Answer:
z < 4
Step-by-step explanation:
2(3z-4) < 16
Divide by 2 on both sides
3z-4 < 8
Add 4 to both sides
3z < 12
Divide by 3 on both sides
z < 4
Please help with this question ASAP!
You are studying for the SAT and start the first week spending 2 hours studying. You plan to increase the amount you study by 10% each week. How many hours do you study in the 8th week?
Answer:
8w : 3.8974342 ≈ 3.9 or 4 (hope it help)
Step-by-step explanation:
1w : 2
2w : 2 + 10% = 2.2
3w : 2.2 + 10% = 2.42
4w : 2.42 + 10% = 2.662
5w : 2.662 + 10% = 2.9282
6w : 2.9282 + 10% = 3.22102
7w : 3.22102 + 10% = 3.543122
8w : 3.543122 + 10% = 3.8974342
3.8974342 ≈ 3.9 or 4
Probability equation need help again. worded problem-the table below displays the number of siblings for students. at one school. Find the probability that a randomly selected students has 2 siblings.
Identify the value of the CRITICAL VALUE(S) used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. -0.218
b. -1.645
c. -1.946
d. -1.667
Answer:
C
Step-by-step explanation:
The critical value we are asked to state in this question is the value of the z statistic
Mathematically;
z-score = (x- mean)/SD/√n
From the question
x = 11.58
mean = 12
SD = 1.93
n = 80
Substituting this value, we have
z= (11.58-12)/1.93/√80 = -1.946
A bag contains six balls labeled 1 through 6. One ball will be randomly picked.
What is the probability of picking an odd number?
Write your answer as a fraction in simplest form.
S = sample space = set of all possible outcomes
S = set of whole numbers 1 through 6
S = {1,2,3,4,5,6}
E = event space = set of outcomes we want to happen
E = set of odd numbers between 1 through 6
E = {1,3,5}
We have 3 items in set E and 6 items in set S. So there are 3 ways to get what we want to happen out of 6 ways total. The probability is therefore 3/6 = 1/2
Answer: 1/2Answer the following questions: 2/3 is what percent of 1/4?
Answer:
1/2 or 0.5
Step-by-step explanation:
To find out what 2/3 is out of 3/4, we just have to multiply them together to get our exact answer.
[tex]\frac{2}{3} *\frac{3}{4}=\frac{6}{12}=\frac{1}{2}[/tex]
Our final answer is 1/2 or 0.5.
A swimming pool is circular with a 30-ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool. (Round your answer to the nearest whole number.) ft3
Answer:
Volume of water in the pool is 3,182 ft^3
Step-by-step explanation:
In this question, what we want to calculate is the volume of water in the pool.
We proceed as follows;
diameter of pool = 30ft
depth: 2 to 7ft linearly
average depth = (2 + 7)/2 = 9/2 = 4.5 ft
Volume = area * average depth
V = pi * radius^2 * 4.5
where radius = diameter/2 = 30/2 = 15 ft
V = pi * 15^2 * 4.5
V = 22/7 * 225 * 4.5
V = 3,182.14 ft^3
which is 3,182 ft^3 to nearest whole number
The volume of water in the pool is; Volume = 3181 ft³
We are given;
Diameter of swimming Pool; d = 30 ft
Thus; radius; r = d/2 = 30/2 = 15 ft
We are told that the depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end.
Thus, average depth is;
h_avg = (2 + 7)/2
h_avg = 4.5 ft
Formula for area is; A = πr²
Thus;
A = π × 15²
A = 225π
Formula for volume here is;
Volume = Area × depth
Volume = 225π × 4.5
Volume = 3180.86 ft³
Approximating to a whole number gives;
Volume = 3181 ft³
Read more at; https://brainly.com/question/15276135
Find ZABD if ZABC = 121° in the given figure.
4x+21+3x-5=121
7x+16=121
x=15
angle ABD =4(15)+21=81
stephano walks 2/5 mile in 1/4 hour. What is stephano's speed in miles?
Use the functions m(x) = 4x + 5 and n(x) = 8x − 5 to complete the function operations listed below. Part A: Find (m + n)(x). Show your work. (3 points) Part B: Find (m ⋅ n)(x). Show your work. (3 points) Part C: Find m[n(x)]. Show your work. (4 points)
Answer:
Step-by-step explanation:
Part A
(m + n)x = 4x + 5 + 8x - 5
(m + n)x = 12x The fives cancel
Part B
(m - n)x = 4x + 5 - 8x + 5
(m - n)x = -4x + 10
Part C
The trick here is to put n(x) into m(x) wherever m(x) has an x.
m[n(x)] = 5(n(x)) + 5
m[n(x)] = 5(8x - 5) + 5
m[n(x)] = 40x - 20 + 5
m[n(x)] = 40x - 15
What is the greatest whole number that must be a divisor of the product of any three consecutive positive integers?
Answer:
6
Step-by-step explanation:
We can establish 6 as an upper bound, since 1*2*3 = 6, and 6 is clearly the greatest number that is a divisor of itself.
We can show that the product of any three consecutive numbers is divisible by 6, because out of any three consecutive integers, at least one must be divisible by 3, and at least one must be divisible by 2. Since the product must have factors of 2 and 3, it must also have 6 as a factor.
please what's the solution for 2a²×4a³
Answer:
8a^5
Step-by-step explanation:
Well to start off 2*4=8
So the coefficent will be 8
and when multipling ezponents we add the exponents and 2+3=5 so the exponent will be 5.
So 8a^5 is the answer
What is the least number of colors you need to correctly color in the sections of the pictures so that no two touching sections are the same color?
Answer:
8 colors
Step-by-step explanation:
There should be at least 8 different colors available for coloring the sections. The one color is used to color all the small triangles on the upper most and lower most lines, then there will be required another color so that the edges does not matches with the previous color. For the bigger hexagon shapes in the center we will require different colors for all of them because all of the hexagon shapes touches a line and an edge with each other.
Answer:
its 2 trust me
Step-by-step explanation:
its two cause if you think about it and color in the hexagons and triangles two different colors it works
PLEASE HELP QUICK!!! In how many ways can you put seven marbles in different colors into two jars? Note that the jars may be empty.
Answer: 14384 ways
Step-by-step explanation:
With 0 identical marbles permitted to be included in any of the jars, An expression can be developed to determine the total of marbles in jar arrangements, which is:
E = [(n+j -1)!]*{1/[(j-1)!]*[(n)!]}, where n = number of identical balls and j =number of distinct jars, the contents of all of which must sum to n for each marbles in j jars arrangement. With n = 7 and j = 4. E = 10!/(3!)(7!) = 120= number of ways 7 identical marbles can be distributed to 4 distinct jars such that up to 3 boxes may be empty and the maximum to any box is 7 balls.
The marble arrangements are: (7,0,0,0) in 4!/3! = 4 ways, (6,1,0,0) in 4!/2! = 12 ways, (5,2,0,0) in 4!/2! = 12 ways, (5,1,1,0) in 4!/2! = 12 ways, (4,3,0,0) in 4!/2! = 12 ways, (4,2,1,0) in 4! = 24 ways, (4,1,1,1) in 4!/3! = 4 ways, (3,3,1,0) in 4!/2! = 12 ways, (3,2,2,0) in 4!/2! = 12 ways, (3,2,1,1) in 4!/2! = 12 ways, (2,2,2,1) in 4!/3! = 4 ways.
Total of ways = 4+12+12+12+12+24+4+12+12+12+4 = 120 as previously determined above for identical marbles and distinct jars.
Taking into account distinct colored marbles, the number of ways of marble distribution into 4 jars becomes as follows:
For (7,0,0,0) = 4*(7!/7!) =4. For (6,1,0,0) = 12*[7!/(6!)(1!)] = 84. For (5,2,0,0) =
12*[7!/(5!)(2!)] = 252. For (5,1,1,0) = 12*[7!/(5!)(1!)(1!)] = 504. For (4,3,0,0) =
12*[7!/(4!)(3!)] = 420. for (4,2,1,0) = 24*[7!/(4!)(2!)(1!)] = 2,520. For (4,1,1,1) =
4*7!/(4!)(1!)(1!)(1!)] = 840. For (3,3,1,0) = 12*]7!/(3!)(3!)(1!) = 1,680. For (3,2,20) = 12*]7!/(3!)(2!)(2!) = 2,520. For (3,2,1,1) = 12*]7!/(3!)(2!)(1!)(1!) = 5,040. For (2,2,2,1) = 4*]7!/(2!)(2!)(2!)(1!) = 2,520.
Total of ways as requested for distinct colored marbles and distinct jars = 4+84+252+504+420+2,520+840+1,680+2,520+5,040+2,520 = 14,384.
A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80
Answer:
D.$80
Step-by-step explanation:
$5.26 x 15.5= $81.53
The closest amount to $81.53 is D.$80
David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to-spice ratio is 15:115:115, colon, 1. He currently has 404040 grams of the spice blend, and he can go buy more if necessary. He wants to make 101010 servings, where each serving has 757575 grams of rice. Overall, David spends 4.504.504, point, 50 dollars on rice.
Answer:
.006
:)
Step-by-step explanation:
8 servings can David make with the current amount of spice.
What is Ratio?Ratio is defined as a relationship between two quantities, it is expressed one divided by the other.
The rice-to-spice ratio = 15:1
The 75 grams of rice in one serving will require
⇒75/15
⇒5 gram of spice.
David's inventory of 40 gram of spice is enough for
40 g/(5 g/serving) = 8 servings
Hence, 8 servings can David make with the current amount of spice.
Learn more about Ratio
brainly.com/question/1504221
#SPJ2
iv)
6x+3y=6xy
2x + 4y= 5xy
Answer:
Ok, we have a system of equations:
6*x + 3*y = 6*x*y
2*x + 4*y = 5*x*y
First, we want to isolate one of the variables,
As we have almost the same expression (x*y) in the right side of both equations, we can see the quotient between the two equations:
(6*x + 3*y)/(2*x + 4*y) = 6/5
now we isolate one off the variables:
6*x + 3*y = (6/5)*(2*x + 4*y) = (12/5)*x + (24/5)*y
x*(6 - 12/5) = y*(24/5 - 3)
x = y*(24/5 - 3)/(6 - 12/5) = 0.5*y
Now we can replace it in the first equation:
6*x + 3*y = 6*x*y
6*(0.5*y) + 3*y = 6*(0.5*y)*y
3*y + 3*y = 3*y^2
3*y^2 - 6*y = 0
Now we can find the solutions of that quadratic equation as:
[tex]y = \frac{6 +- \sqrt{(-6)^2 - 4*3*0} }{2*3} = \frac{6 +- 6}{6}[/tex]
So we have two solutions
y = 0
y = 2.
Suppose that we select the solution y = 0
Then, using one of the equations we can find the value of x:
2*x + 4*0 = 5*x*0
2*x = 0
x = 0
(0, 0) is a solution
if we select the other solution, y = 2.
2*x + 4*2 = 5*x*2
2*x + 8 = 10*x
8 = (10 - 2)*x = 8x
x = 1.
(1, 2) is other solution
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
A pharmacist wants to mix a 30% saline solution with a 10% saline solution to get 200 mL of a 12% saline solution. How much of each solution should she use
Answer:
30% constituents=20 mL
10% constituents=180 mL
Step-by-step explanation:
x= 30% volume
y=10% volume
For our first equation, we know the total volume is 200 mL and is the sum
x+y=200
y=200-x (1)
For our second equation, we do a mass balance for 200 mL of final solution.
12% w/v = 0.12 g/mL
This means that in 1 mL of solution, we have 0.12 g of NaCl.
For any solution, concentration multiplied by volume will give the mass of NaCl:
Mass in x mL= C*V (g/mL) (mL)
So in 200 mL, we have
0.12*200 (g/mL) (mL)
=24g of NaCl
Cx*Vx + Cy*Vy=24
0.3x+0.1y=24 (2)
Substitute y=200-x into (2)
0.3x+0.1(200-x)=24
0.3x+20-0.1x=24
0.2x=24-20
0.2x=4
Divide both sides by 0.2
0.2x/0.2=4/0.2
x=20
Substitute x=20 into (1)
y=200-x
y=200-20
y=180
30% constituents=20 mL
10% constituents=180 mL
Find the number of unique permutations of the letters in each word. SIGNATURE RESTAURANT
Answer:
Ok, we have two words:
"Signature"
The letters are: "S I G N A T U R E"
9 different letters.
Now, we can make only words with 9 letters, so we can think on 9 slots, and in each of those slots, we can input a letter of those 9.
For the first slot, we have 9 options.
For the second slot, we have 8 options (because on is already taken)
For the second slot, we have 7 options and so on.
Now, the total number of combinations is equal to the product of the number of options in each selection:
C = 9*8*7*6*5*4*3*2*1 = 362,880.
Now, our second word is Restaurant.
The letters here are " R E S T A U N" such that R, T and A appear two times each, so we have a total of 10 letters and 7 unique letters.
So first we do the same as beffore, 10 slots and we start with 10 options.
The total number of combinations will be:
C = 10*9*8*7*6*5*4*3*2*1 = 3,628,800
A lot of combinations, but we are counting only unique words.
For example, as we have two R, we are counting two times the word:
Restaurant (because we could permutate only the two letters R and get the same word)
So we must divide by two for each letter repeated.
we have 3 letters repeated, we divide 3 times by 2.
C = ( 3,628,800)/(2*2*2) = 453,600
A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2
Answer:
3
Step-by-step explanation:
let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room
A living room is two times as long as the bedroom, so:
A = 2X
A living room is one and one-half times as wide as a bedroom, so:
B = 1.5Y
The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y
So, AB in terms of XY is:
A*B = (2X)*(1.5Y) = 3(X*Y)
It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the bedroom.
Determine whether the value given below is from a discrete or continuous data set. In a test of a method of gender selection, 725 couples used the XSORT method and 368 of them had baby girls. Choose the correct answer below. A. The data set is neither continuous nor discrete. B. A continuous data set because there are infinitely many possible values and those values can be counted C. A continuous data set because there are infinitely many possible values and those values cannot be counted D. A discrete data set because there are a finite number of possible values
Answer:
D. A discrete data set because there are a finite number of possible values.
Step-by-step explanation:
Assuming in a test of a method of gender selection, 725 couples used the XSORT method and 368 of them had baby girls. The value given is from a discrete data set because there are a finite number of possible values.
In Mathematics, a discrete data is a data set in which the number of possible values are either finite or countable.
On the other hand, a continuous data is a data set having infinitely many possible values and those values cannot be counted, meaning they are uncountable.
Hence, if 725 couples used the XSORT method and 368 of them had baby girls; this is a discrete data because the values (725 and 368) are finite and can be counted.
Which of the following can be used to find the area of a circle?
A.
B.
C.
D.
Answer:
option B
hope it was useful for you
stay at home stay safe
pls mark me as brain.....
Answer:
[tex]\boxed{Option \ B}[/tex]
Step-by-step explanation:
Area of a circle = [tex]\pi r^2[/tex]
Finding the area of the circle, we need to know what the radius of the circle is. So, We would get the area of the circle.
3) The average age of students at XYZ University is 24 years with a standard deviation of 8 years. Number of students at the university is 7500. A random sample of 36 students is selected. What is the probability that the sample mean will be between 25.5 and 27 years
Answer:
0.1875
Step-by-step explanation:
σM=σ/√N
=8/√7500
=8/86.608
=0.092
Z=(x-μ)/σ/√N
=(25.5-36)/8/√7500
=-10.5/0.0092=-1141.304
Z score = -1.3125
=(27-36)/8/√7500 =
=9/0.0092=978.261
Z score= -1.125
-1.125-(-1.3125)=-1.125+1.3125)= 0.1875
The probability that the sample mean will be between 25.5 and 27 years
P(between 25.5 and 27) = 0.1875
The vector x is in a subspace H with a basis Bequals{Bold b 1,Bold b 2}. Find the B-coordinate vector of x. Bold b 1equals[Start 3 By 1 Matrix 1st Row 1st Column 1 2nd Row 1st Column 2 3rd Row 1st Column negative 3 EndMatrix ], Bold b 2equals[Start 3 By 1 Matrix 1st Row 1st Column negative 4 2nd Row 1st Column negative 7 3rd Row 1st Column 11 EndMatrix ], xequals[Start 3 By 1 Matrix 1st Row 1st Column negative 10 2nd Row 1st Column negative 17 3rd Row 1st Column 27 EndMatrix ]
Answer and Step-by-step explanation: To find the B-coordinate vector of x:
[tex]b_{1} = \left[\begin{array}{ccc}1\\2\\-3\end{array}\right][/tex] , [tex]b_{2} = \left[\begin{array}{ccc}-4\\-7\\11\end{array}\right][/tex], x = [tex]\left[\begin{array}{ccc}-10\\-17\\27\end{array}\right][/tex]
The augmented matrix will be:
[tex]\left[\begin{array}{ccc}1&-4&-10\\2&-7&-17\\-3&11&27\end{array}\right][/tex]
Transforming into reduced row-echelon form:
= [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&-1&-3\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&0&0\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}1&0&2\\0&1&3\\0&0&0\end{array}\right][/tex]
The values for the vector will be:
x = 2
y = 3
The B-coordinate vector is of the form:
V = [tex]\left[\begin{array}{ccc}x\\y\end{array}\right][/tex]
V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]
The B-coordinate vector of x is V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]
find the exact value of sin 0
Answer:
12/13
Step-by-step explanation:
First we must calculate the hypotenus using the pythagoran theorem
5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13Now let's calculate sin0
sin O = 12/13So the exact value is 12/13
Answer:
C.) 12/13
Step-by-step explanation:
In a right angle triangle MN = 12, ON = 5 and; angle N = 90°
Now,
For hypotenuse we will use Pythagorean Theorem
(MO)² = (MN)² + (ON)²
(MO)² = (12)² + (5)²
(MO)² = 144 + 25
(MO)² = 169
MO = √169
MO = 13
now,
Sin O = opp÷hyp = 12÷13
Find the length of the following tangent segments to the circles centered at O and O's whose radii are 5 and 3 respectively and the distance between O and O's is 12. Find segment AB
Answer:
AB = 2 sqrt(35) (or 11.83 to two decimal places)
Step-by-step explanation:
Refer to diagram.
ABO'P is a rectangle (all angles 90)
=>
PO' = AB
AB = PO' = sqrt(12^2-2^2) = sqrt(144-4) = sqrt(140) = 2sqrt(35)
using Pythagoras theorem.
What is the solution to the system that is created by the equation y = 2 x + 10 and the graph shown below? On a coordinate plane, a line goes through (negative 2, 0) and (0, 2). (–8, –6) (–4, –2) (0, 2) (2, 4)
Answer:
(–8, –6)
Step-by-step explanation:
The given points represent the x- and y- intercepts of the line, so we can write the equation in intercept form as ...
x/(x-intercept) +y/(y-intercept) = 1
x/(-2) +y/2 = 1 . . . use the given intercepts
x - y = -2 . . . . . multiply by -2
Then the system is ...
y = 2x +10x - y = -2Using the first to substitute into the second, we get ...
x - (2x +10) = -2
-8 = x . . . . . . . . . . . add x+2, simplify
y = 2(-8) +10 = -6
The solution is (x, y) = (-8, -6).
Answer:
(-8,-6)
Step-by-step explanation:
Got it right on edge soooo <3
Evaluate the series
Answer:
the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
C) 59
Step-by-step explanation:
Recall that;
[tex]\sum_{1}^{n}a_n = a_1+a_2+...+a_n\\[/tex]
Therefore, we can evaluate the series;
[tex]\sum_{k=1}^{6}(25-k^2)[/tex]
by summing the values of the series within that interval.
the values of the series are evaluated by substituting the corresponding values of k into the equation.
[tex]\sum_{k=1}^{6}(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_{k=1}^{6}(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_{k=1}^{6}(25-k^2) =24+21+16+9+0+(-11)\\\sum_{k=1}^{6}(25-k^2) = 59\\[/tex]
So, the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
Write the first 4 terms of the sequence defined by the given rule f(n)=n2 -1
Answer:
0, 3, 8, 15Step-by-step explanation:
Substitute n = 1, n = 2, n = 3 and n = 4 to the equation f(n) = n² - 1:
f(1) = 1² - 1 = 1 - 1 = 0
f(2) = 2² - 1 = 4 - 1 = 3
f(3) = 3² - 1 = 9 - 1 = 8
f(4) = 4² - 1 = 16 - 1 = 15
Find the surface area of this shape (here is the grid too)
Answer:
12
Step-by-step explanation:
The second diagram is most helpful for finding the surface area.
Find the area of the middle square: 2 * 2 = 4Find the area of the triangle using A = 1/2*B*H, so A = 1/2 * 2 * 2 = 2Since there are 4 triangles, the surface area of all the triangles is 2 * 4 = 8Add the surface area of the triangles with the surface area of the square to get the total surface area: 8 + 4 = 12If you want further tutoring help in geometry or other subjects for FREE, check out growthinyouth.org.