the sample mean would be greater than 147.8147.8 WPM if 8888 speed typists are randomly selected
Answer:
The probability is [tex]P(\= X > x ) = 0.78814[/tex]
Step-by-step explanation:
From the question we are given that
The population mean is [tex]\mu = 149[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The random number [tex]x = 147.81[/tex]
The sample size is [tex]n = 88[/tex]
The probability that the sample mean would be greater than [tex]P(\= X > x ) = P( \frac{ \= x - \mu }{\sigma_{\= x} } > \frac{ x - \mu }{\sigma_{\= x} } )[/tex]
Generally the z- score of this normal distribution is mathematically represented as
[tex]Z = \frac{ \= x - \mu }{\sigma_{\= x} }[/tex]
Now
[tex]\sigma_{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x } = \frac{14 }{\sqrt{88} }[/tex]
[tex]\sigma_{\= x } = 1.492[/tex]
Which implies that
[tex]P(\= X > x ) = P( Z > \frac{ 147.81 - 149 }{ 1.492} )[/tex]
[tex]P(\= X > x ) = P( Z > -0.80 )[/tex]
Now from the z-table the probability is found to be
[tex]P(\= X > x ) = 0.78814[/tex]
McKenzie has a bag contains six red marbles four blue marbles and 14 yellow marbles if she chooses one marble from the bag what is the probability that the marble is not yellow
Answer:
5/12
Step-by-step explanation:
Total number of marbles in the bag
6red+ 4blue + 14 yellow = 24 marbles
Not yellow marbles = 10 marbles
P ( not yellow ) = number of not yellow marbles / total marbles
=10/24
= 5/12
Answer:
5/12
Step-by-step explanation:
6 red marbles
4 blue marbles
14 yellow marbles
total marbles = 6 + 4 + 14 = 24 marbles
24 - 14 = 10 marbles
10 marbles are not yellow.
P(not yellow) = 10/24 = 5/12
If two points are given, then exactly one line can be drawn through those two points. Which geometry term does the statement represent?
Answer:
its a postulate
Step-by-step explanation:
The statement represents a geometric postulate.
A postulate is one of the basic concepts of geography, and indicates an assumption that is accepted as true in the given theory.
In this way, the main characteristic of the postulate is its general acceptance by the spectrum that studies it, that is, by the totality or vast majority of the scientists who are dedicated to its analysis.
Learn more in https://brainly.com/question/17252827
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 10% of the time if the person does not have the virus. (This 10% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive".
(a) Using Bayes’ Theorem, when a person tests positive, determine the probability that the person is infected.
(b) Using Bayes’ Theorem, when a person tests negative, determine the probability that the person is not infected.
Answer:
A) P(A|B) = 0.01966
B) P(A'|B') = 0.99944
Step-by-step explanation:
A) We are told that A is the event "the person is infected" and B is the event "the person tests positive".
Thus, using bayes theorem, the probability that the person is infected is; P(A|B)
From bayes theorem,
P(A|B) = [P(A) × P(B|A)]/[(P(A) x P(B|A)) + (P(A') x P(B|A'))]
Now, from the question,
P(A) = 1/400
P(A') = 399/400
P(B|A) = 0.8
P(B|A') = 0.1
Thus;
P(A|B) = [(1/400) × 0.8)]/[((1/400) x 0.8) + ((399/400) x (0.1))]
P(A|B) = 0.01966
B) we want to find the probability that when a person tests negative, the person is not infected. This is;
P(A'|B') = P(Not infected|negative) = P(not infected and negative) / P(negative) = [(399/400) × 0.9)]/[((399/400) x 0.9) + ((1/400) x (0.2))] = 0.99944