Answer:
Total number of fruits remaining = 25
Step-by-step explanation:
Let the number of
apples = 4x
bananas = 5x
Therefore
4x-2 / 5x = 2 / 3
Solve for x, cross multiply
3(4x-2) = 2(5x)
12x - 6 = 10 x
2x = 6
x = 3
Apples = 4*3 = 12
Bananas = 5*3 = 15
Apples remaining = 12-2 = 10
Total number of fruits remaining = 10+15 = 25
Answer:
[tex]\boxed{25 \ fruits}[/tex]
Step-by-step explanation:
Let apples be 4x and Bananas be 5x
So, the given condition is:
[tex]\frac{4x-2}{5x} = \frac{2}{3}[/tex]
Cross Multiplying
5x*2 = 3(4x-2)
10x = 12x - 6
Adding 6 to both sides
10x+6 = 12x
12x - 10x = 6
2x = 6
x = 3
Now, Fruits remaining in the bowl are:
=> 4x-2 + 5x
=> 12 - 2 + 15
=> 10+15
=> 25
A spinner has six spaces that are all the same size. Three spaces are yellow, two are red, and one is blue. If the spinner is spun 150 times, it should land on yellow about ___ times, on red about ___ times, and on blue ___ times.
The spinner should land on yellow about 75 times, on red about 50 times, and on blue about 25 times.
How to solve the probabilityYellow: 3 spaces out of 6, so the probability is 3/6 = 1/2
Red: 2 spaces out of 6, so the probability is 2/6 = 1/3
Blue: 1 space out of 6, so the probability is 1/6
multiplying the probability of each color by 150:
Yellow: 1/2 * 150 = 75 times
Red: 1/3 * 150 = 50 times
Blue: 1/6 * 150 = 25 times
Terefore The spinner should land on yellow about 75 times, on red about 50 times, and on blue about 25 times.
Read more on probability here:https://brainly.com/question/24756209
#SPJ1
What is the domain of the function shown on the graph? A. -10
Answer:
Option (C)
Step-by-step explanation:
Domain of any graph is defined by the x-values or the input values of a function.
Similarly, y-values on the graph of a function define the Range.
In the graph attached, x-values varies from (-∞) to (+∞).
Therefore, Domain of the graphed function will be (-∞, ∞)
Or -∞ < x < ∞
Similarly, y-values of the graph varies from (-∞) to (1)
Therefore, range of the graphed function will be (-∞, 1).
Or -∞ < y < 1
Option (C) will be the answer.
Chris purchased a tablet for $650. The tablet depreciates at a rate of $25 per month.
Write and simplify an equation that models the value V(m) of the tablet after m months.
Let d equal the final amount it depreciates.
Let m equal the number of months.
Since d is the final amount, we put this at the very end of the equation.
Since it depreciates $25 every month, this number is going to be subtracted from the total price of the tablet ($650).
The final equation comes out too: d = 650 - 25m
Best of Luck!
Triangle RST was dilated with the origin as the center of dilation to create triangle R'S'T'. The triangle was dilated using a scale factor of 34. The coordinates of the vertices of triangle RST are given. You can use the scale factor to find the coordinates of the dilated image. Enter the coordinates of the vertices of triangle R'S'T' below. (Decimal values may be used.)
Answer:
Multiply every coordinate from the old one by 0.75
Step-by-step explanation:
I just did this question so I didn't need your photo. And I got it right. Hope this helps anyone else stuck on a similar question.
The rule is to multiply the old coordinates/sides by the scale factor, if its a fraction convert it to a decimal and then multiply like I did.
Answer:
x, y ----> 3/4x, 3/4y
Step-by-step explanation:
Which describes how square S could be transformed to square S prime in two steps? Assume that the center of dilation is the origin. A.) a dilation by a scale factor of Two-fifths and then a translation of 3 units up B.) a dilation by a scale factor of Two-fifths and then a reflection across the x-axis C.) a dilation by a scale factor of Five-halves and then a translation of 3 units up D.) a dilation by a scale factor of Five-halves and then a reflection across the x-axis
Answer:
The correct option is;
A.) A dilation by a scale factor of two-fifths and then a translation of 3 units up
Step-by-step explanation:
The given information are;
Square S undergoes transformation into square S'
From the figure, the dimension of S' = 2/5 dimension of S
Therefore, the scale factor of the dilation is two-fifths
The center of dilation = The origin
Therefore, given that the top right edge of S is at the center of dilation, the initial location of the dilated figure will be (0, 0), (2, 0), (2, -2), and (0, -2)
Given that the lowermost coordinates of S' are (0, 1) and (2, 1), and the lowermost coordinates of the initial dilation are (0, -2) and (2, -2), we have that the translation to S' from the initial dilation is T (0 - 0, 1 - (-2)) = T(0, 3) which is 3 units up.
Answer:
A
Step-by-step explanation:
What is the least common denominator of the rational expressions below?
Answer:
x(x-3) ( x+4)
Step-by-step explanation:
2 5
---------- + ------------
x^2 -3x x^2 + x - 12
Factor the denominator
2 5
---------- + ------------
x(x -3) (x-3) (x+4)
The common denominator is
x(x-3) ( x+4)
Which is the best estimate of 90/7 divided by 1 3/4? 2 6 12 24
Answer:
6 is the best estimate.
Step-by-step explanation:
(90/7) / (1 & 3/4) == (90/7) / (7/4) == (90/7) * (4/7) == 360/49 > 7.
Choose 6 as your best approximation.
GEOMETRY
1.) find the value of z and show work
a) Explain the difference in how an inscribed angle and central angle are draw
b) Explain the difference in how their measures compare to the subtended arc.
Answer:
z = 8.5
Step-by-step explanation:
Let O be the center of the circle, and A, B, C are three points on the circle.
Draw OA and OC are shown in the figure. To make the central angle.
In the figure the measure of arc AC is 118 degrees. measure of central angle and subtrahend arc is same. So, central angle is
[tex]\angle AOC=118^{\circ}[/tex]
Subtended angle on arc AC is
[tex]\angle ABC=(6z+8)^{\circ}[/tex]
According to central angle theorem of circle, central angle is twice of angle subtended by the arc.
[tex]\angle AOC=2\times \angle ABC[/tex]
[tex]118^{\circ}=2\times (6z+8)^{\circ}[/tex]
[tex]118=12z+16[/tex]
[tex]118-16=12z[/tex]
[tex]102=12z[/tex]
[tex]\dfrac{102}{12}=z[/tex]
[tex]8.5=z[/tex]
Therefore, the value of z is 8.5.
please solve this using quadratic formula :")
Answer:
Step-by-step explanation:
The given equation is expressed as
(x + 1)/(x - 1) - (x - 1)/(x + 1) = 7/12
Simplifying the right hand side of the equation, it becomes
[(x + 1)(x + 1) - (x - 1)(x - 1)]/(x - 1)(x + 1)
x² + x + x + 1 - (x² - 2x + 1)/(x - 1)(x + 1)
(x² + 2x + 1 - x² + 2x - 1)/(x - 1)(x + 1)
4x/(x - 1)(x + 1)
Therefore,
4x/(x - 1)(x + 1) = 7/12
Cross multiplying, it becomes
4x × 12 = 7(x - 1)(x + 1)
48x = 7(x² + x - x - 1)
48x = 7x² - 7
7x² - 48x - 7 = 0
Applying the quadratic formula,
x = - b ± √(b² - 4ac)]/2a
from our equation,
b = - 48
a = 7
c = - 7
Therefore
x = [- - 48 ± √(- 48² - 4(7 × - 7)]/2 × 7)
x = [48 ± √(2304 + 196]/14
x = (48 ± √2500)/14
x = (48 ± 50)/14
x = (48 + 50)/14 or x = (48 - 50)/14
x = 98/14 or x = - 2/14
x = 7 or x = - 1/7
Answer: The given equation is expressed as (x + 1)/(x - 1) - (x - 1)/(x + 1) = 7/12Simplifying the right hand side of the equation, it becomes[(x + 1)(x + 1) - (x - 1)(x - 1)]/(x - 1)(x + 1)x² + x + x + 1 - (x² - 2x + 1)/(x - 1)(x + 1)(x² + 2x + 1 - x² + 2x - 1)/(x - 1)(x + 1)4x/(x - 1)(x + 1)Therefore, 4x/(x - 1)(x + 1) = 7/12Cross multiplying, it becomes4x × 12 = 7(x - 1)(x + 1)48x = 7(x² + x - x - 1)48x = 7x² - 77x² - 48x - 7 = 0Applying the quadratic formula,x = - b ± √(b² - 4ac)]/2a from our equation, b = - 48a = 7c = - 7Thereforex = [- - 48 ± √(- 48² - 4(7 × - 7)]/2 × 7)x = [48 ± √(2304 + 196]/14x = (48 ± √2500)/14x = (48 ± 50)/14x = (48 + 50)/14 or x = (48 - 50)/14x = 98/14 or x = - 2/14x = 7 or x = - 1/7
Step-by-step explanation:
What is the angle of rotation from figure A to figure A? Assume that the center of rotation is the origin.
A. 360° clockwise
B. 270° clockwise
C. 180° clockwise
D. 90° clockwise
Answer:
the answer is C. 180°clockwise
Using leaner combination method what is the solution to the system of linear equations 7x-2y=-20 and 9x+4y=-6
Answer:
x = -2 and y = 3
Step-by-step explanation:
In linear combination method we try one of the variables from bopth of equations by
first making the variable equal in vlaue
then either subtracting or adding the two equation as required to eliminate the variable.
_____________________________________________
7x-2y=-20 equation 1
and 9x+4y=-6 equation 2
we see that y has
has value -2 and +4
4 = 2*2
thus, if we multiply equation1 with 2 we will give value for variable y as 4y and hence y can be eliminated easily.
7x-2y=-20
multiplying the LHS and RHS with 2
2(7x-2y)=-20 *2
=> 14x - 4y = -40 eqaution 3
now that we have got 4y
lets add equation 2 and equation 3
9x +4y= -6
+14x - 4y = -40
________________________________
=> 23x + 0 = -46
x = -46/23 = -2
Thus, x = -2
substituitinng x = -2 in 7x-2y=-20
7*-2 -2y=-20
=> -14 -2y = -20
=> -2y = -20+14 = -6
=> y = -6/-2 = 3
Thus, y = 3
solution is x = -2 and y = 3
I need the answers to the questions highlighted with the black rectangles.
Answer:
b) P(more than 10) = 2/9
c) P(less than 7) = 2/9
Step-by-step explanation:
a) Yaniq spins both spinners and then adds up the results together.
The results are as follow:
5
7
9
6
8
10
7
9
10
These are a total of 9 outcomes.
b) What is the probability that Yaniq gets a total of more than 9?
The probability is given by
P = Number of favorable outcomes/Total number of outcomes
For this case, the favorable outcomes are all those outcomes where the total score is more than 9.
Count the number of times Yaniq got a score of more than 9.
Yes right!
2 times (10 and 10)
P(more than 10) = 2/9
c) What is the probability that Yaniq gets a total of less than 7?
For this case, the favorable outcomes are all those outcomes where the total score is less than 7.
Count the number of times Yaniq got a score of less than 7.
Yes right!
2 times (5 and 6)
P(less than 7) = 2/9
Given f(x) = log x and g(x) = -x + 1,
which is the graph of
(fog)(x)?
Answer:
the third graph is correct
Step-by-step explanation:
edge
the second part is x<1
Answer:
the third graph and the send part it is x<1
Step-by-step explanation:
Select the correct answer. What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)? A. x2 + y2 − 4x + 2y + 1 = 0 B. x2 + y2 + 4x − 2y + 1 = 0 C. x2 + y2 + 4x − 2y + 9 = 0 D. x2 − y2 + 2x + y + 1 = 0
Answer:
x^2 +4x + y^2 -2y +1 =0
Step-by-step explanation:
First we need to find the radius
Since the y coordinate is the same, the radius is the difference in the x coordinate -2 - (-4) = -2+4 = 2
A circle can be written in the form
(x-h)^2 + (y-k)^2 = r^2 where (h,k) is the center and r is the radius
(x--2)^2 + (y-1)^2 = 2^2
(x+2)^2 + (y-1)^2 = 4
FOIL ing
x^2 +4x+4 + y^2 -2y +1 = 4
Combining like terms
x^2 +4x + y^2 -2y +5 -4 =0
x^2 +4x + y^2 -2y +1 =0
Answer and Step-by-step explanation:
Answer:
x^2 +4x + y^2 -2y +1 =0
Step-by-step explanation:
First we need to find the radius
Since the y coordinate is the same, the radius is the difference in the x coordinate -2 - (-4) = -2+4 = 2
A circle can be written in the form
(x-h)^2 + (y-k)^2 = r^2 where (h,k) is the center and r is the radius
(x--2)^2 + (y-1)^2 = 2^2
(x+2)^2 + (y-1)^2 = 4
FOIL ing
x^2 +4x+4 + y^2 -2y +1 = 4
Combining like terms
x^2 +4x + y^2 -2y +5 -4 =0
x^2 +4x + y^2 -2y +1 =0
Angles α and β are angles in standard position such that: α terminates in Quadrant III and sinα = - 5/13 β terminates in Quadrant II and tanβ = - 8/15
Find cos(α - β)
-220/221
-140/221
140/221
220/221
Answer:
140/221.
Step-by-step explanation:
For the triangle containing angle α:
The adjacent side is -√(13^2-5^2) = -12.
For the triangle containing angle β:
Hypotenuse = √(-8)^2 + (15)^2) = 17.
cos(α - β) = cos α cos β + sin α sin β
= ((-12/13) * (-15/17) + (-5/13)* (8/17)
= 180/221 + - 40/221
= 140/221.
What is the slope of the line through the points (2,8) and (5,7)
Answer:
-1/3
Step-by-step explanation:
The slope of the line can be found by
m = (y2-y1)/(x2-x1)
= ( 7-8)/(5-2)
= -1/3
Answer:
-1/3.
Step-by-step explanation:
The slope can be found by doing the rise over the run.
In this case, the rise is 8 - 7 = 1.
The run is 2 - 5 = -3.
So, the slope is 1 / -3 = -1/3.
Hope this helps!
Suppose 45% of the worlds population has type "O" blood type. A study was done to see if the percent differs for college students. 47% of the 1000 random selected college students have type O blood. conduct a hypothesis test to determine if the percent of college students with type o blood differs for college students?
Answer:
We accept H₀, with CI = 90 %, porcentage of O blood type in college students does not differ from the world population porcentage
Step-by-step explanation:
The test is a proportion two-tail test ( note: differs)
p₀ = 45 % or p₀ = 0,45
n = 1000
p = 47 % or p = 0,47
Test Hypothesis
Null hypothesis H₀ p = p₀
Alternative hypothesis Hₐ p ≠ p₀
CI we assume 90 % then α = 10 % α = 0,1 α/2 = 0,05
z score from z-table z(c) = 1,64
To calculate z(s) = ( p - p₀ ) / √ p₀q₀/ n
z(s) = ( 0,47 - 0,45 )/ √( 0,45)*(0,55)/1000
z(s) = 0,02/√( 0,2475)/1000
z(s) = 0,02/0,01573
z(s) = 1,2714
Now we compare z(s) and z(c)
z(s) < z(c) 1,2714 < 1,64
Then z(s) is in the acceptance region we accept H₀
if p(x) = x+ 7/ x-1 and q (x) = x^2 + x - 2, what is the product of p(3) and q(2)? a. 50 b. 45 c. 40 d. 20 e. 6
Answer:
d. 20
Step-by-step explanation:
To answer the question given, we will follow the steps below:
we need to first find p(3)
p(x) = x+ 7/ x-1
we will replace all x by 3 in the equation above
p(3) = 3+7 / 3-1
p(3) = 10/2
p(3) = 5
Similarly to find q(2)
q (x) = x^2 + x - 2,
we will replace x by 2 in the equation above
q (2) = 2^2 + 2 - 2
q (2) = 4 + 0
q (2) = 4
The product of p(3) and q(2) = 5 × 4 = 20
A car can go from rest to 90 km⁄h in 10 s. What is its acceleration?
Answer:
2.5 m/s^2
Step-by-step explanation:
Answer:
2.5 m/s²
Step-by-step explanation:
First, convert to SI units.
90 km/h × (1000 m/km) × (1 h / 3600 s) = 25 m/s
a = Δv / Δt
a = (25 m/s − 0 m/s) / 10 s
a = 2.5 m/s²
what is 92.5% of 200
Answer:
185
Step-by-step explanation:
All you have to do is multiply 200 by 92.5/100 (because it is 92.5%). This gives you 185.
Hope this helps!
Answer:
185
We know 92.5% of 100 is 92.5%, so 92.5 of 200 is just 92.5×2.
What is the y-intercept of the function y=4-5x?
Answer:
4
Step-by-step explanation:
y=mx+b
b=y-intercept.
In this case...
mx=-5<-- this is the slope of the line.
b=4<-- y intercept.
Hope this helps, any further questions, please feel free to ask.
The volume of a cylinder is approximately 72 feet cubed. Which is the best approximation of the volume of a cone with the same base and height as the cylinder? 24 feet cubed 216 feet cubed 24 pi feet cubed 216 pi feet cubed
Hey there! I'm happy to help!
To find the volume of a cylinder, you multiply the base by the height and then divide by three. The volume of a cone is the same as the volume of a cylinder with the same dimensions divided by three.
So, since a cone's volume is 1/3 of that of a cylinder, we just divide 72 by 3!
72/3=24
Therefore, the volume of the cone is 24 feet cubed.
Have a wonderful day! :D
Answer: its 24.
Step-by-step explanation:
help please thank you
Answer:
(0,-3)
Step-by-step explanation:
Help asap please and please explain so I could try the rest on my own
Answer:
7
Step-by-step explanation:
It has a 45 45 90 ratio, so if the hypotenuse is 7 root 2, then the two sides have to be 7.
Andy spins the spinner and rolls a standard number cube. Find the probability that the spinner will stop on yellow and the cube will show a three or five. Write the probability as a fraction in simplest form.
Answer: 1/5 , 1/2, and 5/6
Step-by-step explanation:
given;
probability that the cube shows a three (3) or five (5).
probability that it stops on yellow.
1. the probability p of the spinner stopping on yello
= 1/5 times
a cube has 6 sides
2. probability that it shows a 3
this is going to be 3 divided by the total sides on the cube which is 6
P = ( 3 ) = 3/6
Divide both side by 3
= 1/2.
3. probability that it shows a 5,
this is going to be 5 divided by the total sides on the cube which is 6
P = ( 5 )
= 5/6.
what is the distance formula
Answer:
14.42 units
Step-by-step explanation:
Assuming that this is a right triangle (i.e ∠ACB = 90°), we can use the Pythagorean formula to solve this:
AB² = AC² + BC²
AB² = 12² + 8²
AB = √(12² + 8²)
AB = 14.42 units
In triangle $ABC$, $AB = BC = 25$ and $AC = 40$. What is $\sin \angle ACB$?
Answer:
Sine angle of <ACB = 38.68°
Step-by-step explanation:
Hello,
To solve this problem, we need a good representation of the sides and the angle.
See attached document for better illustration.
Assuming it's a right angled triangle,
AC = hypothenus
AB = opposite
BC = adjacent
AC = 40
BC = 25
AB = 25
From trigonometric ratios
Sinθ = opposite/ hypothenus
Sinθ = AB / AC
Sinθ = 25 / 40
Sinθ = 0.625
θ = sin⁻¹0.625
θ = 38.68°
Sine angle of <ACB = 38.68°
Find: ∠a ∠b ∠c Plaese help
Answer:
i believe a=105, b=29, and c=45
Please answer it now in two minutes
Answer:
[tex] C = 28.9 [/tex]
Step-by-step explanation:
Given the right angled triangle, ∆BCD, you are required to find the measure of angle C.
Apply the trigonometric ratio formula to find m < C.
Adjacent side = 7
Hypotenuse = 8
Trigonometric ratio formula to apply would be:
[tex] cos(C) = \frac{7}{8} [/tex]
[tex] cos(C) = 0.875 [/tex]
[tex] C = cos^{-1}(0.875) [/tex]
[tex] C = 28.9 [/tex]
(To nearest tenth)
PLEASE HELP
What is the y-intercept of the given graph? -4 3 4 None of these choices are correct.
Answer:
3
Step-by-step explanation:
the line crosses the y-axis at (0,3)
Answer:
3
Step-by-step explanation:
The y intercept is where the graph crosses the y axis ( where x =0)
The lines crosses at y=3
Y intercept is 3