800x87979 es 70, 383, 200
Espero que esto te ayude
Answer:
Step-by-step explanation:
800*87979 = 70,383,200
Show all work for 135 points (90 points + brainliest = 135 pts)
Answer:
(a) 5/7 chance
(b) 2/7 chance
(c) 5/7 chance
Step-by-step explanation:
Event X: There are 3 letters that come before "D". A, B, and C. There is a 3 out of 7 chance of picking one of those letters. (3/7)
Event Y: There are 4 letters in "C A G E". Those 4 letters are in the 7 first letters of the alphabet meaning that they are in our pile of tiles. There is a 4 out of 7 chance of picking one of those letters. (4/7)
(a) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 5/7 chance of either Event X or Event Y happening since tiles "A" and "C" are included in both events.
(b) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 2/7 chance of both X and Y happening since there are only 2 tiles that are the same in both events, "A" and "C". (We are only allowed to pick one tile)
(c) The complement of Event Y is 1-4/7=5/7 chance.
Answer:
a) 5/7 chance
(b) 2/7 chance
(c) 5/7 chance
Step-by-step explanation:
Event X: There are 3 letters that come before "D". A, B, and C. There is a 3 out of 7 chance of picking one of those letters. (3/7)
Event Y: There are 4 letters in "C A G E". Those 4 letters are in the 7 first letters of the alphabet meaning that they are in our pile of tiles. There is a 4 out of 7 chance of picking one of those letters. (4/7)
(a) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 5/7 chance of either Event X or Event Y happening since tiles "A" and "C" are included in both events.
(b) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 2/7 chance of both X and Y happening since there are only 2 tiles that are the same in both events, "A" and "C". (We are only allowed to pick one tile)
(c) The complement of Event Y is 1-4/7=5/7 chance.
6th grade math, help me please.
Answer:
a) [tex]\frac{2}{3} \,\frac{lb}{bread}[/tex]
b) [tex]1\frac{1}{4} \,\frac{in}{domino}[/tex]
Step-by-step explanation:
Part a:
every 4 lbs of flour, she makes 6 loaves of bread. this as a rate in simplest fraction form is:
[tex]\frac{4}{6} \,\frac{lb}{bread} = \frac{2}{3} \,\frac{lb}{bread}[/tex]
Part b:
every 10 inches , 8 dominoes can be placed. then the rate can be written as:
[tex]\frac{10}{8} \,\frac{in}{domino} = \frac{5}{4} \,\frac{in}{domino} =1\frac{1}{4} \,\frac{in}{domino}[/tex]
Please help me identify the rays!!!!
Answer:
D (The last choice)
Step-by-step explanation:
We know that rays are lines with a dot on one side and an arrow on the other. WE also know that lines have two arrows on each end. Keeping this in mind, we can identify which line segments and rays and lines.
Given: angle 1 congruent angle2 prove: p||q
Please hurry
Answer:
converse of alternate exterior angle theorem
Step-by-step explanation:
um im not sure if i should explain the full proof but
The initial population of a town is , and it grows with a doubling time of 10 years. What will the population be in years?
Answer:
This question is incomplete, i will answer it as:
"The initial population of a town is A, and it grows with a doubling time of 10 years. What will the population be in X years?"
Ok, the growth of a population usually is an exponential growth, so we can write this as:
P(t) = A*exp(r*t)
Where A is the initial population.
r is the rate of growth, and t is our variable, in this case, number of years.
Now we know that when t = 10y, the population doubles, so we should have:
P(10y) = 2*A = A*exp(r*10y)
2 = exp(r*10)
ln(2) = r*10
ln(2)/10 = r = 0.069.
Then our equation is:
P(t) = A*exp(0.069*t)
Now, if we want to know the population in X years, we need to replace the variable t by X
P(t = X) = A*exp(0.069*X)
f(x)=2x+1 and g(x)=3x2+4, find (f∘g)(−2) and (g∘f)(−2).
Answer:
Step-by-step explanation:
Fog=2(g)+1
2(3x+2+4)+1
2{3x+6)+1
6x+12+1
=6x+13
Fog(-2)=6(-2)+13
-12+13
=1
Gof=3(f)+2+4
=3(2x+1)+6
6x+3+6
=6x+9
Gof(-2)=6(-2)+9
-12+9
=-3
A new cola company is testing to see what proportion of their cans contain at least 12 oz. If they want to be within 3% of the actual percentage, how many cans should they measure to be 90% confident
Answer: 752
Step-by-step explanation:
Given that,
Margin of error = 3% = 0.03
confidence level = 90% = 0.90
therefore from the z-table
z = 1.645
Now since no prior estimate of p is given, so we say p = 0.5
Sample size required will be
n = 1.645² × 0.5 ×(1-0.5) / 0.03² = 751.67
n = 751.67 ≈ 752
John needs to produce a scale diagram of a bedroom using a scale of 1:40. The length of the room is 3.4 metres. What is the length on the diagram? _____ cm
Answer:
8.5cm
Step-by-step explanation:
convert 3.4metres to cm that is by multiplying by 100
3.4×100=340cm
1rep 40
?rep 340
that is 340/40
=8.5cm
Answer:
8.5 cm
Step-by-step explanation:
Scale = 1:40
Length of the room = 3.4 meters
3.4 meters =3.4 X 100 =340 cm
Since 1 unit on the diagram represents 40 units
The length of the diagram
[tex]=\dfrac{340}{40}\\\\=8.5$ cm[/tex]
The length of the room on the diagram is 8.5 cm.
A firm has the marginal-demand function Upper D prime (x )equalsStartFraction negative 1200 x Over StartRoot 25 minus x squared EndRoot EndFraction . Find the demand function given that Dequals16 comma 000 when x equals $ 4 per unit.
Answer:
The demand function is [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
Step-by-step explanation:
A firm has the marginal-demand function [tex]D' x = \dfrac{-1200}{\sqrt{25-x^2 } }[/tex].
Find the demand function given that D = 16,000 when x = $4 per unit.
What we are required to do is to find the demand function D(x);
If we integrate D'(x) with respect to x ; we have :
[tex]\int\limits \ D'(x) \, dx = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
Let represent t with [tex]\sqrt{25-x^2}}[/tex]
The differential of t with respect to x is :
[tex]\dfrac{dt}{dx}= \dfrac{1}{2 \sqrt{25-x^2}}}(-2x)[/tex]
[tex]\dfrac{dt}{dx}= \dfrac{-x}{ \sqrt{25-x^2}}}[/tex]
[tex]{dt}= \dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex]
replacing the value of [tex]\dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex] for dt in [tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
So; we can say :
[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = 1200\int\limits{\dfrac{- x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = 1200\int\limits \ dt[/tex]
[tex]D(x) = 1200t+ C[/tex]
Let's Recall that :
t = [tex]\sqrt{25-x^2}}[/tex]
Now;
[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex]
GIven that:
D = 16,000 when x = $4 per unit.
i.e
D(4) = 16000
SO;
[tex]D(x) = 1200(\sqrt{25-x^2}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{25-4^2}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{25-16}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{9}})+ C[/tex]
[tex]D(4) = 1200(3}})+ C[/tex]
16000 = 1200 (3) + C
16000 = 3600 + C
16000 - 3600 = C
C = 12400
replacing the value of C = 12400 into [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex], we have:
[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
∴ The demand function is [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
What expression be used to add 3/4 + 1/6
Answer:
11 / 12 or 0.9167
Step-by-step explanation:
Given:
3/4 + 1/6
Find:
Value with expression
Computation:
"3/4 added to number 1/6"
3/4 + 1/6
By taking LCM
[9 + 2] / 12
11 / 12 or 0.9167
what is a supplementary angle of 750
Answer:
105°
Step-by-step explanation:
Supplementary angle of 75° = 180° - 75° = 105°
Answer:
105°
Step-by-step explanation:
angle given is 75°
= 180° - 75°
= 105°
CAN SOMEONE PLEASE HELP ME! To find x
ANSWERS
A-(11)
B-(14)
C-(7)
D-(3)
Answer:
C-(7)
Step-by-step explanation:
Given figure is a trapezoid and 21 - x is the mid segment.
Therefore by mid-segment formula of a trapezoid, we have:
21 - x = 1/2(17 + 11)
21 - x = 1/2 * 28
21 - x = 14
21 - 14 = x
7 = x
x = 7
What is the measure of o?
Answer:
2π radians
Step-by-step explanation:
Question 15: (5 points)
Find one possibie missing coordinate so that the point becomes a solution to the given inequality.
(x, 7) is a solution to 2 x - 3<y.
=
In a few sentences, please explain how you arrived at your answer
Answer:
[tex](4,7)[/tex]
Step-by-step explanation:
Given
[tex]2x - 3 < y[/tex]
[tex](x,7)[/tex]
Required
Find one possible value of x
From the given parameters;
[tex](x,7)[/tex] is a possible solution of [tex]2x - 3 < y[/tex] where y= 7
Substitute 7 for y
[tex]2x - 3 < 7[/tex]
Add 3 to both sides
[tex]2x - 3 + 3 < 7 + 3[/tex]
[tex]2x < 10[/tex]
Divide both sides by 2
[tex]2x/2 < 10/2[/tex]
[tex]x < 5[/tex]
The result of the inequality implies that x is less than 5; So, the possible values of x is all real numbers less than 5;
Having said that;
[tex](4,7)[/tex] is one possible coordinate of [tex]2x - 3 < y[/tex]
Identify any outlier(s) in the data. {52, 61, 42, 46, 50, 51, 49, 44, 40, 66, 53, 67, 45, 64, 60, 69}
An outlier in statistics is a data point that deviates considerably from other observations. The given data set has no outlier.
What is an outlier?An outlier in statistics is a data point that deviates considerably from other observations. An outlier can be caused by measurement variability or by experimental mistake; the latter is sometimes eliminated from the data set.
To find the outlier for the given data set follow the given steps.
Step one: The first step is to find the quartiles for the data set.
For this data set, the quartiles are:
Q1 = 45.5
Q3 = 62.5
Step Two: Find the Interquartile Range
The interquartile range is the difference between the first and third quartiles.
IQR = Q3 - Q1
IQR = 45.5 - 62.5
IQR = 17
Step Three:
The next step is to set up a fence beyond the first and third quartiles using the interquartile range.
Lower Fence = Q1 - (1.5 × IQR)
Lower Fence = 45.5 - (1.5 × 17)
Lower Fence = 20
Upper Fence = Q3 + (1.5 × IQR)
Upper Fence = 62.5 + (1.5 × 17)
Upper Fence = 88
Step Four: Find the Outliers
Any numbers in the data that are above or below the fences are outliers.
Since there are no numbers outside the two fences. Hence, it can be concluded that the given data set does not have, any outlier.
Learn more about Outlier:
https://brainly.com/question/26958242
#SPJ2
Plz help this is an evil question
Answer:
18.9 units of fencing
Step-by-step explanation:
First find the perimeter
P = 2(l+w)
P = 2( 2.5+1.28)
P = 2( 3.78)
P =7.56m
We need 2.5 units of fencing for each meter
Multiply by 2.5
7.56*2.5
18.9 units of fencing
Answer:
Julio needs to purchase 18.9 units of fencing.
Step-by-step explanation:
I meter of the perimeter accounts for 2.5 units of fencing. Respectively 2 meters account for 2 times as much, and 3 meters account for 3 times as much of 2.5 units. Therefore, if we determine the perimeter of this rectangular garden, then we can determine the units of fencing by multiplying by 2.5.
As you can see this is a 2.5 by 1.28 garden. The perimeter would be two times the supposed length, added to two times the width.
2.5 x 2 + 1.28 x 2 = 5 + 2.56 = 7.56 - this is the perimeter. The units of fencing should thus be 7.56 x 2.5 = 18.9 units, or option d.
You are flying a kite on a line that is 350 feet long. Let's suppose the line is perfectly straight (it never really is) and it makes an angle of 65 degrees with the horizontal direction. The kite is flying at an altitude of feet.
Answer:
We can think that the line of the kite is the hypotenuse of a triangle rectangle, and the altitude is one of the cathetus of the triangle.
And we know that it makes an angle of 65° with the horizontal (i guess this is measured between the hypotenuse and the horizontal adjacent to the kite.
This angle is complementary to the top angle of our triangle rectangle, such that A + 65° = 90°
A = 90° - 65° = 25°
Then the altitude of the kite is the adjacent cathetus to this angle.
We can use the relation:
sin(A) = Adjacent cathetus/hypotenuse.
Sin(25°) = X/350ft
Sin(25°)*350ft = X = 147.9m
The kite is flying at an altitude of approximately 317.20 feet.
The situation will form a right angle triangle.
The hypotenuse of the triangle is the will be the line of the kite which is 350 ft long.
The line makes an angle of 65° with the horizontal direction. The horizontal direction is the adjacent of the triangle formed.
Using trigonometric ratio, the altitude of the kite can be found below.
The altitude of the kite is the height/ opposite side of the triangle.
Therefore,
sin 65° = opposite / hypotenuse
sin 65° = opposite / 350
cross multiply
opposite = 350 × sin 65
altitude of the kite = 350 × 0.90630778703
altitude of the kite = 317.207725463
altitude of the kite ≈ 317.20 ft
read more; https://brainly.com/question/13835041?referrer=searchResults
Intelligence quotients (IQs) measured on the Stanford Revision of the Binet Simon Intelligence Scale are normally distributed with a mean of 100 and a standard deviation of 16. Determine the percentage of people who have an IQ between 115 and 140.
Answer:
the percentage of people who have an IQ between 115 and 140 is 16.79%
Step-by-step explanation:
From the information given:
We are to determine the percentage of people who have an IQ between 115 and 140.
i.e
P(115 < X < 140) = P( X ≤ 140) - P( X ≤ 115)
[tex]P(115 < X < 140) = P( \dfrac{X-100}{\sigma}\leq \dfrac{140-100}{16})-P( \dfrac{X-100}{\sigma}\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{140-100}{16})-P( Z\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{40}{16})-P( Z\leq \dfrac{15}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.9375)[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.938)[/tex]
From Z tables :
[tex]P(115 < X < 140) = 0.9938-0.8259[/tex]
[tex]P(115 < X < 140) = 0.1679[/tex]
Thus; we can conclude that the percentage of people who have an IQ between 115 and 140 is 16.79%
Using the normal distribution, it is found that 82.02% of people who have an IQ between 115 and 140.
Normal Probability DistributionIn a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem:
The mean is of [tex]\mu = 100[/tex].The standard deviation is of [tex]\sigma = 15[/tex].The proportion of people who have an IQ between 115 and 140 is the p-value of Z when X = 140 subtracted by the p-value of Z when X = 115, hence:
X = 140:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 100}{16}[/tex]
[tex]Z = 2.5[/tex]
[tex]Z = 2.5[/tex] has a p-value of 0.9938.
X = 115:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{115 - 100}{16}[/tex]
[tex]Z = -0.94[/tex]
[tex]Z = -0.94[/tex] has a p-value of 0.1736.
0.9938 - 0.1736 = 0.8202.
0.8202 = 82.02% of people who have an IQ between 115 and 140.
More can be learned about the normal distribution at https://brainly.com/question/24663213
6th grade math, help me please:)
Answer:
A. 3/5
Step-by-step explanation:
Simple math, 9/15. Divide both by 3.
3*3=9 and 3*5=15 so answer is 3/5!
Answer:
answer is A
Step-by-step explanation:
this is a probability question
divide the number of baskets made by the total number of attempts
9/15 = 3/5
The line passing through points
(4,0) and (-2, 1) has a slope of?
A. -6
B. -1/6
C. 1/2
D. 2
E. 1/6
Answer:
b. -1/6
Step-by-step explanation:
slope = (difference in y)/(difference in x)
slope = (1 - 0)/(-2 - 4) = 1/(-6) = -1/6
Answer:
m = -1/6 = B
Step-by-step explanation:
[tex]m = \frac{y_2-y_1}{x_2-x_1} \\ x_1=4\\ y_1=0\\ x_2=-2\\y_2=1.\\m = \frac{1-0}{-2-4} \\m = \frac{1}{-6}[/tex]
Please help!! Over several years, Stephon gathered data about his age and the time it took him to run two laps on the school track. The scatter plot shows the data he gathered and the line of best fit. The equation of the line of best fit is y = -2.1x + 565.6. Based on the line of best fit, approximately how long will it take Stephon to run two laps on the track when he is 192 months old?
Answer:
Time taken by Stephen = 162 seconds
Step-by-step explanation:
Stephan gathered data which fits in the line of best fit,
y = -2.1x + 565.6
Where x represents the age (in months)
And y represents the time (in seconds) taken by Stephen to run two laps on the track.
Time taken to run 2 laps at the age of 192 months,
By substituting x = 192 months,
y = -2.1(192) + 565.6
= -403.2 + 565.6
= 162.4 seconds
≈ 162 seconds
Therefore, time taken by Stephen to cover 2 laps was 162 seconds when he was 192 months old.
Find the length L of the curve
[tex]y = \sqrt{x} [/tex]
from the point P(0,0) to the point Q(4,2)
Answer:
4.647 to the nearest thousandth.
Step-by-step explanation:
The formula for the length of an arc between x = a and x = b is
a
∫ √( 1 + (f'(x))^2) dx
b
Here f(x) = √x so
we have ∫ (√( 1 + (1/2 x^-1/2))^2 ) between x = 0 and x = 4.
= ∫ ( √( 1 + 1/(4x)) dx between x = 0 and x = 4.
This is not easy to integrate but some software I have gives me the following
length = √17 + 1/8 log(33 + 1/8 √17)
= 4.647.
If f is a function f: X Y, then Y is called (a) Domain (b) Co-domain (c) Range (d) None of these
Answer:
y is the range
Step-by-step explanation:
the y is the range
x isthe domain
You are tossing a coin, then rolling a die, then drawing a card from a deck of cards. What is the probability that you will get: a tail AND an even number on the die AND a card less than 5 (assume the ace is equal to 1) from the deck?
[tex]|\Omega|=2\cdot6\cdot52=624\\|A|=1\cdot3\cdot16=48\\\\P(A)=\dfrac{48}{624}=\dfrac{1}{13}[/tex]
Answer:
1/13
Step-by-step explanation:
Need Answers ASAP!!!! (due today)
Answer:
1.
a. 20 m²: barn door is 5m x 4m
b. 468 m²:surface area of barn
i. left and right barn walls: 2(15 x 7) = 210
ii. back wall: 7 x 8 = 56
iii. front wall: (7 x 8) - 20* = 36
*20 for the barn door
iv. front of roof: (4 x 4) / 2 = 8 x 2* = 16
*I split the triangle into 2 smaller triangles
v. sides of roof: 2(5 x 15) = 150
2.
a. 15 m²: silo door is 3m x 5m
b. 244.18 m²: surface area of silo
i. SA(silo)=2πrh+2πr²
ii. SA(silo) = 2π(2.5)(14) + 2π(2.5)²
iii. SA(silo) = 259.18
iv. SA(silo - door) = 259.18 - 15
v. SA(silo - door) = 244.18
3.
a. 712.18 m²: total surface area painted red
i. add both surface areas: 468 + 244.18 = 712.18 m²
hope this helps :)
A housepainter mixed 3 1/2 pints of blue paint in a bucket with 1 1/6 pints of white paint. How much paint was in the bucket? The answer should be written as a proper mixed number and should be simplified, if possible.
Answer:
4 2/3 :)
Step-by-step explanation:
The total paint in the bucket in the simplified mixed fraction is [tex]6\frac{2}{3}[/tex] pints.
What is a fraction?A fraction is written in the form of p/q, where q ≠ 0.
Fractions are of two types they are proper fractions in which the numerator is smaller than the denominator and improper fractions where the numerator is greater than the denominator.
Given, A housepainter mixed [tex]3\frac{1}{2}[/tex] pints of blue paint in a bucket with [tex]1\frac{1}{6}[/tex] pints of white paint.
So, The total paint in the bucket is the sum of the pints of both paints which
is, = [tex](3\frac{1}{2} + 1\frac{1}{6})[/tex] pints.
[tex]= (\frac{7}{2} + \frac{7}{6})[/tex] pints.
[tex]= \frac{21 + 7}{6}[/tex] pints.
[tex]= \frac{28}{6}[/tex] pints.
[tex]= 6\frac{2}{3}[/tex] pints.
learn more about fractions here :
https://brainly.com/question/10354322
#SPJ2
A casino offers a game wherein a player can roll one six sided die. If the player rolls a 1or 2, they
win. If the player rolls a 3, 4, 5, or 6, they lose. If a player bets $2.00 and wins, they will be paid out
an additional $3.00. If they lose, they lose their initial $2.00. Find the expected value of the $2.00
bet.
Enter your answer rounded to the nearest cent and don't forget, expected values can be negative!
Answer:
Expected Value of $2:
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
Step-by-step explanation:
Probability of a win = 2/6 = 0.3333
Probability of a loss = 4/6 = 0.6667
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
The casino game player's expected value is computed by multiplying each of the possible outcomes by the likelihood (probability) of each outcome and then adding up the values. The sum of the values is the expected value, which amounts to a loss of $0.33.
I NEED HELP ASAP choose one of the multiple choice
Answer:
B. Square both sides of the equation.
Step-by-step explanation:
You cannot do anything to the equation unless you square both sides to eliminate the square root on the left (squaring each individual term of the equation does not help; you need to square the entire square root to eliminate it).
Hope this helps!
Shawn has 25 coins, all nickels and dimes. The total value is $2.00. How many of each coin does he have ?
Answer:
[tex]\boxed{15 \ dime \ and \ 10 \ nickel \ coins}[/tex]
Step-by-step explanation:
1 dime = 10 cents
1 nickel = 5 cents
So,
If there are 15 dimes
=> 15 dimes = 15*10 cents
=> 15 dimes = 150 cents
=> 15 dimes = $1.5
Rest is $0.5
So, for $0.5 we have 10 nickels coins
=> 10 nickels = 10*5
=> 10 nickels = 50 cents
=> 10 nickel coins = $0.5
Together it makes $2.00
Enter the correct answer in the box by replacing the values of a and b. f(x) = a(b)^x
Answer:
f(x)= 8(0.5)^x
Step-by-step explanation:
As you can see on the graph there are two specific points labeled:
(0,8) and (1,4)
The 8 would be the initial value and starting point of the "design"
A is always the initial value so replace that.
Then proceed to divide 4 by 8 to figure out the percentage change its 0.5
leave x as it is