Let's simplify step-by-step.
3(2x+1)−2(x+1)
Distribute:
=(3)(2x)+(3)(1)+(−2)(x)+(−2)(1)
=6x+3+−2x+−2
Combine Like Terms:
=6x+3+−2x+−2
=(6x+−2x)+(3+−2)
=4x+1
4x+1 is the answer to the question
Rewrite the equation in =+AxByC form. Use integers for A, B, and C. =−y6−6+x4
Answer:
6x + y = -18
Step-by-step explanation:
The given equation is,
y - 6 = -6(x + 4)
We have to rewrite this equation in the form of Ax + By = C
Where A, B and C are the integers.
By solving the given equation,
y - 6 = -6x - 24 [Distributive property]
y - 6 + 6 = -6x - 24 + 6 [By adding 6 on both the sides of the equation]
y = -6x - 18
y + 6x = -6x + 6x - 18
6x + y = -18
Here A = 6, B = 1 and C = -18.
Therefore, 6x + y = -18 will be the equation.
You are selling your product at a three-day event. Each day, there is a 60% chance that you will make money. What is the probability that you will make money on the first two days and lose money on the third day
Answer:
The required probability = 0.144
Step-by-step explanation:
Since the probability of making money is 60%, then the probability of losing money will be 100-60% = 40%
Now the probability we want to calculate is the probability of making money in the first two days and losing money on the third day.
That would be;
P(making money) * P(making money) * P(losing money)
Kindly recollect;
P(making money) = 60% = 60/100 = 0.6
P(losing money) = 40% = 40/100 = 0.4
The probability we want to calculate is thus;
0.6 * 0.6 * 0.4 = 0.144
Refer to the following wage breakdown for a garment factory:
Hourly Wages Number of employees
$4 up to $7 18
7 up to 10 36
10 up to 13 20
13 up to 16 6
What is the class interval for the preceding table of wages?
A. $4
B. $2
C. $5
D. $3
Answer:
The class interval is $3Step-by-step explanation:
The class interval is simply the difference between the lower or upper class boundary or limit of a class and the lower or upper class boundary or limit of the next class.
In this case for the class
$4 up to $7 18 and
$7 up to $10 36
The lower class boundary of the first class is $4 and the lower class boundary of the second class is $7
Hence the class interval = $7-$4= $3A car travels 133 mi averaging a certain speed. If the car had gone 30 mph faster, the trip would have taken 1 hr less. Find the car's average speed.
Answer:
49.923 mph
Step-by-step explanation:
we know that the car traveled 133 miles in h hours at an average speed of x mph.
That is, xh = 133.
We can also write this in terms of hours driven: h = 133/x.
If x was 30 mph faster, then h would be one hour less.
That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).
We can rewrite the latter equation as h = 133/(x + 30) + 1
We can then make a system of equations using the formulas in terms of h to find x:
h = 133/x = 133/(x + 30) + 1
133/x = 133/(x + 30) + (x + 30)/(x + 30)
133/x = (133 + x + 30)/(x + 30)
133 = x*(133 + x + 30)/(x + 30)
133*(x + 30) = x*(133 + x + 30)
133x + 3990 = 133x + x^2 + 30x
3990 = x^2 + 30x
x^2 + 30x - 3990 = 0
Using the quadratic formula:
x = [-b ± √(b^2 - 4ac)]/2a
= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)
= [-30 ± √(900 + 15,960)]/2
= [-30 ± √(16,860)]/2
= [-30 ± 129.846]/2
= 99.846/2 ----------- x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)
= 49.923
Check if the answer is correct:
h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.
If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.
Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster
given sin theta=3/5 and 180°<theta<270°, find the following: a. cos(2theta) b. sin(2theta) c. tan(2theta)
I hope this will help uh.....
A 25-foot ladder is placed against a building and the top of the ladder makes a 32° angle with the building. How many feet away from the building is the base of the ladder?
Answer:
since the top of the ladder is making the angle, the of the ladder's base from the building is our opposite and the ladder is the hypotnuse,
sin (32)=opp/hyp, 0.52=opp/25, opp=13 ft
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
Mia agreed to borrow a 3 year loan with 4 percent interest to buy a motorcycle if Mia will pay a total of $444 in interest how much money did she borrow how much interest would Mia pay if the simple interest rate was 5 percent
Answer:
a) $3700
b) $555
Step-by-step explanation:
The length of the loan is 3 years.
The interest after 3 years is $444.
The rate of the Simple Interest is 4%.
Simple Interest is given as:
I = (P * R * T) / 100
where P = principal (amount borrowed)
R = rate
T = length of years
Therefore:
[tex]444 = (P * 3 * 4) / 100\\\\444 = 12P / 100\\\\12P = 444 * 100\\\\12P = 44400\\\\P = 44400 / 12\\[/tex]
P = $3700
She borrowed $3700
b) If the simple interest was 5%, then:
I = (3700 * 5 * 3) / 100 = $555
The interest would be $555.
Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?
Answer:
The answer is 5th angle = [tex]\bold{42^\circ}[/tex]
Step-by-step explanation:
Given that pizza is divided into six unequal slices.
Largest slice has an angle of [tex]90^\circ[/tex].
He eats the pizza from largest to smallest.
Let the difference in angles in each slice = [tex]d^\circ[/tex]
1st angle = [tex]90^\circ[/tex]
2nd angle = 90-d
3rd angle = 90-d-d = 90 - 2d
4th angle = 90-2d-d = 90 - 3d
5th angle = 90-3d-d = 90 - 4d
6th angle = 90-4d -d = 90 - 5d
We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).
i.e.
[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]
So, the angles will be:
1st angle = [tex]90^\circ[/tex]
2nd angle = 90- 12 = 78
3rd angle = 78-12 = 66
4th angle = 66-12 = 54
5th angle = 54-12 = 42
6th angle = 42 -12 = 30
So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]
For each of the following research scenarios, decide whether the design uses a related sample. If the design uses a related sample, identify whether it uses matched subjects or repeated measures. (Note: Researchers can match subjects by matching particular characteristics, or, in some cases, matched subjects are naturally paired, such as siblings or married couples.)
You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described ___________a, b, or c_________________________.
a. uses a related sample - repeated measures
b. uses a related sample - matched subjects
c. does not use a related sample
John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample to lonely people to the sleep quality of a random sample of nonlonely people.
The design described ______a, b, or c_________________________.
a. does not use a related sample
b. uses a related sample (repeated measures)
c. uses a related sample (matched subjects)
Answer:
a. uses a related sample - repeated measures
c. uses a related sample (matched subjects)
Step-by-step explanation:
A) You are interested in a potential treatment for compulsive hoarding. You treat a group of 50 compulsive hoarders and compare their scores on the Hoarding Severity scale before and after the treatment. You want to see if the treatment will lead to lower hoarding scores.
The design described uses a related sample - repeated measures because the scores were compared on the Hoarding Severity scale before and after the treatment.
B) John Caccioppo was interested in possible mechanisms by which loneliness may have deterious effects of health. He compared the sleep quality of a random sample of lonely people to the sleep quality of a random sample of nonlonely people.
The design described uses a related sample (matched subjects)
Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value
Answer:
z(c) = - 1,64
We reject the null hypothesis
Step-by-step explanation:
We need to solve a proportion test ( one tail-test ) left test
Normal distribution
p₀ = 63 %
proportion size p = 51 %
sample size n = 114
At 5% level of significance α = 0,05, and with this value we find in z- table z score of z(c) = 1,64 ( critical value )
Test of proportion:
H₀ Null Hypothesis p = p₀
Hₐ Alternate Hypothesis p < p₀
We now compute z(s) as:
z(s) = ( p - p₀ ) / √ p₀q₀/n
z(s) =( 0,51 - 0,63) / √0,63*0,37/114
z(s) = - 0,12 / 0,045
z(s) = - 2,66
We compare z(s) and z(c)
z(s) < z(c) - 2,66 < -1,64
Therefore as z(s) < z(c) z(s) is in the rejection zone we reject the null hypothesis
Find the area of the surface given by z = f(x, y) that lies above the region R. f(x, y) = 64 + x2 − y2 R = {(x, y): x2 + y2 ≤ 64}
The area of the surface above the region R is 4096π square units.
Given that:
The function: [tex]f(x, y) = 64 + x^2 - y^2[/tex]
The region R is the disk with a radius of 8 units [tex]x^2 + y^2 \le 64[/tex].
To find the area of the surface given by z = f(x, y) that lies above the region R, to calculate the double integral over the region R of the function f(x, y) with respect to dA.
The integral for the area is given by:
[tex]Area = \int\int_R f(x, y) dA[/tex]
To evaluate this integral, we need to set up the limits of integration for x and y over the region R, which is the disk cantered at the origin with a radius of 8 units.
Using polar coordinates, we can parameterize the region R as follows:
x = rcos(θ)
y = rsin(θ)
where r goes from 0 to 8, and θ goes from 0 to 2π.
Now, rewrite the integral in polar coordinates:
[tex]Area =\int\int_R f(x, y) dA\\Area = \int_0 ^{2\pi} \int_0^8(64 + r^2cos^2(\theta) - r^2sin^2(\theta)) \times r dr d \theta[/tex]
Now, we can integrate with respect to r first and then with respect to θ:
[tex]Area = \int_0^{2\pi} \int_0^8] (64r + r^3cos^2(\theta) - r^3sin^2(\theta)) dr d \theta[/tex]
Integrate with respect to r:
[tex]Area = \int_0^{2\pi}[(32r^2 + (1/4)r^4cos^2(\theta) - (1/4)r^4sin^2(\theta))]_0^8 d \theta\\Area = \int_0^{2\pi} (2048 + 256cos^2(\theta) - 256sin^2(\theta)) d \theta[/tex]
Now, we can integrate with respect to θ:
[tex]Area = [2048\theta + 128(sin(2\theta) + \theta)]_0 ^{2\pi}[/tex]
Area = 2048(2π) + 128(sin(4π) + 2π) - (2048(0) + 128(sin(0) + 0))
Area = 4096π + 128(0) - 0
Area = 4096π square units
So, the area of the surface above the region R is 4096π square units.
Learn more about Integration here:
https://brainly.com/question/31744185
#SPJ4
Find the common ratio of the following geometric sequence:
11,55, 275, 1375, ....
Answer:
Hey there!
The common ratio is 5, because you multiply by 5 to get from one term to the next.
Hope this helps :)
Answer:
5
Step-by-step explanation:
To find the common ratio take the second term and divide by the first term
55/11 = 5
The common ratio would be 5
The automatic opening device of a military cargo parachute has been designed to open when the parachute is 155 m above the ground. Suppose opening altitude actually has a normal distribution with mean value 155 and standard deviation 30 m. Equipment damage will occur if the parachute opens at an altitude of less than 100 m. What is the probability that there is equipment damage to the payload of at least one of five independently dropped parachutes
Answer:
the probability that one parachute of the five parachute is damaged is 0.156
Step-by-step explanation:
From the given information;
Let consider X to be the altitude above the ground that a parachute opens
Then; we can posit that the probability that the parachute is damaged is:
P(X ≤ 100 )
Given that the population mean μ = 155
the standard deviation σ = 30
Then;
[tex]P(X \leq 100 ) = ( \dfrac{X- \mu}{\sigma} \leq \dfrac{100- \mu}{\sigma})[/tex]
[tex]P(X \leq 100 ) = ( \dfrac{X- 155}{30} \leq \dfrac{100- 155}{30})[/tex]
[tex]P(X \leq 100 ) = (Z \leq \dfrac{- 55}{30})[/tex]
[tex]P(X \leq 100 ) = (Z \leq -1.8333)[/tex]
[tex]P(X \leq 100 ) = \Phi( -1.8333)[/tex]
From standard normal tables
[tex]P(X \leq 100 ) = 0.0334[/tex]
Hence; the probability of the given parachute damaged is 0.0334
Let consider Q to be the dropped parachute
Given that the number of parachute be n= 5
The probability that the parachute opens in each trail be p = 0.0334
Now; the random variable Q follows the binomial distribution with parameters n= 5 and p = 0.0334
The probability mass function is:
Q [tex]\sim[/tex] B(5, 0.0334)
Similarly; the event that one parachute is damaged is :
Q ≥ 1
P( Q ≥ 1 ) = 1 - P( Q < 1 )
P( Q ≥ 1 ) = 1 - P( Y = 0 )
P( Q ≥ 1 ) = 1 - b(0;5; 0.0334 )
P( Q ≥ 1 ) = [tex]1 -(^5_0)* (0.0334)^0*(1-0.0334)^5[/tex]
P( Q ≥ 1 ) = [tex]1 -( \dfrac{5!}{(5-0)!}) * (0.0334)^0*(1-0.0334)^5[/tex]
P( Q ≥ 1 ) = 1 - 0.8437891838
P( Q ≥ 1 ) = 0.1562108162
P( Q ≥ 1 ) [tex]\approx[/tex] 0.156
Therefore; the probability that one parachute of the five parachute is damaged is 0.156
A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2
Answer:
3
Step-by-step explanation:
let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room
A living room is two times as long as the bedroom, so:
A = 2X
A living room is one and one-half times as wide as a bedroom, so:
B = 1.5Y
The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y
So, AB in terms of XY is:
A*B = (2X)*(1.5Y) = 3(X*Y)
It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the bedroom.
Identify the value of the CRITICAL VALUE(S) used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. -0.218
b. -1.645
c. -1.946
d. -1.667
Answer:
C
Step-by-step explanation:
The critical value we are asked to state in this question is the value of the z statistic
Mathematically;
z-score = (x- mean)/SD/√n
From the question
x = 11.58
mean = 12
SD = 1.93
n = 80
Substituting this value, we have
z= (11.58-12)/1.93/√80 = -1.946
In randomized, double-blind clinical trials of Prevnar, infants were randomly divided into two groups. Subjects in group 1 received Prevnar, while subjects in group 2 received a control vaccine. Aft er the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect. After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect. Does the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the αα=0.05 level of significance?
Answer:
Step-by-step explanation:
From the summary of the given data;
After the second dose, 137 of 452 subjects in the experimental group (group 1) experienced drowsiness as a side effect.
Let consider [tex]p_1[/tex] to be the probability of those that experience the drowsiness in group 1
[tex]p_1[/tex] = [tex]\dfrac{137}{452}[/tex]
[tex]p_1[/tex] = 0.3031
After the second dose, 31 of 99 subjects in the control group (group 2) experienced drowsiness as a side effect.
Let consider [tex]p_2[/tex] to be the probability of those that experience the drowsiness in group 1
[tex]p_2[/tex] = [tex]\dfrac{31}{99}[/tex]
[tex]p_2[/tex] = 0.3131
The objective is to be able to determine if the evidence suggest that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2 at the α=0.05 level of significance.
In order to do that; we have to state the null and alternative hypothesis; carry out our test statistics and make conclusion based on it.
So; the null and the alternative hypothesis can be computed as:
[tex]H_o :p_1 =p_2[/tex]
[tex]H_a= p_1<p_2[/tex]
The test statistics is computed as follows:
[tex]Z = \dfrac{p_1-p_2}{\sqrt{p_1 *\dfrac{1-p_1}{n_1} +p_2 *\dfrac{1-p_2}{n_2}} }[/tex]
[tex]Z = \dfrac{0.3031-0.3131}{\sqrt{0.3031 *\dfrac{1-0.3031}{452} +0.3131 *\dfrac{1-0.3131}{99}} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *\dfrac{0.6969}{452} +0.3131 *\dfrac{0.6869}{99}} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{0.3031 *0.0015418 +0.3131 *0.0069384} }[/tex]
[tex]Z = \dfrac{-0.01}{\sqrt{4.6731958*10^{-4}+0.00217241304} }[/tex]
[tex]Z = \dfrac{-0.01}{0.051378 }[/tex]
Z = - 0.1946
At the level of significance ∝ = 0.05
From the standard normal table;
the critical value for Z(0.05) = -1.645
Decision Rule: Reject the null hypothesis if Z-value is lesser than the critical value.
Conclusion: We do not reject the null hypothesis because the Z value is greater than the critical value. Therefore, we cannot conclude that a lower proportion of subjects in group 1 experienced drowsiness as a side effect than subjects in group 2
Use the functions m(x) = 4x + 5 and n(x) = 8x − 5 to complete the function operations listed below. Part A: Find (m + n)(x). Show your work. (3 points) Part B: Find (m ⋅ n)(x). Show your work. (3 points) Part C: Find m[n(x)]. Show your work. (4 points)
Answer:
Step-by-step explanation:
Part A
(m + n)x = 4x + 5 + 8x - 5
(m + n)x = 12x The fives cancel
Part B
(m - n)x = 4x + 5 - 8x + 5
(m - n)x = -4x + 10
Part C
The trick here is to put n(x) into m(x) wherever m(x) has an x.
m[n(x)] = 5(n(x)) + 5
m[n(x)] = 5(8x - 5) + 5
m[n(x)] = 40x - 20 + 5
m[n(x)] = 40x - 15
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
Find the length of the following tangent segments to the circles centered at O and O's whose radii are 5 and 3 respectively and the distance between O and O's is 12. Find segment AB
Answer:
AB = 2 sqrt(35) (or 11.83 to two decimal places)
Step-by-step explanation:
Refer to diagram.
ABO'P is a rectangle (all angles 90)
=>
PO' = AB
AB = PO' = sqrt(12^2-2^2) = sqrt(144-4) = sqrt(140) = 2sqrt(35)
using Pythagoras theorem.
Linda, Reuben, and Manuel have a total of $70 in their wallets. Reuben has $10 more than Linda. Manuel has 2 times what Linda has. How much does each have? Amount in Linda's wallet: $ Amount in Reuben's wallet: $ Amount in Manuel's wallet:
Answer:
Linda has $15Reuben has $25Manuel has $30Step-by-step explanation:
Together, they have 4 times what Linda has, plus $10. So, Linda has 1/4 of $60 = $15.
Linda has $15
Reuben has $25 . . . . . . $10 more than Linda
Manuel has $30 . . . . . . twice what Linda has
If a pair of dice are rolled,
what is the probability that at least
one die shows a 5?
Answer:
11/36
Step-by-step explanation:
Find the probability that neither dice shows a 5 (also means the dice can show any number except 5- where there are 5 possible choices out of 6):
= 5/6 x 5/6
=25/36
If we subtract the probability that neither dice shows a 5, we can obtain the probability that at least 1 dice shows a 5- (either one of them is 5, or both of them is 5)
1- 25/36
=11/36
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
Evaluate the series
Answer:
the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
C) 59
Step-by-step explanation:
Recall that;
[tex]\sum_{1}^{n}a_n = a_1+a_2+...+a_n\\[/tex]
Therefore, we can evaluate the series;
[tex]\sum_{k=1}^{6}(25-k^2)[/tex]
by summing the values of the series within that interval.
the values of the series are evaluated by substituting the corresponding values of k into the equation.
[tex]\sum_{k=1}^{6}(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_{k=1}^{6}(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_{k=1}^{6}(25-k^2) =24+21+16+9+0+(-11)\\\sum_{k=1}^{6}(25-k^2) = 59\\[/tex]
So, the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
which quadratic function in standard form has the value a= -3.5, b=2.7, and c= -8.2?
Answer:
y = -3.5x² + 2.7x -8.2
Step-by-step explanation:
the quadratic equation is set up as a² + bx + c, so just plug in the values
Answer:
[tex]-3.5x^2 + 2.7x -8.2[/tex]
Step-by-step explanation:
Quadratic functions are always formatted in the form [tex]ax^2+bx+c[/tex].
So, we can use your values of a, b, and c, and plug them into the equation.
A is -3.5, so the first term becomes [tex]-3.5x^2[/tex].
B is 2.7, so the second term is [tex]2.7x[/tex]
And -8.2 is the C, so the third term is [tex]-8.2[/tex]
So we have [tex]-3.5x^2+2.7x-8.2[/tex]
Hope this helped!
A drawer contains 3 white shirts, 2 blue shirts, and 5 gray shirts. A shirt is randomly
selected from the drawer and set aside. Then another shirt is randomly selected from the
drawer.
What is the probability that the first shirt is white and the second shirt is gray?
Answer:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Given that
3 white, 2 blue and 5 gray shirts are there.
To find:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = ?
Solution:
Here, total number of shirts = 3+2+5 = 10
First of all, let us learn about the formula of an event E:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
[tex]P(First\ White) = \dfrac{\text{Number of white shirts}}{\text {Total number of shirts left}}[/tex]
[tex]P(First\ White) = \dfrac{3}{10}[/tex]
Now, this shirt is set aside.
So, total number of shirts left are 9 now.
[tex]P(First\ White\ and\ second\ gray) = P(First White) \times P(Second\ Gray)\\\Rightarrow P(First\ White\ and\ second\ gray) = P(First White) \times \dfrac{\text{Number of gray shirts}}{\text{Total number of shirts left}}\\\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{3}{10} \times \dfrac{5}{9}\\\Rightarrow P(First\ White\ and\ second\ gray) = \dfrac{1}{2} \times \dfrac{1}{2}\\\Rightarrow P(First\ White\ and\ second\ gray) = \bold{\dfrac{1}{4} }[/tex]
So, the answer is:
Probability that first shirt is white and second shirt is gray if first shirt selected is set aside = [tex]\frac{1}{4}[/tex]
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8
let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has
Answer:
The answer is below
Step-by-step explanation:
A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?
Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:
[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]
a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]
b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.
That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757
c) Let b be the amount of raw sugar should be stocked for the plant each day.
P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]
But P(x > a) = 0.05
Therefore:
[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]
a ≅ 12
find the exact value of sin 0
Answer:
12/13
Step-by-step explanation:
First we must calculate the hypotenus using the pythagoran theorem
5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13Now let's calculate sin0
sin O = 12/13So the exact value is 12/13
Answer:
C.) 12/13
Step-by-step explanation:
In a right angle triangle MN = 12, ON = 5 and; angle N = 90°
Now,
For hypotenuse we will use Pythagorean Theorem
(MO)² = (MN)² + (ON)²
(MO)² = (12)² + (5)²
(MO)² = 144 + 25
(MO)² = 169
MO = √169
MO = 13
now,
Sin O = opp÷hyp = 12÷13
A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80
Answer:
D.$80
Step-by-step explanation:
$5.26 x 15.5= $81.53
The closest amount to $81.53 is D.$80