You throw a ball of mass 1 kilogram upward with a velocity of a=25 m/s on mars, where the force of gravity is g=3.711 m/s2. Use your calculator to approximate how much longer the ball is in the air on mars.

Answers

Answer 1

You throw a ball of mass 1 kilogram upward with a velocity of a=25 m/s on mars, where the force of gravity is g=3.711 m/s2.

To find out how much longer the ball is in the air on Mars, we need to calculate the time it takes for the ball to reach its highest point and then fall back to the ground.

1. First, we need to find the time it takes for the ball to reach its highest point. At this point, its velocity will be zero. We can use the following equation:
v = u + at
where v is the final velocity (0 m/s), u is the initial velocity (25 m/s), a is the acceleration due to gravity on Mars (-3.711 m/s²) and t is the time taken.

0 = 25 + (-3.711)t
t = 25 / 3.711

2. Now, we can calculate the time taken (t) to reach the highest point:
t ≈ 6.73 seconds

3. Since the time taken to reach the highest point and to fall back down is the same, we can multiply this time by 2 to find the total time the ball is in the air:
Total time ≈ 6.73 * 2 ≈ 13.46 seconds

So, the ball is in the air for approximately 13.46 seconds on Mars.

To know more about Velocity:

https://brainly.com/question/17127206

#SPJ11


Related Questions

5. Explain the law of conservation of energy using a relevant example from every day life.​

Answers

The law of conservation of energy states that energy is neither created nor destroyed but is transformed from one form to another.

What is law of conservation of energy?

The law of conservation of energy is the law that states that energy is neither created nor destroyed but is transformed from one form to another.

Examples of activities of everyday life that shows the conservation of energy include the following:

For loudspeaker, electrical energy is converted into sound energy.

For a microphone, sound energy is converted into electrical energy.

For a generator, mechanical energy is converted into electrical energy.

When fuels are burnt, chemical energy is converted into heat and light energy

Learn more about energy here:

https://brainly.com/question/25959744

#SPJ1

An example of the law of conservation of energy is a roller coaster.

What is the law of conservation of energy?

The law of conservation of energy states that energy cannot be created or destroyed, only transferred or transformed from one form to another. This means that the total amount of energy in a closed system remains constant over time.

A roller coaster car gains kinetic energy as it moves down the track, but it also loses potential energy. At the bottom of the track, the car has the most kinetic energy and the least potential energy, while at the top of the track, it has the most potential energy and the least kinetic energy. However, the total amount of energy in the system remains constant.

Learn about law of conservation of energy here https://brainly.com/question/166559

#SPJ1

after a sci a patient may experience all of the following except: a. spasticity b. resting tremor c. autonomic dysreflexia d. orthostatic hypotension

Answers

The right response is resting tremor (option b). A patient may have spasticity, autonomic dysreflexia, and orthostatic hypotension following a spinal cord injury (SCI). SCI is not often linked to resting tremor.

SCI can interfere with the body's ability to communicate with the brain, leading to a variety of physical symptoms. Spasticity, which manifests as stiffness, muscle spasms, and increased muscle tone, is a frequent consequence. Patients with SCI at or above the T6 level may develop autonomic dysreflexia, a potentially fatal illness that is characterised by an abrupt rise in blood pressure. When someone stands up, their blood pressure drops, causing lightheadedness and dizziness. This condition is known as orthostatic hypotension.

While essential tremor, Parkinson's disease, and other neurological illnesses are frequently linked to resting tremor, SCI is not typically one of them.

learn more about  autonomic dysreflexia here:

https://brainly.com/question/30331093

#SPJ11

The right response is resting tremor (option b). A patient may have spasticity, autonomic dysreflexia, and orthostatic hypotension following a spinal cord injury (SCI). SCI is not often linked to resting tremor.

SCI can interfere with the body's ability to communicate with the brain, leading to a variety of physical symptoms. Spasticity, which manifests as stiffness, muscle spasms, and increased muscle tone, is a frequent consequence. Patients with SCI at or above the T6 level may develop autonomic dysreflexia, a potentially fatal illness that is characterised by an abrupt rise in blood pressure. When someone stands up, their blood pressure drops, causing lightheadedness and dizziness. This condition is known as orthostatic hypotension.

While essential tremor, Parkinson's disease, and other neurological illnesses are frequently linked to resting tremor, SCI is not typically one of them.

learn more about  autonomic dysreflexia here:

brainly.com/question/30331093

#SPJ4

a merry-go-round accelerates from rest to 0.63 rad/s in 27 s . assuming the merry-go-round is a uniform disk of radius 7.5 m and mass 29000 kg , calculate the net torque required to accelerate it.

Answers

The net torque required to accelerate is 28496 Nm.

What is the net torque required to accelerate it?

The net torque required to accelerate a uniform disk of radius 7.5 m and mass 29000 kg from rest to 0.63 rad/s in 27 s is needed.

The problem is asking for the net torque required to accelerate a merry-go-round from rest to a final angular velocity of 0.63 rad/s in 27 seconds. The merry-go-round is assumed to be a uniform disk, which means that its mass is evenly distributed across its entire radius. We are also given the radius of the merry-go-round (7.5 m) and its mass (29000 kg).

To solve the problem, we can use the formula:

[tex]τ = Iα[/tex]

where τ is the net torque applied to the merry-go-round, I is its moment of inertia, and α is its angular acceleration. Since the merry-go-round is initially at rest, its initial angular velocity is zero. Using the formula for angular acceleration, we can find that:

[tex]α = Δω/Δt = (0.63 rad/s - 0 rad/s) / 27 s = 0.0233 rad/s^2[/tex]

To find the moment of inertia of the merry-go-round, we can use the formula for the moment of inertia of a uniform disk:

[tex]I = (1/2)mr^2[/tex]

where m is the mass of the disk and r is its radius. Substituting the given values, we get:

[tex]I = (1/2)(29000 kg)(7.5 m)^2 = 1220625 kg m^2[/tex]

Finally, we can use the formula [tex]τ = Iα[/tex] to find the net torque required to accelerate the merry-go-round:

[tex]τ = (1220625 kg m^2)(0.0233 rad/s^2) = 28496 Nm[/tex]

Therefore, the net torque required to accelerate the merry-go-round is 28496 Nm.

Learn more about torque

brainly.com/question/25708791

#SPJ11

what are reasons that a promontory will be more vulnerable to wave erosion than a bay? multiple select question. waves bend around a promontory and strike it from both sides. larger waves enter into a bay than strike a promontory. a promontory will receive more wave action than a bay. powerful waves focus most of their energy at a promontory.

Answers

The reasons that a promontory will be more vulnerable to wave erosion than a bay;- Waves bend around a promontory and strike it from both sides,- Powerful waves focus most of their energy at a promontory and - A promontory will receive more wave action than a bay.

A promontory is more vulnerable to wave erosion than a bay due to the following reasons:

1. Waves bend around a promontory and strike it from both sides: This phenomenon, called wave refraction, concentrates the wave energy on the promontory, making it more prone to erosion.

2. A promontory will receive more wave action than a bay: Bays are generally more sheltered and have a lower exposure to waves, whereas promontories are exposed to the full force of waves, leading to more erosion.

3. Powerful waves focus most of their energy at a promontory: Due to the shape of the coastline, waves tend to focus their energy on the headlands, like promontories, which makes them more vulnerable to erosion compared to bays.

More on promontory: https://brainly.com/question/29758672

#SPJ11

Potable water is ____.
A. also known as industrial wastewater
B. also known as irrigation water
C. also known as sewage
D. also known as groundwater
E. fit for drinking

Answers

Potable water is fit for drinking. Option E

What is portable water?

Potable water is water that is safe for human consumption and considered fit for drinking. It is free from harmful bacteria, viruses, chemicals, and other contaminants that can cause health problems.

Potable water can come from different sources such as groundwater, surface water, or treated wastewater, and it is typically treated and disinfected to ensure its safety before being distributed to consumers.

Portable water isn't known as industrial wastewater, irrigation water, groundwater and sewage.

Find more exercises on portable water;

https://brainly.com/question/2570757

#SPJ1

calculate the period of a horizontal mass-on-a-spring system where the stiffness of the spring is 500 n/m and the mass of the system is 25.7 kg.

Answers

The period of the horizontal mass-on-a-spring system with a stiffness of 500 N/m and a mass of 25.7 kg is approximately 1.424 seconds.

We'll use the following terms in our calculation: stiffness of the spring (k), mass of the system (m), and period (T).

The formula to calculate the period of a mass-on-a-spring system is:

T = 2π √(m/k)

where:
T = period (in seconds)
m = mass of the system (25.7 kg)
k = stiffness of the spring (500 N/m)

Now, we'll plug in the values:

T = 2π √(25.7 kg / 500 N/m)

To calculate the square root:

T = 2π √(0.0514)

T = 2π × 0.2266

Finally, multiply by 2π:

T ≈ 1.424 seconds

So, the period of the horizontal mass-on-a-spring system is approximately 1.424 seconds.

More on period: https://brainly.com/question/15299167

#SPJ11

A planet has mass M = 8.00 × 1023 kg. At what distance will the centripetal acceleration of an orbiting space station be equal to the gravitational acceleration on Earth’s surface? (G = 6.67 × 10–11 m3·kg–1·s–1)answer is 2.33 x10^6 m. Can someone show the work on how to get this answer?

Answers

To find the distance at which the centripetal acceleration of an orbiting space station around a planet is equal to Earth's gravitational acceleration, we need to set up an equation involving the planet's mass (M), gravitational constant (G), and Earth's gravitational acceleration (g).

Given:
M = 8.00 × 10²³ kg
G = 6.67 × 10^(-11) m³·kg^(-1)·s^(-1)
g = 9.81 m/s² (Earth's gravitational acceleration)

Centripetal acceleration (a_c) is given by the formula:

a_c = (G * M) / r²

where r is the distance from the planet's center.

We want the centripetal acceleration to be equal to Earth's gravitational acceleration, so we can set them equal:

g = (G * M) / r²

Now, we need to solve for r:

r² = (G * M) / g

r² = (6.67 × 10^(-11) m³·kg^(-1)·s^(-1) * 8.00 × 10²³ kg) / 9.81 m/s²

r² ≈ 5.42 × 10¹² m²

Now, take the square root of both sides to find r:

r ≈ 2.33 × 10^6 m

So, at a distance of 2.33 x 10^6 meters from the planet's center, the centripetal acceleration of an orbiting space station will be equal to the gravitational acceleration on Earth's surface.

To learn more about Centripetal Acceleration and Gravitational Acceleration. Please Visit:

https://brainly.com/question/26143683

#SPJ11

The following formula can be used to determine the distance from the planet's centre at which the centripetal acceleration of an orbiting space station equals the gravitational acceleration on Earth's surface:

[tex]r = (GM/g)^(1/3)[/tex]

where the gravitational constant, G, equals 6.67 1011 m3 kg-1 s-1.

M is equal to 8.00 1023 kg (the planet's mass).

Gravitational acceleration on Earth's surface is equal to 9.81 m/s2.

When we change the values, we obtain:

[tex]r = [(6.67 × 10^-11) × (8.00 × 10^23) / 9.81]^(1/3)[/tex]

[tex]r = 2.33 × 10^6 m[/tex]

Therefore, 2.33 x 106 m is the necessary distance.

F = G (m1m2 / r2), where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them, can be used to express the gravitational force between two objects. When a planet and a satellite are involved, the centripetal force that holds the satellite in orbit around the planet is produced by the gravitational force. As a result, we may compare the centripetal force to gravity and find r. This results in the formula above, which we can use to calculate the necessary distance.

learn more about gravitational acceleration here:

https://brainly.com/question/30429836

#SPJ11

catching a wave, a 73.2-kg surfer starts with a speed of 1.44 m/s, drops through a height of 1.84 m, and ends with a speed of 8.89 m/s. how much nonconservative work was done on the surfer?

Answers

The nonconservative work done on the surfer is 2845.5 J.

We can use the work-energy theorem to solve this problem. The work-energy theorem states that the net work done on an object is equal to its change in kinetic energy. In this case, we can calculate the initial and final kinetic energies of the surfer and find the difference, which will give us the net work done.

The initial kinetic energy of the surfer is:

[tex]K_i = (1/2) * m * v_i^2[/tex]

[tex]K_i = (1/2) * 73.2 kg * (1.44 m/s)^2[/tex]

K_i = 75.7 J

The final kinetic energy of the surfer is:

[tex]K_f = (1/2) * m * v_f^2[/tex]

[tex]K_f = (1/2) * 73.2 kg * (8.89 m/s)^2[/tex]

K_f = 2921.2 J

The change in kinetic energy is:

ΔK = K_f - K_i

ΔK = 2921.2 J - 75.7 J

ΔK = 2845.5 J

According to the work-energy theorem, this change in kinetic energy must be equal to the net work done on the surfer. Therefore, the nonconservative work done on the surfer is:

W_nc = ΔK

W_nc = 2845.5 J

So, the nonconservative work done on the surfer is 2845.5 J.

Learn more about   nonconservative work

https://brainly.com/question/28588859

#SPJ4

Light travels through air and is incident upon the surface of a diamond at angle of 30 degrees. If the index of refraction for a diamond is 2.42. Calculate angle of refraction as the light travels into the diamond.

Answers

As light enters the diamond, it is refracted at an angle of 12.3 degrees.

Definition of refractive index Diamond has a refractive index of 2.42. What does this statement actually mean?

According to the aforementioned assertion, the speed of light in a diamond is 1.42 times that of light in a vacuum. The speed of light in a diamond will be 2.42 times slower than it is in air due to the high refractive index of diamonds.

[tex]heta2 = 12.3 degrees[/tex]

When we simplify the equation, we obtain:

[tex](1/2.42) x Sin(30) = Sin(theta2)[/tex]

[tex]Theta2 sin(2) = 0.208[/tex]

When we take the inverse sine of both sides, we obtain:

[tex]12.3 degree theta2[/tex]

Using both sides' inverse sine,

[tex]theta2 = 12.3 degrees[/tex]

To know more about refracted visit:

https://brainly.com/question/14760207

#SPJ1

what does the technique of interferometry allow?what does the technique of interferometry allow?it allows two or more telescopes to obtain a total light-collecting area much larger than the total light-collecting area of the individual telescopes.it allows us to determine the chemical composition of stars.it allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.it allows the same telescope to make images with both radio waves and visible light.it allows astronomers to make astronomical observations without interference from light pollution.

Answers

The technique of interferometry allows two or more telescopes to obtain the angular resolution of a single telescope much larger than any of the individual telescopes.

This is achieved by combining the signals received by the telescopes to create a single image with a higher resolution. Interferometry is especially useful for studying objects with small angular sizes, such as stars and planets.

Additionally, interferometry allows astronomers to make astronomical observations without interference from light pollution, as it can separate the signals from the object being observed from the background light.

However, interferometry does not directly determine the chemical composition of stars, although it can provide information about their temperature and other physical properties.

Learn more about interferometry:

https://brainly.com/question/30054443

#SPJ11

How can we tell if a collision is elastic or inelastic?

Answers

. If the kinetic energy is the same, then the collision is elastic

Answer:

The type of collision, whether elastic or inelastic, can be determined by observing the behavior of the colliding objects before and after the collision. Here are some key characteristics that can help identify whether a collision is elastic or inelastic:

Conservation of Kinetic Energy: In an elastic collision, kinetic energy is conserved, while in an inelastic collision, some of the kinetic energy may be converted into other forms of energy.

Objects' Motion After Collision: In an elastic collision, objects bounce off each other and move independently, while in an inelastic collision, objects may stick together, deform, or move as a single mass.

Restitution Coefficient: In an elastic collision, the restitution coefficient is close to 1, indicating high bounce-back, while in an inelastic collision, the restitution coefficient is less than 1, indicating less bounce-back.

Conservation of Momentum: In both elastic and inelastic collisions, momentum is conserved, but the change in velocity of the objects after the collision can indicate whether the collision is elastic or inelastic.

The most popular grip in tennis is

the western grip
the eastern grip
the double handed grip
the continental grip

Answers

Answer:

The answer is Continental Grip

a star less luminous than our sun will have a habitable zone that is

Answers

Stars that are more luminous than the Sun will have their habitable zone away further away from the star that is the case in in our solar system.

a satellite circles a spherical planet of unknown mass in a circular orbit of radius 2.5×107 m . the magnitude of the gravitational force exerted on the satellite by the planet is 110 n .

Answers

Since we don't know the mass of the satellite or its velocity, we can't solve for the mass of the planet with the given information alone. We would need at least one more piece of information to do so.

Answer -  Based on the given information, we can use the equation for gravitational force:

F = (G * m1 * m2) / r^2
where F is the force, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between their centers.
Since we don't know the mass of the planet, we can't directly solve for it. However, we can use the fact that the satellite is in a circular orbit, which means that the gravitational force is equal to the centripetal force:
F = (m * v^2) / r
where m is the mass of the satellite and v is its velocity.
We can solve for m by rearranging the equation:
m = (F * r) / v^2

Now we can use this mass value and plug it into the original equation for gravitational force, along with the given values for r and F, to solve for the mass of the planet:
110 N = (G * m * m_planet) / (2.5x10^7 m)^2
m_planet = (110 N * (2.5x10^7 m)^2) / (G * m)

where G is a constant equal to 6.67x10^-11 N*m^2/kg^2.
Unfortunately, since we don't know the mass of the satellite or its velocity, we can't solve for the mass of the planet with the given information alone. We would need at least one more piece of information to do so.

To know more about gravitational force , click on this -

brainly.com/question/24783651

#SPJ11

a wire of length 4.35 m and mass 137 g is under a tension of 125 n. a standing wave has formed which has seven nodes including the endpoints. a. draw the wave pattern b. what is the frequency of this wave? c. which harmonic is it? d. what is the fundamental frequency

Answers

The standing wave's fundamental frequency is the frequency of the first harmonic, which has one node and two antinodes, whereas the number of nodes determines the standing wave's harmonic number.

A 4.35 metre long, 137 gramme wire is being pulled at 125 newtons of force. With seven nodes total, including the endpoints, a standing wave has developed.

A collection of dots and dashes can be used to represent the wave pattern. The relationship between wave speed and wavelength is used to compute the standing wave's frequency. The tension in the wire and its linear mass density are used to calculate the wave speed.

The standing wave's fundamental frequency is the frequency of the first harmonic, which has one node and two antinodes, whereas the number of nodes determines the standing wave's harmonic number.

Learn more about standing wave:

https://brainly.com/question/30114344

#SPJ4

is a mirror magnetic or nonmagnetic​

Answers

Mirrors are magnetic objects. The form of a concentrated static magnetic field, or magnetic mirror, causes oncoming charged particles to be thrown back along their route of approaches. Mirrors can reflect the good vibes coming from attractive things
Good luck

a 1.00-m3 object floats in water with 20.0% of its volume above the waterline. what does the object weigh out of the water? the density of water is 1000 kg/m3.

Answers

The weight of the object out of water is 800 kg.

To solve this problem, we need to use the principle of buoyancy. When an object is placed in water, it experiences an upward force called buoyant force, which is equal to the weight of the water displaced by the object.

In this case, the object has a volume of 1.00 m³, and 20.0% of its volume is above the waterline. Therefore, the volume of the object submerged in water is:

Vsubmerged = 1.00 m3 - 0.20 x 1.00 m³ = 0.80 m³

We also know the density of water is 1000 kg/m³. Therefore, the weight of the water displaced by the object is:

Wwater = density of water x volume of water displaced
Wwater = 1000 kg/m³ x 0.80 m³
Wwater = 800 kg

This means the buoyant force acting on the object is 800 kg. In order for the object to float, the buoyant force must be equal to the weight of the object. Therefore, we can find the weight of the object as:

Weight of object = Buoyant force = 800 kg

So the object weighs 800 kg out of the water.

More on weight: https://brainly.com/question/19719921

#SPJ11

A highway curve is banked (inclined) in such a way that a car travelling at a speed of 18.0m/s can round the curve without skidding, in the absence of friction. If the banking angle is 37°, what is the radius of the curve?

Answers

In order for a vehicle travelling at 18.0 m/s to negotiate  highway bend without sliding, curve must be banked (inclined). The radius of curve approximately 33.1 metres.

What is the formula for the radius of a road curve?

The coefficient of side friction is found to be 0.10, and the superelevation at one horizontal curve has been set at 6.0%.the formula for calculating a road curve's radiusFind the shortest curve radius necessary to ensure safe vehicle operation.

speed of the car v = 18.0 m/s

angle of banking of the curve θ = 37°

acceleration due to gravityg = 9.81 m/s²

radius of the curve = r

N = mg * cos(θ).........1

also

N = mv² / r...........2

from equation 1 and 2 we get

mg * cos(θ) = mv² / r

r = v² / (g * cos(θ))

r = (18.0 m/s)² / (9.81 m/s² * cos(37°)) ≈ 33.1 m

Therefore, radius of the curve is approximately 33.1 meters.

To know more about  radius of the curve  visit:-

https://brainly.com/question/12868546

#SPJ1

the threshold frequency (minimum frequency) of aluminum for the photoelectric effect is in the ultraviolet range. what will happen if infrared light shines on the aluminum surface?

Answers

Any electromagnetic radiation with a frequency lower than 9.84 x 10¹⁴ Hz (infrared, microwave, radio waves) will not cause the photoelectric effect in aluminum.

If infrared light shines on the aluminum surface, no electrons will be emitted via the photoelectric effect because the frequency of infrared light is lower than the threshold frequency of aluminum. The photoelectric effect occurs when a photon with enough energy (frequency) is absorbed by an electron in a metal, causing the electron to be emitted from the metal.

The minimum frequency or threshold frequency ([tex]f_{t}[/tex]) of a metal can be calculated using the equation:

[tex]f_{t}[/tex] = Φ ÷ h

where Φ is the work function of the metal (the minimum energy required to remove an electron from the metal) and h is Planck's constant. For aluminum, Φ = 4.08 eV.

Converting Φ to joules and using h = 6.626 x 10⁻³⁴ J s, we get:

Φ = 4.08 eV x 1.6 x 10⁻¹⁹ J/eV

Φ = 6.528 x 10⁻¹⁹ J

[tex]f_{t}[/tex] = 6.528 x 10⁻¹⁹ J ÷ 6.626 x 10⁻³⁴ J s

≈ 9.84 x 10¹⁴ Hz

To learn more about frequency follow the link:

https://brainly.com/question/5102661

#SPJ4

a flat, square coil of 16 turns that has sides of length 16.0 cm is rotating in a magnetic field of strength 0.060 t. if the maximum emf produced in the coil is 28.0 mv, what is the angular velocity of the coil (in rad/s)? (enter the magnitude.)

Answers

The angular velocity of the coil is approximately 7.27 rad/s.

The formula for the maximum emf induced in a rotating coil is given by: emf = NABw, where N is the number of turns in the coil, A is the area of the coil, B is the strength of the magnetic field, and w is the angular velocity of the coil.

Solving for w, we get: w = emf/(NAB)

Substituting the given values, we get: w = (28.0 x 10^-3)/(16 x 16 x 16 x 0.060 x 2π) ≈ 7.27 rad/s.

Therefore, the angular velocity of the coil is approximately 7.27 rad/s.

To know more about rotating coil, here

brainly.com/question/29820416

#SPJ4

when does a star become a main-sequence star? when the rate of hydrogen fusion within the star's core is high enough to maintain gravitational equilibrium when hydrogen fusion is occurring throughout a star's interior when the protostar assembles from a molecular cloud when a star becomes luminous enough to emit thermal radiation the instant when hydrogen fusion first begins in the star's core

Answers

Answer: hope it helps

Explanation:

A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.

A block moves outward along the slot in the platform with a speed of r˙=(10t)m/s , where t is in seconds. The platform rotates at a constant rate of θ˙ = 5 rad/s

Answers

The block moves outward along the slot with a speed of [tex]$v = \sqrt{100t^2 + 25r^2}$[/tex] m/s at an angle of approximately 78.69° with the positive x-axis. The platform rotates at a constant rate of θ˙ = 5 rad/s.

The motion of the block can be analyzed by considering both its radial and tangential components of velocity.

The radial component of velocity is given by r˙, which is 10t m/s. This means that the distance between the center of rotation and the block increases with time.

The tangential component of velocity is given by θ˙r, where r is the distance between the center of rotation and the block. This means that the block moves around the center of rotation at a constant angular speed of 5 rad/s.

To find the total velocity of the block, we can use the Pythagorean theorem:

[tex]$v = \sqrt{\dot{r}^2 + (\dot{\theta}r)^2}$[/tex]

Substituting the given values, we get:

[tex]$v = \sqrt{(10t)^2 + (5r)^2} = \sqrt{100t^2 + 25r^2}$[/tex]

To find the direction of the velocity, we can use the tangent of the angle between the velocity vector and the positive x-axis:

tan(θ) = (θ˙r)/r˙ = 5

This means that the angle between the velocity vector and the positive x-axis is constant at arctan(5) ≈ 78.69°.

To learn more about speed

https://brainly.com/question/28224010

#SPJ4

a magnifying lens with a focal length of 10 cm has what magnification when the viewing eye is relaxed?

Answers

a magnifying lens with a focal length of 10 cm has the magnification when the viewing eye is relaxed of 3.5

although protons repel each other because each one has a positive charge, protons are stable in a nucleus because of group of answer choices the neutrons, which have a counterbalancing negative charge. the strong force. the weak force. the gravitational force. the electrons, which have a counterbalancing negative charge. neutrons getting between protons, separating the protons from each other.

Answers

The stability of the nucleus is maintained through the combined effects of the strong force and neutrons.

Although protons repel each other due to their positive charge, they are stable in a nucleus because of the strong force, which is a fundamental force that binds the particles together.

The strong force is the strongest force in nature and overcomes the electromagnetic force that causes the protons to repel each other. Neutrons, which have no charge, also play a significant role in stabilizing the nucleus.

The neutrons act as a buffer between the positively charged protons, separating them from each other and reducing the electrostatic repulsion. Electrons, which have a negative charge, are not involved in stabilizing the nucleus as they are located outside the nucleus in orbitals around the nucleus.

To learn more about : neutrons

https://brainly.com/question/12706684

#SPJ11

the gibbs energy change (symbolized by δ ) is a measure of the spontaneity of a process, and of the useful energy available from it.

Answers

The Gibbs energy change (ΔG) is indeed a measure of the spontaneity of a process and the useful energy available from it.

Explanation:

1. Gibbs energy (G) is a thermodynamic potential that combines enthalpy (H) and entropy (S) to predict whether a process will be spontaneous or not at a constant temperature (T) and pressure (P).

2. The change in Gibbs energy (ΔG) is calculated using the formula: ΔG = ΔH - TΔS, where ΔH is the change in enthalpy and ΔS is the change in entropy.

3. If ΔG is negative, the process is spontaneous, meaning it will proceed on its own without the need for external energy input. A negative ΔG also indicates that the system releases useful energy.

4. If ΔG is positive, the process is non-spontaneous and will require external energy to proceed. The useful energy in this case is not available, as it must be supplied from an external source.

5. If ΔG is equal to zero, the process is at equilibrium, meaning the forward and reverse processes occur at the same rate, and there is no net change in the system.

In summary, the Gibbs energy change (ΔG) is an important parameter that helps determine the spontaneity of a process and the amount of useful energy that can be obtained from it.

To know more about  thermodynamic potential :

https://brainly.com/question/2496692

#SPJ11

A 0. 300 kg
toy car moving with a speed of 0. 820 m/s
collides with a wall. The figure shows the force exerted on the car by the wall over the course of the collision

Answers

The negative sign indicates that the force is exerted in the opposite direction to the motion of the car. This force is applied over a short time interval and is relatively large, causing the car to experience a significant deceleration during the collision.

During the collision, the toy car experiences a change in momentum. Since momentum is conserved in the absence of external forces, the momentum of the car before the collision must be equal in magnitude and opposite in direction to the momentum after the collision.

The initial momentum of the car is given by:

p = mv = 0.3 kg * 0.82 m/s = 0.246 kgm/s

After the collision, the car comes to a stop, so its final momentum is zero. Therefore, the change in momentum is:

Δp = p_final - p_initial = -0.246 kg*m/s

The force exerted by the wall on the car during the collision can be calculated using the impulse-momentum theorem

J = Δp = FΔt

where J is the impulse, Δt is the time interval over which the force is applied, and F is the force

From the figure, we can see that the time interval for the collision is approximately 0.020 s. Therefore, the force exerted by the wall on the car is: F = Δp / Δt = -0.246 kg*m/s / 0.020 s = -12.3 N

Learn more about  collision.

https://brainly.com/question/13138178

#SPJ4

a pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?

Answers

The option A is  best representation of the path that the ball would take after the string breaks.

When the string of a pendulum breaks, the ball's path will follow the laws of motion, specifically the law of conservation of energy. As the ball was halfway to its highest position, it had a certain amount of potential energy.

When the string broke, this potential energy would convert to kinetic energy, causing the ball to move in a straight line tangent to the point where the string broke.

Therefore, the path that the ball would take after the string breaks would be a straight line away from the pivot point of the pendulum, as shown in option A. The other paths shown do not follow the laws of motion and do not account for the conservation of energy. Option (A) is the correct answer.

To learn more about : string

https://brainly.com/question/24994188

#SPJ11

Note the full question is

A pendulum is swinging upward and is halfway toward its highest position, as shown, when the string breaks. which of the paths shown best represents the one that the ball would take after the string breaks?

A) A

B) B

C) C

D) D

E) E

a merry-go-round rotates from rest with an angular acceleration of 1.50 rad/s2. how long does it take to rotate through (a) the first 4.19 rev and (b) the next 4.19 rev?

Answers

a merry-go-round rotates from rest with an angular acceleration of 1.50 rad/s2. 8.67 seconds & 20.4 seconds it take to rotate through (a) the first 4.19 rev and (b) the next 4.19 rev.

To solve this problem, we need to use the equations of rotational motion. The equation we need to use is:
θ = ωi*t + 1/2*α*t^2
where θ is the angle rotated (in radians), ωi is the initial angular velocity (in radians per second), α is the angular acceleration (in radians per second squared), and t is the time (in seconds).
For part (a), we want to find the time it takes to rotate through the first 4.19 rev, which is equivalent to 4.19*2π radians. We know that the merry-go-round starts from rest (ωi = 0) and has an angular acceleration of 1.50 rad/s^2. Substituting these values into the equation above, we get:
4.19*2π = 0*t + 1/2*1.50*t^2
Simplifying, we get:
t = √(4.19*2π / 0.75) = 8.67 seconds
Therefore, it takes 8.67 seconds to rotate through the first 4.19 rev.
For part (b), we want to find the time it takes to rotate through the next 4.19 rev. At this point, the merry-go-round is already rotating with some angular velocity, which we need to find first. Using the equation:
ωf = ωi + α*t
where ωf is the final angular velocity, we get:
ωf = 0 + 1.50*8.67 = 13.00 rad/s
Now we can use the same equation as before to find the time it takes to rotate through the next 4.19 rev, but with ωi = 13.00 rad/s:
4.19*2π = 13.00*t + 1/2*1.50*t^2
Simplifying, we get a quadratic equation:
0.75t^2 + 13.00t - 26.17π = 0
Using the quadratic formula, we get:
t = (-13.00 ± √(13.00^2 + 4*0.75*26.17π)) / 1.50
t ≈ 20.4 seconds or t ≈ -34.4 seconds
We can discard the negative solution since time cannot be negative. Therefore, it takes approximately 20.4 seconds to rotate through the next 4.19 rev.
So, the answers are:
(a) 8.67 seconds
(b) 20.4 seconds

Learn more about angular acceleration here:

https://brainly.com/question/29428475

#SPJ11

a wave has a wavelength of 5.0 meters and a frequency of 3.0 hertz. what is the wave speed? a wave has a speed of 4.5 m/s and a frequency of 2.0 hertz. what is the wavelength? a wave has a speed of 6.9 m/s and a wave;ength of 3.0 meters. what is the frequency?answer key

Answers

The wave speed in the first question is 15 m/s, the wavelength in the second question is 2.25 meters, and the frequency 2.3 Hz.

For the first question, we can use the formula v = λf, where v is the wave speed, λ is the wavelength, and f is the frequency. Substituting the given values[tex]v = 5.0 m * 3.0 Hz = 15 m/s[/tex].

For the second question, we can rearrange formula to solve for wavelength: λ = v/f. Substituting the given values λ = 4.5 m/s ÷ 2.0 Hz = 2.25 meters. For the third question, we can again rearrange the formula to solve for frequency: f = v/λ. Substituting the given values, f = 6.9 m/s ÷ 3.0 meters = 2.3 Hz.

To know more about wave speed, here

brainly.com/question/10715783

#SPJ4

at 2.1 km from the transmitter, the peak electric field of a radio wave is 350 mv/m . what is the peak electric field 10 km from the transmitter?

Answers

The peak electric field 10 km from the transmitter is approximately 15.435 mV/m.

To find the peak electric field 10 km from the transmitter, we can use the inverse square law.

This law states that the intensity of a wave (such as the electric field in this case) is inversely proportional to the square of the distance from the source.

Here's a step-by-step explanation:

1. Note the initial distance (d1) and electric field (E1):

d1 = 2.1 km, E1 = 350 mV/m.


2. Convert d1 to meters:

d1 = 2100 m.


3. Note the final distance (d2):

d2 = 10 km.


4. Convert d2 to meters:

d2 = 10,000 m.


5. Use the inverse square law formula:

E2 = E1 * (d1²) / (d2²).


6. Plug in the values:

E2 = 350 * (2100²) / (10,000²).


7. Calculate E2:

E2 ≈ 15.435 mV/m.

Learn more about electric field:

https://brainly.com/question/14372859

#SPJ11

Other Questions
explain three different aspects of samurai training Problem 7-1 Stock Values [LO 1] Fowler, Inc., just paid a dividend of $265 per share on its stock. The dividends are expected to grow at a constant rate of 6 percent per year, indefinitely. Assume investors require a return of 10 percent on this stock. a. What is the current price? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) b. What will the price be in five years and in fourteen years? (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.) a. Current price _______b. Price in five years Price in fourteen years_______ How will you support this evidence with analyBody Paragraph 1What reason or counterclaim will you develop here?How will you connect this to your overall claim?What evidence will you provide to support your reason?sis?Body Paragraph 2What reason or counterclaim will you develop here?How will you connect this to your overall claim?What evidence will you provide to support your reason?How will you support this evidence with analysis?Body Paragraph 3 (optional) What reason or counterclaim will you develop here?How will you connect this to your overall claim?What evidence will you provide to support your reason?How will you support this evidence with analysis?ConclusionHow will you summarize your claims, reasons, and counterclaims for the audience?What are the most significant insights into your claims about making a difference? 16 mi c. john started a carpool with his coworkers to save money. he and his three passengers split the cost of the toll. if each person pays about $0.81 , which includes their contribution to the toll lane entry fee, how many miles do they travel on the toll lane? how can an organization leverage its mission, vision, and values in its communications with customers? The Terranian Kwacha (TEK) is pegged to the dollar at the rate of 2.000 Kwacha per dollar. USDTEK 3-month forward points are +100. If the expected jump (depreciation) should the Kwacha break its dollar peg is 10% what is the implied probability of this event occuring over the next 3 months (approximately)? Unit 9 area of a composite figure answer sheet all things algebra The references to specific geographical locations, Austerlitz and Waterloo, is an example of which literary device? In their quest to have direct trade with Europeans on the coast, Akyem and Akwamu often clashed. Akwamu Kingdom was successful in materializing this ambition by her conquest of Accra in 1677. However, by 1730, Akyem had conquered Akwamu kingdom to possess not only Akwamu itself but its large provinces like Accra and Ladoku.Based on the above,1. Discuss the initial challenges that Akyem faced with regards to raising people to administer those large territories.2. What is the history behind the inability of Akyem to raise people to rule those territories?3. What temporal solution did Akyem offer to solve the situation? A bowling ball has a surface area of about 232 square inches. Find the radius of the bowling ball. randall hired terri to manage his store. terri negligently hit sam, a customer, with a shopping cart, injuring him. true or false - randall is liable to the customer. On your mark. Get yeti go achieve T/F the lightest tone of the shadow area is darker than the darkest tone in the light area? which of these is another way to write the function g(x)= 3x (Preferred stockholder expected return) Zust preferred stock is selling for $42.71 per share and pays $1.95 in dividends. What is your expected rate of return if you purchase the security at the market price? There are 10 brown, 10 black, 10 green, and 10 gold marbles in bag. A student pulled a marble, recorded the color, and placed the marble back in the bag. The table below lists the frequency of each color pulled during the experiment after 40 trials..Outcome FrequencyBrown 13Black 9Green 7Gold 11Compare the theoretical probability and experimental probability of pulling a green marble from the bag.Choice A: The theoretical probability, P(green), is 50%, and the experimental probability is 11.5%.Choice B: The theoretical probability, P(green), is 25%, and the experimental probability is 25%. Choice C: The theoretical probability, P(green), is 25%, and the experimental probability is 17.5%.Choice D: The theoretical probability, P(green), is 50%, and the experimental probability is 7.0%.PLEASE HELP ASAP!!!!!!! Miss Elder directs her class to find the area of the Z in the sign for the City Zoo. A replica of the Z is shown in the diagram. The work of two of Miss Elders students is shown. Which student, if either, is correct? Explain. ________ is the risk associated with rejecting a lot of materials that has good quality. how can you tell if a quotient is less than 1'. according to marcia, a young adult who decides on a life path with little thought or exploration reflects a status called identity _____.