Answer:
Step-by-step explanation:
Given that :
The probability of winning is 0.8
i.e P(winning) = 0.8
Then P(losing) = 0.2
a) Y ~ Geometric distribution
[tex]P = P(loose) =0.2 \\ \\ \mu_{\delta} = \dfrac{1}{P}= \dfrac{1}{0.2}\\ \\ = 5.0 \\ \\ \\ \dfrac{\sigma ^2 }{\delta } = \dfrac{1-P}{P^2} \\ \\ =\dfrac{0.8}{0.04} \\ \\ = 20[/tex]
b) Y ~ Negative Binomial Distribution
[tex]P = P (loose) =0.2 \\ \\ \delta = number \ of \ loss = 4 \\ \\ \mu_{\delta} = \dfrac{\delta}{P} \\ \\ =\dfrac{4}{0.2} \\ \\ = 20 \\ \\ \\ \sigma ^2_{\delta} = \dfrac{\delta (1-P)}{P^2} \\ \\ = \dfrac{4*0.8}{0.04}\\ \\ = 80[/tex]
c) Y ~ Binomial Distribution;
n = 100 ; P = 0.8
[tex]\mu_{\delta} = nP \\ \\ = 100*0.8 \\ \\ = 80 \\ \\ \\ \sigma_{\delta}^2 = nP(1-P) \\ \\ =80*0.2 \\ \\ = 16[/tex]
Suppose a simple random sample of size n= 11 is obtained from a population with u = 62 and a = 14.
(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample me
(b) Assuming the normal model can be used, determine P(x < 65.8).
(c) Assuming the normal model can be used, determine P(x 2 64.2).
Click here to view the standard normal distribution table (page 1).
Click here to view the standard normal distribution table (page 2).
(a) What must be true regarding the distribution of the population?
O A. Since the sample size is large enough, the population distribution does not
need to be normal.
B. The population must be normally distributed and the sample size must be large.
OC. The population must be normally distributed.
OD. There are no requirements on the shape of the distribution of the population.
Answer:
a) C. The population must be normally distributed.
b) P(x < 65.8) = 0.8159
c) P(x > 64.2) = 0.3015
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 62, \sigma = 14, n = 11, s = \frac{14}{\sqrt{11}} = 4.22[/tex]
(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample me
n < 30, so the distribution of the population must be normal.
The correct answer is:
C. The population must be normally distributed.
(b) Assuming the normal model can be used, determine P(x < 65.8).
This is the pvalue of Z when X = 65.8. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{65.8 - 62}{4.22}[/tex]
[tex]Z = 0.9[/tex]
[tex]Z = 0.9[/tex] has a pvalue of 0.8159.
So
P(x < 65.8) = 0.8159
(c) Assuming the normal model can be used, determine P(x > 64.2).
This is 1 subtracted by the pvalue of Z when X = 64.2. So
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{64.2 - 62}{4.22}[/tex]
[tex]Z = 0.52[/tex]
[tex]Z = 0.52[/tex] has a pvalue of 0.6985.
1 - 0.6985 = 0.3015
So
P(x > 64.2) = 0.3015
Use the triangle shown on the right to complete the statement:
_____ (75*)=14.1/x
Answer: cos
2nd part: Use the equation shown to solve for the value of x. Round to the nearest tenth.
cos(75*)=14.1/x x=14.1/cos(75*)
Answer: 54.5 in
Answer:
Step-by-step explanation:
The answer is 54.5 on edg
For the triangle shown on the right, the term cos is used to complete the statement and the value of x is 54.5 degree for the triangle.
What is right angle triangle property?In a right angle triangle ratio of adjacent side to the hypotenuse side is equal the cosine angle between them.
[tex]\rm \cos=\dfrac{ adjacent}{hypotenuse}[/tex]
Here, (a) is the adjacent side, (c) is the hypotenuse side and θ is the angle made between them.
The traingle is not provided in the image. Let the triangle for the given problem is similar to the attached image below.
Here the hypontenuse side is AC and adjacent side of triangle is 14.1 units. Thus by the property of right angle triangle,
[tex]\cos75=\dfrac{AB}{AC}\\\cos75=\dfrac{14.1}{x}[/tex]
Now if we compare the above equation with the given statement __(75*)=14.1/x. The term cos is filled in the blank.
For the second part, we need to find the value of x. Thus solve the above equation further as,
[tex]\cos75=\dfrac{14.1}{x}\\x=\dfrac{14.1}{\cos75}\\x=\dfrac{14.1}{0.25882}\\x\approx54.5^o[/tex]
Hence, For the triangle shown on the right, the term cos is used to complete the statement and the value of x is 54.5 degree for the triangle.
Learn more about the right angle triangle property here;
https://brainly.com/question/22790996
Please answer this question !! 20 points and brainliest !!
Answer:
yes, they are parallel; the general form equation differs only in the constant.
Step-by-step explanation:
Subtract y from the first equation and multiply by 2.
y -y = 1/2x -y +3
0 = x -2y +6
x -2y +6 = 0 . . . . . put in general form
Compared to the second equation, we see the only difference is in the constant, +6 vs. -8.
This means the lines are parallel.
Please help! Correct answer only, please! The following information matrices show how many of each vehicle type sold and the bonus amount each salesperson receives for selling that type of vehicle for the car dealership for the week. Which salesperson sold the most vehicle for the week described?A. Scott B. Each sold the same number of vehicles C. Kelly D. Mark
Answer: b) Each sold the same number of vehicles
Step-by-step explanation:
This question is only asking for the quantity of vehicles (not the total amount earned) so we can disregard the second matrix and find the sum of each row in the first matrix.
Kelly: 8 + 2 + 6 = 16
Scott: 7 + 8 + 1 = 16
Mark: 10 + 4 + 2 = 16
The total number of vehicles sold by each person is the same
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
Solution,
Radius=2 m
Area =pi r^2
= 3.142*(2)^2
=12.568 m^2
hope it helps
Good luck on your assignment
Assume Shelley Kate decides to take her social security at age 63. What amount of social security benefit will she receive each month, assuming she is entitled to $720 per month
She will receive a lot more money because she is already retired from work already and will win as bit more money
Please help! Will give Brainliest!
Steps 1-4 in attachment (#4 below)
Step 4: Use the equation you wrote in Step 3. Write the equation for the graph of g(x) that has also been shifted right 1 unit.
Answer:
g(x) = 2|x|g(x) = -2|x|g(x) = -2|x| -3g(x) = -2|x-1| -3Step-by-step explanation:
1) Vertical stretch is accomplished by multiplying the function value by the stretch factor. When |x| is stretched by a factor of 2, the stretched function is ...
g(x) = 2|x|
__
2) Reflection over the x-axis means each y-value is replaced by its opposite. This is accomplished by multiplying the function value by -1.
g(x) = -2|x|
__
3) As you know from when you plot a point on a graph, shifting it down 3 units subtracts 3 from the y-value.
g(x) = -2|x| -3
__
4) A right-shift by k units means the argument of the function is replaced by x-k. We want a right shift of 1 unit, so ...
g(x) = -2|x -1| -3
A man driving a car leaves a point A drives up to 32.5 km in a direction of 070. A cyclist leaves the same point in a direction 130 travelling. After some few hours both drivers are 80 km apart. Use this information to answer 3 questions. (1). What is the distance covered by the cyclist at this time in 2 d.p. (2). Find the bearing of Cyclist from the Car. correct to 1 d.p. (3). Find the shortest distance between the car and the line of path of the cyclist, in 2 d.p.
Answer: No 1 is 91.14 km who else could help with the rest of the solution for number 1, 2 & 3.
Stanford University conducted a study of whether running is healthy for men and women over age 50. During the first eight years of the study, 1.5% of the 451 members of the 50 Plus Fitness Association died. We are interested in the proportion of people over 50 who ran and died in the same eight year period.
Construct a 97% confidence interval for the population proportion of people over 50 who ran and died in the same eight–year period.
Define the random variable in X and P in words.
Which distribution should you use in this problem?
Answer:
Step-by-step explanation:
a) Confidence interval is written as
Sample proportion ± margin of error
Margin of error = z × √pq/n
Where
z represents the z score corresponding to the confidence level
p = sample proportion. It also means probability of success
q = probability of failure
q = 1 - p
p = x/n
Where
n represents the number of samples
x represents the number of success
From the information given,
n = 451
x = 1.5/100 × 451 = 7
p = 7/451 = 0.02
q = 1 - 0.02 = 0.98
To determine the z score, we subtract the confidence level from 100% to get α
α = 1 - 0.97 = 0.1
α/2 = 0.01/2 = 0.03
This is the area in each tail. Since we want the area in the middle, it becomes
1 - 0.03 = 0.97
The z score corresponding to the area on the z table is 2.17. Thus, Thus, the z score for a confidence level of 97% is 2.17
Therefore, the 97% confidence interval is
0.02 ± 2.17√(0.02)(0.98)/451
= 0.02 ± 0.014
b) x represents the number of members of the 50 Plus Fitness Association who ran and died in the same eight–year period.
P represents the proportion of members of the 50 Plus Fitness Association who ran and died in the same eight–year period.
The distribution that should be used is the normal distribution
A cylindrical tank has a radius of 2 m and a height of 9 m. The tank is filled with water. Find the work needed to pump the top 3 m of water out the top of the tank. (Use 9.8 m/s2 for g and the fact that the density of water is 1000 kg/m3.)
Answer:
3,325,140 Joules
Step-by-step explanation:
Work done by the pump = Force applied to pump * distance covered by the water.
Since Force = mass * acceleration due to gravity
Force = (density of water * volume of the tank) * acceleration due to gravity
F =ρVg
Workdone = (ρVg )* d
Given ρ = 1000kg/m³, g = 9.8m/s², d = 3m
[tex]V = \pi r^{2}h\\V = \pi (2)^{2} *9\\V = 36 \pi \\V =113.10m^{3}[/tex]
Workdone by the pump = 1000 * 113.10 * 9.8 * 3
Workdone by the pump = 3,325,140Joules
Will pick brainliest! I need help with this, actual effort in answering is much appreciated.
Answer:
option 2
Step-by-step explanation:
4^2=16/8=2. 4^2=16/16=1. 2-1=1
Two negative integers are 8 units apart on the number line and have a product of 308. Which equation could be used to determine x, the smaller negative integer? A: x^2 + 8x – 308 = 0 B: x^2 – 8x + 308 = 0 C: x^2 + 8x + 308 = 0 D: x^2 − 8x − 308 = 0
Answer:
A
Step-by-step explanation:
The smaller negative integer is x.
The larger one is x+8, since they are 8 units apart.
The equation would be:
x*(x+8)=308
Let's simplify it by distributing.
x^2+8x=308
Subtract 308 from both sides.
x^2+8x-308=0
Therefore, the answer would be A.
Results of 99% confidence intervals are consistent with results of two-sided tests with which significance level? Explain the connection. A 99% confidence interval is consistent with a two-sided test with significance level alphaequals nothing because if a two-sided test with this significance level does not reject the null hypothesis, then the confidence interval ▼ contains does not contain the value in the null hypothesis.
Answer:
Yes, they are consistent.
A 99% confidence interval is consistent with a two-sided test with significance level alpha=0.01 because if a two-sided test with this significance level does not reject the null hypothesis, then the confidence interval does contains the value in the null hypothesis.
Step-by-step explanation:
Yes, they are consistent.
A 99% confidence interval is consistent with a two-sided test with significance level alpha=0.01 because if a two-sided test with this significance level does not reject the null hypothesis, then the confidence interval does contains the value in the null hypothesis.
The critical values of the confidence level are equivalent to the critical values in the hypothesis test. In the case that the conclusion of the test is to not reject the null hypothesis, the test statistic falls within the acceptance region: its value is within the critical values of the two-sided test.
Then, it is also within the critical values of the confidence interval and the sample mean (or other measure) will be within the confidence interval bounds.
The perimeter of the shape is 28 cm. Find the value of radius.
Answer:
r = 4.2805cm
Step-by-step explanation:
ok first the shape its made of two slant height and and an arc of degree 70°
The total perimeter = 28cm
The formula for the total perimeter= 2l + 2πl(70/360)
Where l is the radius of the shape.
But l = 2r
So
= 2l + 1.2217l
= 3.2217l
28 = 3.2217l
l = 28/3.2217
l = 8.691
Recall that l = 2r
8.691= 2r
r = 8.691/2
r = 4.2805cm
A motorboat moves across the lake at a constant speed when it begins it is which function describes the motor boats distance from the shore a Y equals 4X +50 PY equals 9X +50 CY equals negative 9X +50 DY equals negative 4X +50
Which of the following describe an angle with a vertex at Y?
Check all that apply.
Answer:
X
Step-by-step explanation:
X and Y make up a graph
What’s the correct answer for this question?
Answer
A. 18(3/4)π
Explanation
In the attached file
Which of the functions below could have created this graph?
Answer:
i don't know if this is right or not i did to much work to put it all down but i pretty sure it's C.
On a number line, b, is located the same distance from 0 as another number, a, but in the opposite direction. The number b varies directly with number a. For example b= 11/4 when a= -11/4
A) b=-a
B) -b=-a
C) b-a=0
D) b(-a)=0
Answer:
B and A
Step-by-step explanation:
So based on the facts given, we know that b and a both have the same abasolute value. It does not matter whether a or b is negative or positive.
A bookstore charges $4 for shipping, no matter how many books you buy. Irena makes a graph showing the shipping cost for I to 5 books. She claims that the points she graphed lie on a line. Does her statement make sense? Explain
Answer:
Yes
Step-by-step explanation:
1 book = $4
2 books = 2*$4
3 books = 3*$4
4 books = 4*$4
5 books = 5*$4
This can be shown as: y=4x
y=ax+b is linear function, Irena is right
For each of the sequences below, find a formula that generates the sequence. (a) 4, 10, 16, 22, 28, 34, 40, . . . (b) 5, 15, 45, 135, 405, . . . (c) 10, 20, 10, 20, 10, 20, 10
Answer:
[tex](a) \: 6n-2\\(b)\: 5 \times 3^{n-1}\\(c)\: 5({-1^n}+3)[/tex]
Step-by-step explanation:
[tex]6(1)-2=4[/tex]
[tex]6(2)-2=10[/tex]
[tex]5 \times 3^{(3)-1}=45[/tex]
[tex]5 \times 3^{(4)-1}=135[/tex]
[tex]5(-1^{(5)}+3)=10[/tex]
[tex]5(-1^{(6)}+3)=20[/tex]
a) The formula that generates the sequence 4, 10, 16, 22, 28, 34, 40 is an = 4 + 6 * (n - 1)
b) The formula that generates the sequence 5, 15, 45, 135, 405 is an = 5 * 3ⁿ⁻¹
c) The formula that generates the sequence 10, 20, 10, 20, 10, 20, 10 is an = 10 + 10 * ((n + 1) % 2)
(a) The sequence increases by 6 at each step. To generate the sequence, we can use the formula: an = 4 + 6 * (n - 1), where "an" represents the nth term in the sequence, and "n" is the position of the term in the sequence.
(b) The sequence is a geometric progression with a common ratio of 3. To generate the sequence, we can use the formula: an = 5 * 3ⁿ⁻¹ where "an" represents the nth term in the sequence, and "n" is the position of the term in the sequence.
(c) The sequence alternates between 10 and 20. To generate the sequence, we can use the formula: an = 10 + 10 * ((n + 1) % 2), where "an" represents the nth term in the sequence, and "%" represents the modulo operation, which results in 0 when n is even and 1 when n is odd. So, when n is even, an = 10, and when n is odd, an = 10 + 10 = 20.
To learn more about sequence click on,
https://brainly.com/question/30525908
#SPJ2
What is 80,000,000,000,000 in standard form (80 billion)
Answer:
8x10^13
Step-by-step explanation:
Suppose that it costs $200 per day to search for chanterelle mushrooms at Pt. Reyes National Seashore. On an average day, the total weight of mushrooms M found at Pt. Reyes is M = 100x-x^2 pounds ,where x is the number of people mushroom hunting on that day. Chanterelles can be sold for $60 per pound. How many more people will go mushroom hunting than is socially optimal?
Answer:
For an overall profit, we need at least 97 people to go mushroom hunting.
Any number of people that is more than the socially optimal number should go mushroom hunting on any given day.
Step-by-step explanation:
The socially optimal number of people that will go mushroom hunting is the number where amount spent to go mushroom hunting equally balances the amount obtained by selling the mushrooms obtained.
If x people go mushroom hunting in a day, the total cost of hunting for that day = 200x
The amount of mushroom obtained is given as
M = (100x - x²) in pounds
The selling price of 1 pound = $60
The cost of M pounds = 60M = 60(100x - x²)
= (6000x - 60x²)
At socially optimal number,
200x = 6000x - 60x²
60x² - 6000x + 200x = 0
60x² - 5800x = 0
x(60x - 5800)
x = 0 or (60x - 5800) = 0
x = 0 or x = (5800/60) = 96.67
Socially optimal number of people = 0 or 96.67
For realistic purposes, we take the socially optimal number of people that went mushroom hunting as 96.67
Any number above this number will result in an overall profit, and any number below it results in an overall loss.
So, for an overall profit, we need at least 97 people to go mushroom hunting.
Hope this Helps!!
Answer:
48 people
Step-by-step explanation:
When allocating resources to a particular task it is important to assign optimal units of resources.
In this scenario if the people hunting mushrooms are too many they will not make profit. But an optimal number will guarantee everyone makes positive profit.
Optimal = (M÷x)Px - 200= 0
Optimal= {(100x -x^2) ÷ x} * 60 = 200
Optimal = 6000 - 60x = 200
x= 96.666~ 97 people
However to maximise profit MTB = MTC
Socially Optimal quantity = 60(100x - x^2) -200
∂(Socially Optimal amount) ÷ ∂ x= 6000 - 120x - 200
x = 48.33~ 48 people
So 48 more people go mushroom hunting than is socially optimal
The average of 12, 25 , 33 , and N is 120. Find N.
Answer:
So the formula for mean is you add up all of the numbers and divide by the number of numbers, that will give you the mean/average. So that means that (12+25+33+N)/4 = 120. We can simplify by first adding all of the numbers and multiplying both sides by 4 which will cancel out the four on the right side.
70+N/4 = 120
480 = 70+N
So then we subtract 70 from both sides. Then we get 410 = N.
The answer is
410 is AnswerA cylinder with a base diameter of x units has a volume of
cubic units
Which statements about the cylinder
options.
The radius of the cylinder is 2x units.
The area of the cylinder's base is ax? square units.
The area of the cylinder's base is nx square units.
The height of the cylinder is 2x units.
The height of the cylinder is 4x units.
Corrected Question
A cylinder with a base diameter of x units has a volume of [tex]\pi x^3[/tex] cubic units
Which statements about the cylinder are true? Check all that apply.
The radius of the cylinder is x units. The radius of the cylinder is 2x units. The area of the cylinder’s base is [tex]\dfrac{1}{4}\pi x^2[/tex] square units. The area of the cylinder’s base is [tex]\dfrac{1}{2}\pi x^2[/tex] square units. The height of the cylinder is 2x units. The height of the cylinder is 4x units.Answer:
The area of the cylinder’s base is [tex]\dfrac{1}{4}\pi x^2[/tex] square units. The height of the cylinder is 4x units.Step-by-step explanation:
If the Base Diameter = x
Therefore: Base radius [tex]=\dfrac{x}{2}$ units[/tex]
Area of the base [tex]=\pi r^2 =\pi (\dfrac{x}{2})^2 =\dfrac{\pi x^2}{4}$ square units[/tex]
Volume =Base Area X Height
[tex]\pi x^3 =\dfrac{\pi x^2}{4} X h\\$Height, h = \pi x^3 \div \dfrac{\pi x^2}{4}\\=\pi x^3 \times \dfrac{4}{\pi x^2}\\h=4x$ units[/tex]
Therefore:
The area of the cylinder’s base is [tex]\dfrac{1}{4}\pi x^2[/tex] square units. The height of the cylinder is 4x units.
6z+10=-2
pls answer'
i willmarke brainlest
Answer:
Step-by-step explanation: 6z=-2-10
6z= -12
z=-12/6
then z= -2
At a gas station, 50% of the customers use regular gas, 30% use mid-grade gas and 20% use premium gas. Of those customers using regular gas, only 30% fill their tanks. Of those customers using mid-grade gas, 60% fill their tanks, whereas of those using premium, 50% fill their tanks. What is the probability that the next customer will request mid-grade gas and fill the tank
Answer:
The probability that the next customer will request mid-grade gas and fill the tank is 0.1800
Step-by-step explanation:
In order to calculate the probability that the next customer will request mid-grade gas and fill the tank we would have to make the following calculation:
probability that the next customer will request mid-grade gas and fill the tank= percentage of the people using mid-grade gas* percentage of the people using mid-grade gas that fill their tanks
probability that the next customer will request mid-grade gas and fill the tank= 30%*60%
probability that the next customer will request mid-grade gas and fill the tank= 0.1800
The probability that the next customer will request mid-grade gas and fill the tank is 0.1800
Evaluate 16x^0 if x= -3
Answer:
16
Step-by-step explanation:
[tex]16x^0= \\\\16(-3)^0= \\\\16(1)= \\\\16[/tex]
Hope this helps!
x = -3
[tex]A = 16.(-3)^{0} \\ x^{0} = 1\\A = 16.1 \\A = 16[/tex]
Remember that [tex]x^{0} = 1[/tex] ∀ [tex]x[/tex]
Water is flowing into and out of two vats, Vat A and Vat B. The amount of water, in gallons, in Vat A at time t hours is given by a function A(t) and the amount in Vat B is given by B(t). The two vats contain the same amount of water at t=0. You have a formula for the rate of flow for Vat A and the amount in Vat B: Vat A rate of flow: A(t)-3t2+24t-21 Vat B amount: B(t)-2t2+16t+40
(a) Find all times at which the graph of A(t) has a horizontal tangent and determine whether each gives a local maximum or a local minimum of A(t) smaller t= 1 gives a local minimum larger t= 7 l maximum
(b) Let D(t)-B(t)-A(t). Determine all times at which D(t) has a horizontal tangent and determine whether each gives a local maximum or a local minimum. (Round your times to two digits after the decimal.) xgives a Select x gives a Select smaller t- larger t=
(c) Use the fact trruntain the same amount of water at ta0 to find the formula for A(), the amount in Vat A at time t Enter a number
(d) At what time is the water level in Vat A rising most rapidly? t- hours
(e) what is the highest water level in Vat A during the interval from t=0 to t=10 hours? gallons
(f) What is the highest rate at which water flows into Vat B during the interval from t-0 to t-10 hours? gallons per hour
(g) How much water flows into VatA during the interval from t=1 to t-8 hours? gallons
Note: The first file attached contains the clear and complete question
Answer:
a) The times at which the graph of A(t) has horizontal tangent are t = 1 and t = 7
A(t) has a local maximum at t=7
A(t) has a local minimum at t=1
b) The times at which the graph of D(t) has horizontal tangent are t = 1.59 and t = 7.74
D(t) has a local maximum at t=1.59
D(t) has a local minimum at t=7.74
c) A(t) = (-t^3) + 8(t^2) -21t + 40
d) The water level in vat A is rising most rapidly at t = 4 hrs
e) 138 gallons
f) 18 gallons per hour
g) 98 gallons
Step-by-step explanation:
For clarity and easiness of expression, the calculations are handwritten and attached as files below.
Each step is neatly expressed and solutions to each part of the question are clearly written
A cognitive psychologist would like to evaluate the claim that the omega-3 fatty acids can help improve memory in normal adult humans. One group of participants is given a large dose of fish extract containing the Omega-3 (500 mg), and a second group is given a placebo containing no Omega-3 (0 mg). The researcher asks each participant to read the front page of a local newspaper thoroughly every morning and to take their prescribed dosage (of either Omega-3 or placebo) immediately afterwards. The researcher gives each participant a memory test at the end of two weeks and records how many news items each participant remembers from the past three weeks of news. Answer the following:
A) What names would you give the independent and dependent variables;
B) Is the dependent variable discrete or continuous?
C) What scale of measurement (nominal, ordinal, interval or ratio; and continuous or discrete) is used to measure the independent variable?
D) What research method is being used (experimental or observational)? Explain why you conclude that the research method is one or the other.
Answer:
(a)
Independent Variable- Dosage of Omega-3 Fatty AcidsDependent Variable - Number of news item remembered(b)Discrete
(c)Ratio Scale and Discrete Variable
(d) Experimental Method
Step-by-step explanation:
The psychologist wants to evaluate the claim that omega-3 fatty acids can help improve memory in normal adult humans.
(a)In the study, the participants in the two groups were given fish extracts containing Omega-3 (500 mg) and no Omega-3 (0 mg).
The memory test involves measuring the number of items each participant remembers from the past three weeks of news.
Therefore:
Independent Variable- Dosage of Omega-3Dependent Variable - Number of news item remembered(b) The dependent variable is discrete since the number of news items remembered can only be whole numbers.
(c)The independent variable is in milligrams of Omega-3 where the placebo is 0 mg. This is a ratio scale since it has an absolute zero.
Since the dosage is given in multiples of 50mg, it is a discrete variable.
(d)Since the psychologist seeks to manipulate the conditions of the study by introducing Omega-3 to some of the participants and placebo to other participants, it is an experimental distribution.