Answer:
a
The null hypothesis is
[tex]H_o : \mu = 21[/tex]
The Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
b
[tex]\sigma_{\= x} = 0.8944[/tex]
c
[tex]t = -2.236[/tex]
d
Yes the mean population is significantly less than 21.
Step-by-step explanation:
From the question we are given
a set of data
20 18 17 22 18
The confidence level is 90%
The sample size is n = 5
Generally the mean of the sample is mathematically evaluated as
[tex]\= x = \frac{20 + 18 + 17 + 22 + 18}{5}[/tex]
[tex]\= x = 19[/tex]
The standard deviation is evaluated as
[tex]\sigma = \sqrt{ \frac{\sum (x_i - \= x)^2}{n} }[/tex]
[tex]\sigma = \sqrt{ \frac{ ( 20- 19 )^2 + ( 18- 19 )^2 +( 17- 19 )^2 +( 22- 19 )^2 +( 18- 19 )^2 }{5} }[/tex]
[tex]\sigma = 2[/tex]
Now the confidence level is given as 90 % hence the level of significance can be evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10[/tex]%
[tex]\alpha =0.10[/tex]
Now the null hypothesis is
[tex]H_o : \mu = 21[/tex]
the Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
The standard error of mean is mathematically evaluated as
[tex]\sigma_{\= x} = \frac{\sigma}{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x} = \frac{2}{ \sqrt{5 } }[/tex]
[tex]\sigma_{\= x} = 0.8944[/tex]
The test statistic is evaluated as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 19 - 21 }{ 0.8944 }[/tex]
[tex]t = -2.236[/tex]
The critical value of the level of significance is obtained from the critical value table for z values as
[tex]z_{0.10} = 1.28[/tex]
Looking at the obtained value we see that [tex]z_{0.10}[/tex] is greater than the test statistics value so the null hypothesis is rejected
WILL MARK BRAINLIEST If Alan and Zack can clean a room in 30 minutes when working together, and Alan cleans twice as fast as Zack, how long would it take Alan to clean the room by himself?
Answer:
45 min
Step-by-step explanation:
Here,
the we take the work as W and Alan's speed as A and Zack's speed as Z.
A = 2Z
W = 30 ( A+Z)
if the time for Alan to done cleaning alone is t then t = W ÷ A
t = ( 30 (A+(A÷2)))÷ A
t = 45 min
I am done .
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. (What is the product) How does the elevation of the airplane change in that hour? The elevation of the airplane _________ by ______ km. increases 60 decreases 9 0.15
WILL GIVE BRAINLIEST, THANKS AND FIVE STARS
Answer:
The elevation of the airplane decreases by 9 km.
Step-by-step explanation:
We use the distance-rate-time formula: d = rt.
Here, the rate is r = 0.15 km/min and the time is t = 60 min. Simply plug these into the formula:
d = rt
d = 0.15 * 60 = 9 km
So, the change in elevation in the last 60 minutes is 9 km. However, note that the rate is negative (-0.15 km/min), which means that the elevation actually is decreasing.
Thus, the answer is: the elevation of the airplane decreases by 9 km.
~ an aesthetics lover
Answer:
The elevation of the airplane _decrease_ by __9____ km
Step-by-step explanation:
Take the rate and multiply by the time to get the distance traveled
-.15 km per minute * 60 minutes
- 9 km
The plane will go down 9 km in that 60 minutes
Need Help finding the process for both of these ( due today)
Similar triangles have side lengths that are proportional to each other. To find each of the missing lengths, we need to set up proportions.
The proportions will look as follows:
(length or unknown of triangle 1) / (length or unknown of triangle 2) = (length of triangle 1) / (length of triangle 2)
-On both sides, remember to be consistent with which length/unknown you put on top! If a triangle 1 length is the numerator on the left, then it also needs to be the numerator on the right! And this also works vice versa with triangle 2.
In each proportion equation, we can only have one unknown. On the left side of the equation, we choose one length or unknown of triangle 1, and the corresponding side length of unknown of triangle 2 (whichever you did not choose from triangle 1). On the right side of the equation, we use a completed proportion. This is because all of the sides of one triangle are proportional to the other triangle, but we need to know that proportion/ratio in order to find other side lengths.
Let's start with problem a, to show how this works:
Triangle 1 side lengths - 16, a, 11
Triangle 2 side lengths - 8, 3, b
As you can tell, the side lengths match up (corresponding!) on each triangle, as in they are in the same position on each triangle. Now, we will set up a proportion to find the length of side a on triangle 1.
a / 3 = 16 / 8
48 = 8a
a = 6
Next, let's find the length of side b on triangle 2.
11 / b = 16 / 8
16b = 88
b = 5.5
Moving on to problem b, we'll apply the same concept and steps from problem a in order to find the missing side lengths.
Triangle 1 side lengths: 5, 5.5, d
Triangle 2 side lengths: 15, c, 18
5 / 15 = 5.5 / c
5c = 82.5
c = 16.5
5 / 15 = d / 18
15d = 90
d = 6
Hope this helps!! :)
Answer:
On a) you can see the shapes are simular. The blue line signatures that they are equal just reduced. You can see that 8 goes into 16 two times so for the orange line 3 must times 2. Which would mean a is 6. Now on the red line all you see is 11. So divide 11 by 2 and your answer should be 5.5 for b.
On b) it is the same thing but you have to find how the blue line is divisible. 5 divided by 15 is 3. So 3 is the number you will be using to divide or multiply. For the orange line you divide 18 by 3. The answer is 6 for d. For the red line 5.5 times 3 and you should get 11 for c.
Step-by-step explanation:
Hope this helped
easy math please help!
Answer:
[tex]\boxed{ \sf 41.81}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
We can use trigonometric functions.
[tex]\sf sin(\theta)=\frac{opposite}{hypotenuse}[/tex]
[tex]\sf sin(?)=\frac{2}{3}[/tex]
[tex]\sf ?=sin^{-1}(\frac{2}{3})[/tex]
[tex]\sf ?= 41.81031489...[/tex]
Answer:
[tex]\boxed{41.81}[/tex]
Step-by-step explanation:
∠B is opposite of side AC, which has a length of 2 units. The hypotenuse of the triangle is equivalent to 3 units.
The trigonometric function that uses the opposite side and the hypotenuse is sine function. This is represented by [tex]sin = \frac{opposite}{hypotenuse}[/tex]. The side that is opposite to the angle being solved for is the opposite side (it does not border the angle and it is not the hypotenuse).
However, you are solving for an angle. So, you need to use the inverse sine function ([tex]sin^{-1}[/tex]) to solve this question properly.
Simply type into a calculator [tex]sin^{-1} (\frac{2}{3})[/tex] and it will evaluate the answer to approximately 41.81°.
What is (6b +4) when b is 2?
Answer:
16
Step-by-step explanation:
6*2 = 12
12 + 4 = 16
At a sand and gravel plant, sand is falling off a conveyor and onto a conical pile at a rate of 8 cubic feet per minute. The diameter of the base of the cone is approximately three times the altitude. At what rate is the height of the pile changing when the pile is 22 feet high
Answer:
(11π/9 )ft/s
Step by step Explanation
Let us denote the height as h ft
But we were told that The diameter of the base of the cone is approximately three times the altitude, then
Let us denote the diameter = 3h ft, and the radius is 3h/2
The volume of the cone is
V = (1/3)π r^2 h
Then if we substitute the values we have
= (1/3)π (9h^2/4)(h) = (3/4)π h^3
dV/dt = (9/4)π h^2 dh/dt
We were given as 22feet and rate of 8 cubic feet per minute
h = 22
dV/dt = 8
8= (9/4)π (22) dh/dt
= 11π/9ft/s
Therefore, the rate is the height of the pile changing when the pile is 22 feet is
11π/9ft/s
which of the following descriptions represent the transformation shown in the image? Part 1d
Answer:
(C) Translation of 2 units right, 1 up, and a reflection over the y-axis.
Step-by-step explanation:
Ideally, we are looking for a reflection of the red image over the y-axis, and to do that, we can see how we need to move the black image.
In order for points Q and Q' to be a reflection of each other, they need to have the same y value, and be the exact same distance from the y axis, so the point that Q has to be at is (-1,-3).
Q is right now at (-3,-4) so we can translate this.
To get from -3 to -1 in the x-axis, we go right by 2 units.
To get from -4 to -3 in the y-axis, we go up one unit.
Now, if we reflect it, the triangles will be the same.
Hope this helped!
Answer:
C.
Step-by-step explanation:
When you study the images, it is clear that the black triangle has to be reflected over the y-axis to face the same direction as the red triangle. So, choice A is eliminated.
Once you reflect the black triangle across the y-axis, you have points at (-1, -1), (3, -4), and (3, -2). Meanwhile, the red triangle's coordinates are at (-3, 0), (1, -3), and (1, -1). From these points, you can tell that the x-values differ by 2 units and the y-values differ by 1 unit.
All of these conditions match the ones put forth in option C, so that is your answer.
Hope this helps!
15x - 30 x 0 + 40 = 89
Answer:
x = 49/15
Step-by-step explanation:
15x - 30 x 0 + 40 = 89 PEMDAS
15x + 40 = 89 Isolate the variable
15x = 49
x = 49/15
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 49/15 or 3 4/15 or 3.26
▹ Step-by-Step Explanation
15x - 30 * 0 + 40 = 89
15x - 0 + 40 = 89
15x + 40 = 89
15x = 89 - 40
15x = 49
x = 49/15 or 3 4/15 or 3.26
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
PLEASE HELP ASAP. Drag each tile to the correct box
Answer:
3 <1<4<2
hope it worked
pls mark me as
BRAINLIEST
plss
Answer:
3>1>2>4
Step-by-step explanation:
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
Please answer this correctly without making mistakes.Please simplify the correct answer
Answer:
19/70 of NASA shuttle missions were carried out by Discovery.
9/140 of NASA shuttle missions were carried out by Challenger.
17/70 of NASA shuttle missions were carried out by Endeavour.
Step-by-step explanation:
Adding the number of missions carried out by NASA gives us 140 in total.
Discovery's total amount of missions simplified is 19/70.
Challenger's total amount of missions is already in the simplest form.
Endeavour's total amount of missions simplified is 17/70.
Answer:
81/140
Step-by-step explanation:
Well to find the fraction we first need to total amount of NASA missions.
38 + 32 = 70
70 + 34 = 104
104 + 27 = 131
131 + 9 = 140
Now we need to find out the amount of Discovery, Challenger, and Endeavour missions.
38 + 9 + 34 = 81
Now we can make the following fraction,
81/140
This is already in simplest form.
Thus,
the answer is 81/140.
Hope this helps :)
Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?
Answer:
0.0668 or 6.68%
Step-by-step explanation:
Variance (V) = 10,000
Standard deviation (σ) = √V= 100
Mean score (μ) = 500
The z-score for any test score X is:
[tex]z=\frac{X-\mu}{\sigma}[/tex]
For X = 650:
[tex]z=\frac{650-500}{100}\\z=1.5[/tex]
A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]
The probability is 0.0668 or 6.68%
The probability that he or she will make a score of 650 or more is 0.0668.
Let X = Scores made on a certain aptitude test by nursing students
X follows normal distribution with mean = 500 and variance of 10,000.
So, standard deviation = [tex]\sqrt{10000}=100[/tex].
z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].
The probability that he or she will make a score of 650 or more is:
[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]
Learn more: https://brainly.com/question/14109853
For each of the following, state the equation of a perpendicular line that passes through (0, 0). Then using the slope of the new equation, find x if the point P(x, 4) lies on the new line. y=3x-1 y=1/4 x+2
Answer:
The answer is below
Step-by-step explanation:
a) y=3x-1
The standard equation of a line is given by:
y = mx + c
Where m is the slope of the line and c is the intercept on the y axis.
Given that y=3x-1, comparing with the standard equation of a line, the slope (m) = 3, Two lines with slope a and b are perpendicular if the product of their slope is -1 i.e. ab = -1. Let the line perpendicular to y=3x-1 be d, to get the slope of the perpendicular line, we use:
3 × d = -1
d = -1/3
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=d(x-x_1)\\d\ is\ the \ slope:\\y-0=-\frac{1}{3} (x-0)\\y=-\frac{1}{3}x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-\frac{1}{3}x\\ 4=-\frac{1}{3}x\\-x=12\\x=-12[/tex]
b) y=1/4 x+2
Given that y=1/4 x+2, comparing with the standard equation of a line, the slope (m) = 1/4. Let the line perpendicular to y=1/4 x+2 be f, to get the slope of the perpendicular line, we use:
1/4 × f = -1
f = -4
To find the equation of the perpendicular line passing through (0,0), we use:
[tex]y-y_1=f(x-x_1)\\f\ is\ the \ slope:\\y-0=-4 (x-0)\\y=-4x[/tex]
To find x if the point P(x, 4) lies on the new line, insert y = 4 and find x:
[tex]y=-4}x\\ 4=-4x\\x=-1[/tex]
The line passing through points
(4,0) and (-2, 1) has a slope of?
A. -6
B. -1/6
C. 1/2
D. 2
E. 1/6
Answer:
b. -1/6
Step-by-step explanation:
slope = (difference in y)/(difference in x)
slope = (1 - 0)/(-2 - 4) = 1/(-6) = -1/6
Answer:
m = -1/6 = B
Step-by-step explanation:
[tex]m = \frac{y_2-y_1}{x_2-x_1} \\ x_1=4\\ y_1=0\\ x_2=-2\\y_2=1.\\m = \frac{1-0}{-2-4} \\m = \frac{1}{-6}[/tex]
Construct a polynomial function with the stated properties. Reduce all fractions to lowest terms. Second-degree, with zeros of −7 and 6, and goes to −∞ as x→−∞.
Answer:
Step-by-step explanation:
Hello, because of the end behaviour it means that the leading coefficient is negative so we can construct such polynomial function as below.
[tex]\large \boxed{\sf \bf \ \ -(x+7)(x-6) \ \ }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The polynomial function will be f ( x ) = - x² - x + 42
What is Quadratic Equation?
A quadratic equation is a second-order polynomial equation in a single variable x , ax²+ bx + c = 0. with a ≠ 0. Because it is a second-order polynomial equation, the fundamental theorem of algebra guarantees that it has at least one solution. The solution may be real or complex.
Given data ,
The polynomial function is of second degree with zeros of -7 and 6
So , x = -7 and x = 6
Let the function be f ( x ) where f ( x ) = ( x + 7 ) ( x - 6 )
Now , as x tends to infinity , the negative makes no such difference on the zeros of the function f ( x ) ,
And , f ( x ) = - ( x + 7 ) ( x - 6 )
Therefore , to find the polynomial function , f ( x ) = - ( x + 7 ) ( x - 6 )
f ( x ) = - [ x² - 6 x + 7 x - 42 ]
= - [ x² + x - 42 ]
= - x ² - x + 42
Hence , the polynomial function f ( x ) = - x ² - x + 42
To learn more about polynomial function click :
https://brainly.com/question/25097844
#SPJ2
A company is evaluating which of two alternatives should be used to produce a product that will sell for $35 per unit. The following cost information describes the two alternatives.
Process A Process B
Fixed Cost $500,000 $750,000
Variable Cost per Unit $25 $23
Requirement:;
i) Calculate the breakeven volume for Process A. (show calculation to receive credit)
ii) Calculate the breakeven volume for Process B. (show calculation to receive credit)
III) Directions: Show calculation below and Circle the letter of the correct answer.
If total demand (volume) is 120,000 units, then the company should
select Process A with a profit of $940,000 to maximize profit
select Process B with a profit of $450,000 to maximize profit
select Process A with a profit of $700,000 to maximize profit
select Process B with a profit of $690,000 to maximize profit
Answer:
A.50,000 units
B.62,500 units
C.Process A with a profit of $700,000 to maximize profit
Step-by-step explanation:
A.Calculation for the breakeven volume for Process A
Using this formula
Breakeven volume for Process A= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process A=500,000/(35-25)
Breakeven volume for Process A=500,000/10
Breakeven volume for Process A=50,000 units
B.Calculation for the breakeven volume for Process B
Using this formula
Breakeven volume for Process B= Fixed cost/(Sales per units-Variable cost per units)
Let plug in the formula
Breakeven volume for Process B=750,000/(35-23)
Breakeven volume for Process B=750,000/12
Breakeven volume for Process B=62,500 units
C. Calculation for what the company should do if the total demand (volume) is 120,000 units
Using this formula
Profit=(Total demand*(Sales per units-Variable cost per units for Process A)- Process A fixed cost
Let plug in the formula
Profit =120,000*($35-$25)-$500,000
Profit=120,000*10-$500,000
Profit=1,200,000-$500,000
Profit= $700,000
Therefore If total demand (volume) is 120,000 units, then the company should select Process A with a profit of $700,000 to maximize profit.
PLEASE HELP QUICK! Determine x value of: sqrt x + 8 - sqrt x - 4 = 2
Answer:
x=8
Step-by-step explanation:
[tex]\sqrt{x+8}-\sqrt{x-4}=2\\\sqrt{x+8}=2+\sqrt{x-4}\\\left(\sqrt{x+8}\right)^2=\left(2+\sqrt{x-4}\right)^2\\x+8=x+4\sqrt{x-4}\\8=4\sqrt{x-4}\\8^2=\left(4\sqrt{x-4}\right)^2\\64=16x-64\\x=8[/tex]
Question 10 of 10
Which set of polar coordinates are plotted in the graph below?
Answer:
(-2, -(2pi)/3)
Step-by-step explanation:
a p ex
In da pic :)))))))))
Please help. I’ll mark you as brainliest if correct!
Answer:
CDs: $30,000bonds: $90,000stocks: $50,000Step-by-step explanation:
You can let c, b, s represent the investments in CDs, bonds, and stocks, respectively.
c + b + s = 170000 . . . . . . total invested
0.0325c +0.038b +0.067s = 7745 . . . . . . . annual income
-c + b = 60000
You can solve this set of equations using any of a number of methods, including on-line calculators, graphing calculators, scientific calculators, Cramer's Rule, substitution, elimination, and more. The solution is ...
c = 30,000
b = 90,000
s = 50,000
Maricopa's Success invested $30,000 in CDs, $90,000 in bonds, and $50,000 in stocks.
A company studied the number of lost-time accidents occurring at its Brownsville, Texas, plant. Historical records show that 8% of the employees suffered lost-time accidents last year. Management believes that a special safety program will reduce such accidents to 4% during the current year. In addition, it estimates that 15% of employees who had lost-time accidents last year will experience a lost-time accident during the current year.
a. What percentage of the employees will experience lost-time accidents in both years?
b. What percentage of the employees will suffer at least one lost-time accident over the two-year period?
Answer:
a) percentage of the employees that will experience lost-time accidents in both years = 1.2%
b) percentage of the employees that will suffer at least one lost-time accident over the two-year period = 10.8%
Step-by-step explanation:
given
percentage of lost time accident last year
P(L) = 8% = 0.08 of the employees
percentage of lost time accident current year
P(C) = 4% = 0.04 of the employees
P(C/L) = 15% = 0.15
using the probability
P(L ∩ C) = P(C/L) × P(L)
= 0.08 × 0.15 = 0.012 = 1.2%
percentage of the employees will experience lost-time accidents in both years = 1.2%
b) Using the probability of the event
P(L ∪ C) = P(L) + P(C) - P(L ∩ C)
= 0.08 + 0.04 -0.012 = 0.108 = 10.8%
percentage of the employees will suffer at least one lost-time accident over the two-year period = 10.8%
Use all the information below to find the missing x-value for the point that is on this line. m = - 1 / 3 b = 7 ( x, 4 )
Answer:
[tex]\boxed{x = 9}[/tex]
Step-by-step explanation:
m = -1/3
b = 7
And y = 4 (Given)
Putting all of the givens in [tex]y = mx+b[/tex] to solve for x
=> 4 = (-1/3) x + 7
Subtracting 7 to both sides
=> 4-7 = (-1/3) x
=> -3 = (-1/3) x
Multiplying both sides by -3
=> -3 * -3 = x
=> 9 = x
OR
=> x = 9
Answer:
x = 9
Step-by-step explanation:
m = -1/3
b = 7
Using slope-intercept form:
y = mx + b
m is slope, b is y-intercept.
y = -1/3x + 7
Solve for x:
Plug y as 4
4 = 1/3x + 7
Subtract 7 on both sides.
-3 = -1/3x
Multiply both sides by -3.
9 = x
How many solutions does the following equation have? 14(z+3)=14z+21
Answer:
No solutions
Step-by-step explanation:
14(z + 3) = 14z + 21
Expand brackets.
14z + 42 = 14z + 21
Subtract 14z on both sides.
42 = 21
There are no solutions.
Answer:
No solution
Step-by-step explanation:
First, We have to simplify the right side.
Distribute 14, 14z+42.
Now the equation stands as 14z+42=14z+21
Subtract 14z from both sides,
this makes it 42=21.
We know when the solution is #=#, our answer is no solution.
plzzzzz helpp j + 9 - 3 < 8
Answer:
j < 2
Step-by-step explanation:
Simplify both sides of the inequality and isolating the variable would get you the answer
Please answer this correctly without making mistakes
Simplify the correct answer
Answer:
7/44
Step-by-step explanation:
First find the total number of presidents.
2 + 7 + 13 + 12 + 7 + 3 = 44
There were 7 presidents that were 45-49 when elected. Divide this number by the total number of presidents to find the fraction.
7/44 ≈ 0.159
What rule (i.e. R1, R2, R3, R4, or R5) would you use for the hawk and for the grizzly bear? a. R2 and R5 b. R1 and R3 c. None of the above d. R1 and R4
Answer:
I NEED POINTS
Step-by-step explanation:
Find the volume of the figure below. Round to the nearest tenth.
7 cm
7 cm
9 cm
20 cm
11 cm
Answer:
3057.6 cm³
Step-by-step explanation:
You have a cylinder and a rectangular prism. Solve for the area of each separately.
Cylinder
The formula for volume of a cylinder is V = πr²h. The radius is 7, and the height is 7.
V = πr²h
V = π(7)²(7)
V = π(49)(7)
V = 343π
V = 1077.57 cm³
Rectangular Prism
The formula for volume of a rectangular prism is V = lwh. The length is 20, the width is 11, and the height is 9.
V = lwh
V = (20)(11)(9)
V = (220)(9)
V = 1980 cm³
Add the areas of the two shapes.
1077.57 cm³ + 1980 cm³ = 3057.57 cm³
Round to the nearest tenth.
3057.57 cm³ ≈ 3057.6 cm³
What additional information do you need to prove △ABC ≅ △DEF by the SSS Postulate? A. BC = EF B. AB = DE C. AC = DF
Answer:
AC = DF
Step-by-step explanation:
The SSS Postulate occurs when all three corresponding pairs of sides are congruent, therefore, the only missing pair is AC = DF.
What is the range of the function f(x)=3/4|x|-3
Range is [tex]y\in[-3,+\infty)[/tex].
Hope this helps.
What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?
The lowest common denominator is lcm(5, 3), which is 15.
The sum of 2/5 + 5/3 + 9/3 is 6/15 + 25/15 + 45/15, which is 76/15 or [tex]5\frac{1}{15}[/tex].
Please help. I’ll mark you as brainliest if correct!
Answer:
8lb of the cheaper Candy
17.5lb of the expensive candy
Step-by-step explanation:
Let the cheaper candy be x
let the costly candy be y
X+y = 25.5....equation one
2.2x +7.3y = 25.5(5.7)
2.2x +7.3y = 145.35.....equation two
X+y = 25.5
2.2x +7.3y = 145.35
Solving simultaneously
X= 25.5-y
Substituting value of X into equation two
2.2(25.5-y) + 7.3y = 145.35
56.1 -2.2y +7.3y = 145.35
5.1y = 145.35-56.1
5.1y = 89.25
Y= 89.25/5.1
Y= 17.5
X= 25.5-y
X= 25.5-17.5
X= 8