Answer:
n = 4
Step-by-step explanation:
4(2n + 3) = 44
Expand the brackets.
4(2n) + 4(3) = 44
8n + 12 = 44
Subtract 12 on both sides.
8n + 12 - 12 = 44 - 12
8n = 32
Divide both sides by 8.
(8n)/8 = 32/8
n = 4
You are testing the claim that the mean GPA of night students is greater than the mean GPA of day students. You sample 30 night students, and the sample mean GPA is 2.36 with a standard deviation of 0.96 You sample 60 day students, and the sample mean GPA is 2.19 with a standard deviation of 0.66 Calculate the test statistic, rounded to 2 decimal places
Answer:
Z = 0.87
Explanation:
Given the following data;
Sample 1:
n1 = 30
Mean, X = 2.36
Standard deviation, Ox = 0.96
Sample 2:
n2 = 60
Mean, Y = 2.19
Standard deviation, Oy = 0.66
The formula for test statistics for two population is;
[tex]Z = \frac{X-Y}{\sqrt{(\frac{Ox^2} {n_1} } +\frac{Oy^2}{n_2} )}}[/tex]
Substituting the values, we have;
[tex]Z = \frac{2.36-2.19}{\sqrt{(\frac{0.96^2} {30} +\frac{0.66^2}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(\frac{0.9216} {30} +\frac{0.4356}{60} )}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{(0.03072 +0.00726)}}[/tex]
[tex]Z = \frac{0.17}{\sqrt{0.03798}}[/tex]
[tex]Z = \frac{0.17}{0.19488}[/tex]
Z = 0.8723
The test statistics to 2 d.p is 0.87
Therefore, Z = 0.87
(a) Complete the statements below about the graphs of y = -x and y=x.
Compared to the graph of y=x, the graph of y=-x is Choose one
Compared to the graph of y=x, the graph of y = -x intersects the y-axis at Choose one
2
(b) Complete the statements below about the graphs of y=x+
and y=x.
3
2
Compared to the graph of y = x, the graph of y=x+ 5 is Choose one
2
Compared to the graph of y=x, the graph of y=x+
3
intersects the y-axis at Chonse one
a higher point
the same point.
a lower point
Х
?
Answer:
this. question is not clear please send clear question
We can conclude that -
Graphs pass through the origin. (y = x) has a slope of +1 while (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.What is the general equation of a Straight line?The general equation of a straight line is -
[y] = [m]x + [c]
where -
[m] is slope of line which tells the unit rate of change of [y] with respect to [x].
[c] is the y - intercept i.e. the point where the graph cuts the [y] axis.
y = mx also represents direct proportionality. We can write [m] as -
m = y/x
OR
y₁/x₁ = y₂/x₂
We have the following two functions -
y = -x
AND
y = x
Refer to the graphs attached for both the functions -
y = - x and y = x
The graphs as seen pass through the origin. One graph (y = x) has a slope of +1 while the other one (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.
We can conclude that -
Graphs pass through the origin. (y = x) has a slope of +1 while (y = - x) has a slope of -1. The y - intercept of both the graphs will be 0.To solve more questions on straight line, visit the link below-
https://brainly.com/question/29030795
#SPJ2
6. Find d.
Please help
Answer:
Step-by-step explanation:
The first thing we are going to do is to fill in the other angles that we need to solve this problem. You could find ALL of them but all of them isn't necessary. So looking at the obtuse angle next to the 35 degree angle...we know that those are supplementary so 180 - 35 = the obtuse angle in the small triangle. 180 - 35 = 145. Within the smaller triangle we have now the 145 and the 10, and since, by the Triangle Angle-Sum Theorem all the angles have to add up to equal 180, then 180 - (10 + 145) = the 3rd angle, so the third angle is 180 - 155 = 25. Now let's get to the problem. If I were you, I'd draw that out like I did to keep track of these angles cuz I'm going to name them by their degree. In order to find d, we need to first find the distance between d and the right angle. We'll call that x. The reference angle is 35, the side opposite that angle is 12 and the side we are looking for, x, is adjacent to that angle. So we will use the tan ratio to find x:
[tex]tan(35)=\frac{12}{x}[/tex] Isolating x:
[tex]x=\frac{12}{tan(35)}[/tex] so
x = 17.1377 m
Now we have everything we need to find d. We will use 25 degrees as our reference angle, and the side opposite it is 12 and the side adjacent to it is
d + 17.1377, so that is the tan ratio as well:
[tex]tan(25)=\frac{12}{d+17.1377}[/tex] and simplifying a bit:
[tex]d+17.1377=\frac{12}{tan(25)}[/tex] and a bit more:
d + 17.1377 = 25.73408 so
d = 8.59, rounded
Which transformations can be used to carry ABCD onto itself? The point of rotation is (3, 2). Check all that apply. A. Reflection across the line y = 2 B. Rotation of 180 C. Rotation of 90 D. Translation two units up
Answer: rotate 180 degrees and reflection across the line y=2
Step-by-step explan
Answer:
Step-by-step explanation:
Pls solve ASAP!! Review the attachment and solve. Pls hurry!
Answer:
A. 3
Step-by-step explanation:
ΔDEC is bigger than ΔABC by 5. For the hypotenuse, 25 is 5 times bigger than 5.
So, side DE on ΔDEC has to be 5 times bigger than side AB on ΔABC.
If side AB equals 3, side DE equals 18 - 3, which is 15.
15 is five times bigger than 3, so the answer is A. 3.
Hope that helps.
describe the end behavior f(x)=5x^4+3x^2-1.
HELP ME PLEASSSSEE On a winter morning, the temperature before sunrise was -10℉. The temperature then rose by 1℉ each hour for 7 hours before dropping by 2℉ each hour for 3 hours. What was the temperature, in degrees Fahrenheit, after 10 hours?
Answer:
3 degrees F
Step-by-step explanation:
if the temperature rose 1* for 7 hours, times 1 by 7. which is 7 and add to -10. which is -3. then, since the temperature rose by 2* for 3 hours, times 2 by 3 which is 6 and add to -3, which is 3.
i hope this helped?
9/10 of the weight of a loaf of bread comes from the flour used in its baking. 2/9 of the weight is the protein what fraction of the weight is protein?
Answer:
1/5
Step-by-step explanation:
2/9 * 9/10 = 2/10 = 1/5
please help!!!!!!!!!!!
Answer:
The x value of the point 1/4 the distance from point C to point D is -0.25
Step-by-step explanation:
The given information are;
The location of point C = (1, 2)
The location of point D = (-4, -2)
The point 1/4 from point C to point D is the point 3/4 from point D to point C
Which gives;
The coordinate at point D + 3/4× The difference between the coordinates of point C and point D
Which is (-4 + 3/4×(1 - (-4), - 2 + 3/4×(2 - (-2))
Which gives;
(-4 + 3.75, -2 + 3) and (-0.25, 1)
The coordinates of the point 1/4 the distance from point C to point D is (-0.25, 1)
Therefore, the x value of the point 1/4 the distance from point C to point D = -0.25.
help plzz ... Trigonometry
Answer:
XYZ = 21.8
Step-by-step explanation:
the missing angle is XYZ
cos XYZ = [tex]\frac{adjacent}{hypotenus}[/tex] tan XYZ = [tex]\frac{6}{15}[/tex] tan XYz = 0.4using a calculator:
tan^(-1)(0.4)= 21.8so XYZ = 21.8
Please answer this in two minutes
I don't understand the British system of colonization
Answer:
Which of the following numbers is a composite number that is divisible by 3? A. 49 B. 103 C. 163 D. 261 Answer: B) 245
Step-by-step explanation:
Zhi bought 18 tickets for games at a fair. Each game requires 3 tickets. Zhi wrote the expression 18 – 3g to find the number of tickets she has left after playing g games. Diego correctly wrote another expression, 3(6 – g), that will also find the number of tickets Zhi has left after playing g games. Use the drop-down menus to explain what each part of Zhi's and Diego's expressions mean.
Answer: In zhi's equation, the 18 is the initial amount of tickets, and the 3g means 3 times the amount of games.
Diegos equation is the same, but write in factorised form. The 3 multiplies with the 6 to create 18, and the 3 multiple with the g to create 3g
These tables of values represent continuous functions. For which function will the y-values be the greatest for very large values of x?
Answer:
The table D represents the function that will have the greatest y-values for very large values of x.
Step-by-step explanation:
The table A represents a linear function, for which each one unit increment in the "x" variable produces a three unit increment in the "y" variable. This means that the growth rate of this function is 3.
The table B also represents a linear function, for which each one unit increment in the x variable produces a 100 unit increment in the y variable. This means that the growth rate of this function is 100.
The table C also represents a linear function, for which each one unit increment in the x variable produces a 10 unit increment in the y variable. This means that the growth rate of this function is 10.
The table D on the other hand does not represent a linear function, since the growth rate is variable and increases for greater values of x. This means that as x grows larger, the growth rate of the function also grows larger, resulting in a much greater y value for very large x values if we compare it to a linear function, like the other options.
Answer:
D
Step-by-step explanation:
BIGBRAIN
*Marie made a model (shown below) of the square pyramid she plans to build when she grows up. Find the surface area of the model. 8 12 12
Answer:
336m^2
Step-by-step explanation:
The triangle area is half of base times height so: 1/2*8*12=48m^2
There are 4 triangles so 48*4=192
Then the square base area is side times side so: 12*12=144m^2
Then surface area of model is 192m^2+144m^2=336m^2
Answer:
336 m²
Step-by-step explanation:
We can find the surface area of this pyramid by finding the surface area of one of the sides, multiplying it by 4 (as there are 4 sides to the pyramid) then adding it to the surface area of the base.
Each side of this (excluding the base) is a triangle, and to find the area of a triangle we use the equation [tex]\frac{b \cdot h}{2}[/tex].
[tex]\frac{12 \cdot 8}{2}[/tex]
[tex]\frac{96}{2}[/tex]
48.
So, one side of this is 48. Multiplying it by 4 gets us 192.
Now we have to add the area of the base. The area of the bass is a square with side lengths of 12, so we can square 12 to get the area of the bass. 12² = 144.
Now let's add these numbers:
192+144 = 336
So, 336 m² is what this comes out to.
Hope this helped!
Which is the best estimate for the percent equivalent of 7 Over 15
Approximate what the value of [tex]7/15[/tex] is by using calculator.
[tex]7/15\approx0.47[/tex].
And now just multiply by 100 to get percentage.
[tex]100\cdot0.47=\boxed{47\%}[/tex].
Hope this helps.
Answer:
24%
Step-by-step explanation:
7\15 x 100
simplify and get=140\3
dived140\3=48\2
simplify 48\2=24%
Find the area ratio of a regular octahedron and a tetrahedron regular, knowing that the diagonal of the octahedron is equal to height of the tetrahedron.
Answer:
[tex]\frac{4}{3}[/tex]
Step-by-step explanation:
The area of a regular octahedron is given by:
area = [tex]2\sqrt{3}\ *edge^2[/tex]. Let a is the length of the edge (diagonal).
area = [tex]2\sqrt{3}\ *a^2[/tex]
Given that the diagonal of the octahedron is equal to height (h) of the tetrahedron i.e.
a = h, where h is the height of the tetrahedron and a is the diagonal of the octahedron. Let the edge of the tetrrahedron be e. To find the edge of the tetrahedron, we use:
[tex]h=\sqrt{\frac{2}{3} } e\\but\ h=a\\a=\sqrt{\frac{2}{3} } e\\e=\sqrt{\frac{3}{2} }a[/tex]
The area of a tetrahedron is given by:
area = [tex]\sqrt{3}\ *edge^2[/tex] = [tex]\sqrt{3} *(\sqrt{\frac{3}{2} }a)^2=\frac{3}{2}\sqrt{3} *a^2[/tex]
The ratio of area of regular octahedron to area tetrahedron regular is given as:
Ratio = [tex]\frac{2\sqrt{3}\ *a^2}{\frac{3}{2} \sqrt{3}*a^2} =\frac{4}{3}[/tex]
What is the average length of a side in the shape made from the file datatest1.txt whose contents are shown below (just give to two decimal places)? -3,3 -4,-3 4,-2 6,5
Answer:
0.75
Step-by-step explanation:
The average length is given as the sum of all the lengths given divided by the number of lengths (frequency).
Mathematically:
Average = (Sum of lengths) / frequency
The lengths given are -3, 3, -4, -3, 4, -2, 6, 5. There are 8 lengths there.
The average is therefore:
Average = (-3 + 3 + (-4) + (-3) + 4 + (-2) + 6 + 5) / 8
Average = 0.75
if the denominator of a fraction is multiplied by 2,the value of the fraction is
Answer:
Half of its original
Step-by-step explanation:
When multiplying a denominator by a whole number, he value decreases accordingly, in other word, it changes inversely.
Examples:
In 1/2, if 2 is multiplied by 2, the value becomes 1/4, which is half of 1/2
In 1/4, if 4 is multiplied by 2, the value becomes 1/8 which is half of 1/4.
Hope this helps
Good luck
can someone please help me
Answer:
B
Step-by-step explanation:
Because this equation is just a normal greater than symbol, it has to be a dotted line.
This graph starts at -2 and goes up 1 and right 3(this cancels out C as an option)
Than you shade the region with the larger number vaules, since it is greater than.
Select the number of solutions for each system of two linear equations.
Answer:
work is shown and pictured
C, infinitely many solutions.
B, one solution.
C, infinitely many solution.
A system of linear equations:A system of linear equations is a collection of one or more linear equations involving the same variables.
A system of linear equation has
one solution when the graph intersect at a point.no solution when the graphs are parallel.infinitely many solutions when the graphs are exact same line.According to the given questions
the given system of equations
(1). 2x+2y=3 and 4x+4y=6
if we see the graph of the above system of linear equations, the graphs are the" exact at same line".
Hence, they have infinitely many solution.
(2). 7x+5y=8 and 7x+7y =8
if we see the graph of the above system of linear equations, the graphs are intersecting at a single point.
Hence, there is only one solution.
(3). -2x+3y=7 and 2x-3y=-7
if we see the graph of the above system of linear equations, the graphs are exact at same line.
Hence, there is infinitely many solutions.
Learn more about the system of linear equations here:https://brainly.in/question/5130012
#SPJ2
Please help fast! 25 points and brainliest!!
Let f(x) = 36x5 − 44x4 − 28x3 and g(x) = 4x2. Find f of x over g of x
Answer:
The answer is
9x³ - 11x² - 7xStep-by-step explanation:
f(x) = 36x^5 − 44x⁴ − 28x³
g(x) = 4x²
To find f(x) / g(x) Divide each term of f(x) by g(x)
That's
[tex] \frac{f(x)}{g(x)} = \frac{ {36x}^{5} - {44x}^{4} - {28x}^{3} }{ {4x}^{2} } \\ \\ = \frac{ {36x}^{5} }{ {4x}^{2} } - \frac{ {44x}^{4} }{ {4x}^{2} } - \frac{ {28x}^{3} }{ {4x}^{2} } \\ \\ = {9x}^{3} - {11x}^{2} - 7x[/tex]
Hope this helps you
Answer:
9x³ - 11x² - 7x
Step-by-step explanation:
guy abpove is right or bwlowe
Plzzzzz Help I really need help
A Line Segment has the points (1,-2), and (3,-2). What are the new points after its dilated by a scale factor of 3/2 or 1.5
Answer:
(1.5,-3) and (4.5,-3)
Step-by-step explanation:
A square and a regular heptagon are coplanar and share a common side $\overline{AD}$, as shown. What is the degree measure of exterior angle $BAC$? Express your answer as a common fraction.
Answer:
[tex]\angle BAC = 141\frac{3}{7} ^{\circ}[/tex]
Step-by-step explanation:
The interior angle of a regular heptagon = = 900/7° = 128.57°
Therefore, angle DAB = 128.57°
The interior angle of the square = 90°
Therefore, angle DAC = 90°
Therefore, we have
angle DAB+ angle DAC + angle BAC = 360° (sum of angles at a point (A))
Angle BAC = 360° - angle DAB - angle DAC = 360° - 900/7° - 90° = 990/7°
Angle BAC = 141.43°
Expressing 141.43° as a common fraction gives;
[tex]141.43 ^{\circ}= \dfrac{990}{7} ^{\circ}=141\frac{3}{7} ^{\circ}[/tex]
[tex]\angle BAC = 141\frac{3}{7} ^{\circ}[/tex]
The degree measure of exterior angle BAC is [tex]141\frac{3}{7}^\circ[/tex]
Given, A square and a regular heptagon are coplanar as shown in below figure attached.
We have find the exterior angle of BAC.
We know that, The formula that gives the interior angle measure for a regular polygon with any number of sides is,
[tex]\frac{180(n-2)}{n}[/tex] where n is the number of sides.
Since the heptagon has 7 no. of sides.
So regular heptagon's interior angle measures,
[tex]\frac{180(7-2)}{7}=128\frac{4}{7}[/tex]
Hence [tex]\angle A[/tex] will be[tex]128\frac{4}{7}[/tex] degrees.
We know that a square's interior angle is 90 degrees and a heptagon's interior angle is 128.57 degrees. We will subtract those from 360 degrees to find angle BAC.
[tex]\angle BAC = 360 - (\angle A + 90)\\[/tex]
[tex]\angle BAC = 360 - (128\frac{4}{7} + 90)\\\angle BAC=141\frac{3}{7} ^\circ[/tex]
Hence the degree measure of exterior angle BAC is [tex]141\frac{3}{7}^\circ[/tex].
For more details on Exterior angle follow the link:
https://brainly.com/question/2125016
Tristan wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3% and the other bank is offering a rate of 2.5% compounded annually. If Tristan decides to deposit $7,000 for 4 years, which bank would be the better deal? 1. a simple interest rate of 3% 2. a compound interest rate of 2.5%
Answer:
The bank offering simple interest at rate of 3% for four years
Step-by-step explanation:
Hello,
To find out which deal would be better, we have to find how much accrued on the simple and compound interest.
Data;
Principal (P) = $7,000
Time = 4 years
Simple interest rate = 3%
S.I = PRT / 100
S.I = (7000 × 3 × 4) / 100
S.I = $840
In four years, he would have $7000 + $840 = $7840.
For compound interest,
C.I = P(1 + r/n)^nt
Where n = number of time compounded = 1 (since it's annually)
rate = 2.5% = 2.5/ 100 = 0.025
C.I = 7000(1 + 0.025/1)⁽¹*⁴⁾
C.I = 7000 (1 + 0.025)⁴
C.I = 7000×(1.025)⁴
C.I = 7000 × 1.1038
C.I = $7726.6
In four years he would have $7,726.6
After calculating and evaluating both option, it's advisable for him to select the bank offering a simple interest of 3% for four years
Triangle ABC has vertices at A(2,5), B(4,11) and C(-1,6). Determine the angles in this triangle.
I need this solved using vectors please
Answer:
The angles are
∠A = 90°, ∠B = 26.56°, ∠C = 63.43°
Step-by-step explanation:
We have that the angles of a vector are given as follows;
[tex]cos\left ( \theta \right ) = \dfrac{\mathbf{a\cdot b}}{\left | \mathbf{a} \right |\left | \mathbf{b} \right |}[/tex]
Whereby the vertices are represented as
A= (2, 5, 0), B = (4, 11, 0), C = (-1, 6, 0),
AB =(4, 11, 0) - (2, 5, 0) = (2, 6, 0) , BA = (-2, -6, 0)
BC = (-1, 6, 0) - (4, 11, 0) = (-5, -5, 0), CB = (5, 5, 0)
AC = (-1, 6, 0) - (2, 5, 0) = (-3, 1, 0), CA = (3, -1, 0)
θ₁ = AB·AC
a·c = a₁c₁ + a₂c₂ + a₃c₃ = 2×(-3) + 6×1 = 0
Therefore, θ₁ = 90°
BA·BC = (-2)×(-5) + (-6)×(-5) = 40
[tex]{\left | \mathbf{}BA \right |\left | \mathbf{}BC \right |}[/tex] = (√((-2)² + (-6)²)) × (√((-5)² + (-5)²)) = 44.72
cos(θ₂) = 40/44.72 = 0.894
cos⁻¹(0.894) =θ₂= 26.56°
CA·CB = 5×3 + 5×(-1) = 10
[tex]{\left | \mathbf{}CA \right |\left | \mathbf{}CB \right |}[/tex] = (√((3)² + (-1)²)) × (√((5)² + (5)²)) = 22.36
10/22.36 = 0.447
cos(θ₃) = 0.447
θ₃ = cos⁻¹(0.447) = 63.43°.
Use the quadratic formula to find the exact solutions of x2 − 5x − 2 = 0. x equals negative b plus or minus the square root of b squared minus 4 times a times c, all over 2 times a x equals 5 plus or minus the square root of 33, all over 2 x equals negative 5 plus or minus the square root of 33, all over 2 x equals 5 plus or minus the square root of 17, all over 2 x equals negative 5 plus or minus the square root of 17, all over 2
Answer:
x = [ -b +- sqr root (b^2 - 4ac)] / 2a
a = 1
b = -5
c = -2
x = [- - 5 +- sqr root (-5^2 -4 * 1 * -2)] / 2 * 1
x = [5 +- sqr root (25 + 8)] / 2
x1 = 5.3723
x2 =-0.37228
Step-by-step explanation:
Exact solution for the give quadratic equation are
[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]
Quadratic EquationQuadratic equation of the form [tex]ax^2+bx+c=0[/tex]
For any quadratic equation we get two values for x. we can find the values for x by applying quadratic formula .
Quadratic formula
[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]
Given equation is [tex]x^2-5x-2=0[/tex]
The value of a=1, b= -5 and c=-2
Substitute all the values in the formula.
To find out exact solutions , we need to simplify the final answer.
Exact solutions are without any decimals.
[tex]x=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\cdot \left(-2\right)}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\pm \sqrt{33}}{2\cdot \:1}\\x=\frac{-\left(-5\right)\p+ \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5+\sqrt{33}}{2}\\\\x=\frac{-\left(-5\right)- \sqrt{33}}{2\cdot \:1}\\\\x=\frac{5-\sqrt{33}}{2}\\[/tex]
Exact solutions are
[tex]x=\frac{5+\sqrt{33}}{2},\:x=\frac{5-\sqrt{33}}{2}[/tex]
Learn more information about 'Quadratic formula ' here
brainly.com/question/8649555
The table below lists some of the characteristics of the houses on Katrina’s street. Characteristics of Homes For Sale on Katrina’s Street Bedrooms Acres of land Sale price Appraised value Property tax 2 0.17 $230,000 $200,000 $1,220 2 0.20 $210,000 $220,000 $1,232 3 0.20 $275,000 $250,000 $1,400 4 0.24 $275,000 $275,000 $1,540 4 0.52 $360,000 $310,000 $1,736 4 0.75 $350,000 $320,000 $1,792 5 1.23 $375,000 $350,000 $1,960 Which relationship describes a function?
Answer:
your welcome and hope this helps
Please help! "Create a real-life scenario involving an angle of elevation or depression. Draw an appropriate diagram and explain how to solve your example."
Answer:
Height of the kite = 86.60 meter (Approx)
Step-by-step explanation:
The angle of elevation to see a kite from a stone lying to the ground is 60 degrees. If a thread is tied with a kite and a stone, then that thread is 100 meters long, find the height of the kite.
Given:
Length of thread = 100 meter
Angle of elevation = 60°
Find:
Height of the kite.
Computation:
Using trigonometry application:
Height of the kite / Length of thread = Sin 60°
Height of the kite / 100 = √3 / 2
Height of the kite = [√3 / 2]100
Height of the kite = 50√3
Height of the kite = 86.60 meter (Approx)
Jane exchanged £100 for 216 Swiss francs. After buying a meal and a present to take home,she had 70 francs left.How much is this in £?
Answer:
£32.4
Step-by-step explanation:
£100 = 216 Swiss francs
x = 70 francs
70 x 100=7000/216=32.4