A 1.0 kg object absorbs 1,303 J of heat energy and experiences a temperature increase of 5.2∘C. What is the object’s specific heat, in joules per gram-degree celsius? Report your answer with the correct number of significant figures.

Answers

Answer 1

Answer:

c = 250.58 J/kg/[tex]^{0}C[/tex]

Explanation:

The specific heat of a substance is the required quantity of heat to increase or decrease the temperature of its unit mas by 1 kelvin.

Q = mcΔθ

where: Q is the quantity of heat absorbed or released, m is the mass of the substance, c is its specific heat and Δθ is the change in temperature of the substance.

Given that; m = 1.0 kg, Q = 1303 J and Δθ = 5.2 [tex]^{0}C[/tex], then;

c = Q ÷ (mΔθ)

  = 1303 ÷ (1.0 × 5.2)

  = 1303 ÷ 5.2

  = 250.58 J/kg/[tex]^{0}C[/tex]

The specific heat of the object is 250.58 J/kg/[tex]^{0}C[/tex].

Answer 2

Answer:

0.25

Explanation:


Related Questions

cetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce of water.

Answers

Answer:

0.60 mol

Explanation:

There is some info missing. I think this is the original question.

Acetylene gas is often used in welding torches because of the very high heat produced when it reacts with oxygen gas, producing carbon dioxide gas and water vapor. Calculate the moles of oxygen needed to produce 1.5 mol of water.

Step 1: Given data

Moles of water required: 1.5 mol

Step 2: Write the balanced equation

C₂H₂(g) + 2.5 O₂(g) ⇒ 2 CO₂(g) + H₂O(g)

Step 3: Calculate the moles of oxygen needed to produce 1.5 mol of water

The molar ratio of O₂ to H₂O is 2.5:1. The moles of oxygen needed to produce 1.5 mol of water are (1/2.5) × 1.5 mol = 0.60 mol

Review the reversible reactions given, along with the associated equilibrium constant Kat room temperature. In each case, determine whether the forward or reverse reaction is favored.
CH3COOH → CH3C00^- + H^+
Ka=1.8 x 10^-5
AgCl → Ag^+ + Cl^-
Ksp=1.6 x 10^-10
Al(OH)3 → Al^3+ + 3OH^-
Ksp=3.7 x 10^-15
A+B → C
K=4.9 x 10^3

Answers

Answer:

The answers to your questions are given below

Explanation:

The following data were obtained from the question:

CH3COOH → CH3C00^- + H^+

Equilibrium constant, Ka = 1.8 x 10^-5

AgCl → Ag^+ + Cl^-

Equilibrium constant, Ksp = 1.6 x 10^-10

Al(OH)3 → Al^3+ + 3OH^-

Equilibrium constant, Ksp = 3.7 x 10^-15

A+B → C

Equilibrium constant, K = 4.9 x 10^3

When the value of the equilibrium constant is grater than 1, it shows that the concentration of product is higher than that of the reactant and it implies that the forward reaction is favored.

When the value of the equilibrium constant is 1, it shows that the the concentration of the product and reactant are the same. Therefore neither the forward nor the reverse reaction is favored.

When the value of the equilibrium constant is lesser than 1, it shows that the concentration of the reactant is higher than the concentration of the product. Therefore, the reversed reaction is favored.

Now, we shall the question given above as follow:

A. CH3COOH → CH3C00^- + H^+

Equilibrium constant, Ka = 1.8 x 10^-5

Since the value of the equilibrium constant is lesser than 1, it means that the reverse reaction is favored.

B. AgCl → Ag^+ + Cl^-

Equilibrium constant, Ksp = 1.6 x 10^-10

Since the value of the equilibrium constant is lesser than 1, it means that the reverse reaction is favored.

C. Al(OH)3 → Al^3+ + 3OH^-

Equilibrium constant, Ksp = 3.7 x 10^-15

Since the value of the equilibrium constant is lesser than 1, it means that the reverse reaction is favored.

D. A+B → C

Equilibrium constant, K = 4.9 x 10^3

Since the value of the equilibrium constant is greater than 1, it means that the forward reaction is favored.

The reaction conditions are:

A. The reverse reaction is favored.

B. The reverse reaction is favored.

C. The reverse reaction is favored.

D. The forward reaction is favored.

Chemical reaction:

A. [tex]CH_3COOH[/tex] → [tex]CH_3COO^- + H^+[/tex]

Equilibrium constant, Ka = [tex]1.8 * 10^{-5}[/tex]

B. [tex]AgCl[/tex] → [tex]Ag^+ + Cl^-[/tex]

Equilibrium constant, Ksp = [tex]1.6 * 10^{-10}[/tex]

C. [tex]Al(OH)_3[/tex] → [tex]Al^{3+} + 3OH^-[/tex]

Equilibrium constant, Ksp = [tex]3.7 * 10^{-15}[/tex]

D. A+B → C

Equilibrium constant, K = [tex]4.9 * 10^3[/tex]

Conditions for Equilibrium constant:

When the value of the equilibrium constant is greater than 1, it shows that the concentration of product is higher than that of the reactant and it implies that the forward reaction is favored.

When the value of the equilibrium constant is 1, it shows that the the concentration of the product and reactant are the same. Therefore neither the forward nor the reverse reaction is favored.

When the value of the equilibrium constant is lesser than 1, it shows that the concentration of the reactant is higher than the concentration of the product. Therefore, the reversed reaction is favored.

Thus, the reactions will be:

A. The reverse reaction is favored.

B. The reverse reaction is favored.

C. The reverse reaction is favored.

D. The forward reaction is favored.

Find  more information about Equilibrium constant here:

brainly.com/question/12858312

can I get some urgent help please?​

Answers

Answer:

hi here goes your answer

Explanation:

iv. The lower the PH, the weaker the base

how are mass and weight affected in chemical reactions?

Answers

Answer:

How the chemical reacts

Explanation:

Carbon-14 has a half-life of 5720 years and this is a fast-order reaction. If a piece of wood has converted 75 % of the carbon-14, then how old is it?

Answers

Answer:

11445.8years

Explanation:

Half-life of carbon-14 = 5720 years

First we have to calculate the rate constant, we use the formula :

Why was it important to establish the Clean Air Act?

Answers

Answer: The Clean Air Act was important because it emphasized cost-effective methods to protect the air; encouraged people to study the effects of dirty air on human health; and created a regulation that makes any activities that pollute the air illegal.

Explanation:

Answer:

Clean Air Act (CAA), U.S. federal law, passed in 1970 and later amended, to prevent air pollution and thereby protect the ozone layer and promote public health. The Clean Air Act (CAA) gave the federal Environmental Protection Agency (EPA) the power it needed to take effective action to fight environmental pollution.

what is the difference between acidic and basic protein​

Answers

Answer:

Acidic proteins are proteins that move faster than serum albumin on zone electrophoresis (starch or acrylamide gel) and which bind most strongly to the basic ion exchangers used in protein chromatography.

Basic protein is a late gene product associated with the viral DNA within the nucleocapsid. The harnessing of this promoter allows the expression of foreign genes at earlier times than those using the very late phase promoters of the polyhedron and p10 genes.

Answer:

Acidic proteins are proteins that move faster than serum albumin on zone electrophoresis (starch or acrylamide gel) and which bind most strongly to the basic ion exchangers used in protein chromatography.

Basic protein is a late gene product associated with the viral DNA within the nucleocapsid. The harnessing of this promoter allows the expression of foreign genes at earlier times than those using the very late phase promoters of the polyhedron and p10

Explanation:

Drag each image to the correct location on the model. Each image can be used more than once. Apply the rules and principles of electron configuration to draw the orbital diagram of aluminum. Use the periodic table to help you.

Answers

Answer:

The answer to your question is given below.

Explanation:

Aluminium has atomic number of 13. Thus, the electronic configuration of aluminium can be written as:

Al (13) —› 1s² 2s²2p⁶ 3s²3p¹

The orbital diagram is shown on the attached photo.

Answer: screen shot

Explanation:

Draw a Lewis structure for one important resonance form of HBrO4 (HOBrO3). Include all lone pair electrons in your structure. Do not include formal charges in your structure.

Answers

Answer:

The Lewis structure is attached with the answer -

Explanation:

Lewis structure or Lewis dot diagram are diagrams or representation of showing the bonding between different or same atoms of a molecule in any and also shows lone pairs of electrons that may exist in the molecule as dots.

HBrO₄ is bromine oxoacid which is also known as perbromic acid. It is a unstable inorganic compound.

The Lewis structure is attached in form of image with representation of lone pairs of electrons.

Which is most likely to happen during a precipitation reaction?
A. A solid substance will break down into two new substances that
are gases.
B. An insoluble solid will form when ions in dissolved compounds
switch places.
C. A substance will react with oxygen to form water and carbon
dioxide.
D. A gas will form when positive ions switch places to form new
compounds.

Answers

Answer:

I think its B

Explanation:

Precipitation reactions leave a solid behind. The solid is called a precipitate.

Answer:

B

Explanation:

An insoluble solid will form when ions in dissolved compounds switch places.

Need help finding major products

Answers

Answer:

Explanation:

RX + AgNO₃ = R⁺ ( carbocation ) + AgX + NO₃⁻

C₂H₅OH ( a nucleophile ) + R⁺ = ROC₂H₅

C₅H₁₁X + AgNO₃ = C₅H₁₁⁺ + AgX + NO₃⁻

In the first case carbocation produced is CH₃CH₂CH₂CH₂CH₂⁺

CH₃CH₂CH₂CH₂CH₂⁺ ⇒  CH₃CH₂CH₂C⁺HCH₃ ( secondary carbocation more stable )

CH₃CH₂CH₂C⁺HCH₃ + C₂H₅OH ⇒ CH₃CH₂CH₂CH(OC₂H₅)CH₃

Hence option D is correct .

b )

In the second case carbocation produced is

CH₃CH₂CH₂CH⁺CH₃

CH₃CH₂CH₂C⁺HCH₃ + C₂H₅OH ⇒ CH₃CH₂CH₂CH(OC₂H₅)CH₃

The product formed is same as in case of first

Option B is correct

The accepted value of the number of Liters of gas in a mole is 22.4. List two possible reasons on why our experiment yielded a different value for the number of Liters in a mole of a gas.

Hint: Our experiment was conducted in July, in St. Paul, Minnesota.

Answers

Answer:

- Pressure in St. Paul, Minnesota

- Temperature in St. Paul, Minnesota

Explanation:

22.4 L or dm³ is the volume for a gas under Standard pressure and temperature conditions.

It is logically to say, that tempereature value at the day of the experiment was not 273.15 K, which is 32°F

We can say, that the pressure was not 1 atm. St Paul Minnesota has  a minimum, but a little height, so the pressure differs by few figures from the standard pressure values.

We also have to mention, that 22.4 L is the value for the Ideal gases at standards conditions. Ideal gases does not exisist on practice, we always talk about real gases. Don't forget the Ideal Gases Law equation:

P . V = n . R . T

Pressure . Volume = number of moles . 0.082 L.atm /mol. K  . 273.15K

Number of moles must be 1 at STP, to determine a volume of 22.4L

Identify a homogeneous catalyst:

a. SO2 over vanadium (V) oxide
b. H2SO4 with concentrated HCl
c. Pd in H2 gas
d. N2 and H2 catalyzed by Fe
e. Pt with methane

Answers

Answer:

b, H2SO4 with HCl, as they are both liquid acids

below are three reactions showing how chlorine from CFCs (chlorofluorocarbons) destroy ozone (O3) in the stratosphere. Ozone blocks harmful ultraviolet radiation from reaching earth’s surface. Show how these 3 equations sum to produce the net equation for the decomposition of two moles of ozone to make three moles of diatomic oxygen (2 O3→ 3 O2), and calculate the enthalpy change. (6 points) R1 O2 (g) → 2 O (g) ΔH1°= 449.2 kJ R2 O3 (g) + Cl (g) → O2 (g) + ClO (g) ΔH2° = -126 kJ R3 ClO (g) + O (g) → O2 (g) + Cl (g) ΔH3°= -268 kJ

Answers

Answer:

ΔH = -338.8kJ

Explanation:

it is possible to sum the enthalpy changes of some reactions to obtain the enthalpy change of the whole reaction (Hess's law).

Using the reactions:

R₁ O₂(g) → 2O(g) ΔH₁°= 449.2 kJ

R₂ O₃(g) + Cl(g) → O₂(g) + ClO(g) ΔH₂° = -126 kJ

R₃ ClO (g) + O (g) → O₂ (g) + Cl (g) ΔH₃°= -268 kJ

By the sum 2R₂ + 2R₃:

(2R₂ + 2R₃) = 2O(g) + 2O₃(g) → 4O₂(g)

ΔH = 2ₓ(-126kJ) + (2ₓ-268kJ) = -788kJ

Now, this reaction + R₁

2O₃(g) → 3O₂(g)

ΔH = -768kJ + 449.2kJ

ΔH = -338.8kJ

AB2AB2 has a molar solubility of 3.72×10−4 M3.72×10−4 M. What is the value of the solubility product constant for AB2AB2? Express your answer numerically.

Answers

Answer:

Ksp = 2.06x10⁻¹⁰

Explanation:

For AB₂. solubility product constant, Ksp, is written as follows:

AB₂(s) ⇄ A²⁺ + 2Br⁻

Ksp = [A²⁺] [Br⁻]²

Molar solubility represents how many moles of AB₂ are soluble per liter of solution. and is obtained from Ksp:

AB₂(s) ⇄ A²⁺ + 2Br⁻

AB₂(s) ⇄ X + 2X

where X are moles that are soluble (Molar solubility)

Ksp = [X] [2X]²

Ksp = 4X³

As molar solubility of the salt is 3.72x10⁻⁴M:

Ksp = 4X³

Ksp = 4(3.72x10⁻⁴)³

Ksp = 2.06x10⁻¹⁰

The ionization constant of lactic acid ch3ch(oh) co2h am acid found in the blood after strenuous exercise is 1.36×10^-4 If 20.0g of latic acid is used to make a solution with a volume of 1.00l what is the concentration of hydronium ion in the solution

Answers

Answer:

Explanation:

CH₃CHOHCOOH    ⇄    CH₃CHOHCOO⁻   +    H⁺

ionisation constant = 1.36 x 10⁻⁴ .

molecular weight of lactic acid = 90 g

moles of acid used = 20 / 90

= .2222

it is dissolved in one litre so molar concentration of lactic acid formed

C = .2222M

Let n be the fraction of moles ionised  

CH₃CHOHCOOH    ⇄    CH₃CHOHCOO⁻   +    H⁺

C  - nC                                          nC                  nC

By definition of ionisation constant Ka

Ka = nC x nC / C - nC

= n²C ( neglecting n in the denominator )

n² x .2222 = 1.36 x 10⁻⁴

n = 2.47  x 10⁻²

nC = 2.47  x 10⁻² x .2222

= 5.5 x 10⁻³

So concentration of hydrogen or hydronium ion = 5.5  x 10⁻³ g ion per litre .

The concentration of hydrogen or hydronium ion = 5.5  x 10⁻³ g ion per liter .

Ionization of lactic acid can be represented as:

CH₃CHOHCOOH⇄ CH₃CHOHCOO⁻  + H⁺

Given:

ionization constant = 1.36 x 10⁻⁴

mass= 20.0 g

Now, Molecular weight of lactic acid = 90 g

[tex]\text{Number of moles}=\frac{20}{90} =0.22mol[/tex]

It is dissolved in 1.00L so molar concentration of lactic acid formed will be

C = 0.22M

Consider "n" to be the fraction of moles ionized  

CH₃CHOHCOOH    ⇄    CH₃CHOHCOO⁻   +    H⁺

C  - nC                                          nC                  nC

By definition of ionization constant Ka

[tex]K_a =\frac{nC*nC}{C-nC}[/tex]

[tex]K_a= n^2C[/tex] ( neglecting n in the denominator )

On substituting the values we will get:

[tex]n^2 *0.22 = 1.36 *10^{-4}\\\\n = 2.47 * 10^{-2}[/tex]

To find the concentration of hydronium ion in the solution,

[tex]nC = 2.47 *10^{-2} *0.22\\\\nC= 5.5 * 10^{-3}[/tex]

So, concentration of hydrogen or hydronium ion = 5.5  x 10⁻³ g ion per liter.  

Learn more:

brainly.com/question/19954349

After heating a sample of hydrated CuSO4, the mass of released H2O was found to be 2.0 g. How many moles of H2O were released if the molar mass of H2O is 18.016 g/mol

Answers

Answer:

0.1110 mol

Explanation:

Mass = 2g

Molar mass = 18.016 g/mol

moles = ?

These quantities are realted by the following equation;

Moles = Mass / Molar mass

Substituting the values of the quantities and solving for moles, we have;

Moles = 2 / 18.016 = 0.1110 mol

A sample of neon gas at a pressure of 0.609 atm and a temperature of 25.0 °C, occupies a volume of 19.9 liters. If the gas is compressed at constant temperature to a
volume of 12.7 liters, the pressure of the gas sample will be
atm.​

Answers

Answer:

The pressure of the gas sample will be  0.954 atm.​

Explanation:

Boyle's law states that the pressure of a gas in a closed container is inversely proportional to the volume of the container, when the temperature is constant. That is, if the pressure increases, the volume decreases; conversely if the pressure decreases, the volume increases.

Boyle's law is expressed mathematically as:

Pressure * Volume = constant

o P * V = k

To determine the change in pressure or volume during a transformation at constant temperature, the following is true:

P1 · V1 = P2 · V2

That is, the product between the initial pressure and the initial volume is equal to the product of the final pressure times the final volume.

In this case:

P1= 0.609 atmV1= 19.9 LP2=?V2= 12.7 L

Replacing:

0.609 atm* 19.9 L= P2* 12.7 L

Solving:

[tex]P2=\frac{0.609 atm* 19.9 L}{12.7 L}[/tex]

P2= 0.954 atm

The pressure of the gas sample will be  0.954 atm.​

After the reaction between sodium borohydride and the ketone is complete, the reaction mixture is treated with water and H2SO4 to produce the desired alcohol. Explain the reaction by clearly indicating the source of the hydrogen atom that ends up on the oxygen

Answers

Answer:

The hydrogen can be gotten from the added Acid or water during "workup".

Explanation:

Basically we can say that the reaction describe in this question is a Reduction reaction because of the chemical compound called sodium borohydride. In the reaction described above we can see that there is a Reduction of ketone to alcohol by the compound; sodium borohydride.

For the reduction Reaction to occur the C-O bond must break so as to enable the formation of O-H bond and C-H bond.

So, "the reaction mixture is treated with water and H2SO4 to produce the desired alcohol", thus, the oxygen will definitely pick up the hydrogen from H2SO4 or H2O.

When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:
P2O5 (s) + H2O (l) =H3PO4 (aq)
The balanced chemical equation for the reaction between hydrogen sulfide and oxygen is:
2H2S(g) + 3O2(g) =2H2O(l) + 2SO2(g)
We can interpret this to mean:
3moles of oxygen and_______moles of hydrogen sulfide react to produce______moles of water and_______ moles of sulfur dioxide.

Answers

Answer:

1. The coefficients are: 1, 3, 2

2. From the balanced equation, we obtained the following:

3 moles oxygen, O2 reacted.

2 moles of Hydrogen sulfide, H2S reacted.

2 moles of water were produced.

2 moles of sulphur dioxide, SO2 were produced.

Explanation:

1. Determination of the coefficients of the equation.

This is illustrated below:

P2O5(s) + H2O(l) <==> H3PO4(aq)

There are 2 atoms of P on the left side and 1 atom on the right side. It can be balance by putting 2 in front of H3PO4 as shown below:

P2O5(s) + H2O(l) <==> 2H3PO4(aq)

There are 2 atoms of H on the left side and 6 atoms on the right side. It can be balance by putting 3 in front of H2O as shown below:

P2O5(s) + 3H2O(l) <==> 2H3PO4(aq)

Now the equation is balanced.

The coefficients are: 1, 3, 2.

2. We'll begin by writing the balanced equation for the reaction. This is given below:

2H2S(g) + 3O2(g) => 2H2O(l) + 2SO2(g)

From the balanced equation above,

3 moles of oxygen, O2 reacted with 2 moles of Hydrogen sulfide, H2S to produce 2 moles of water, H2O and 2 moles of sulphur dioxide, SO2.

Limiting reagent problem. How many grams of H2O is produced from 40.0 g N2O4 and 25.0 g N2H4. N2O4 (l) + 2 N2H4 (l) → 3 N2 (g) + 4 H2O(g)

Answers

Answer:

28.13 g of H2O.

Explanation:

We'll begin by writing the balanced equation for the reaction. This is illustrated below:

N2O4(l) + 2N2H4 (l) → 3N2(g) + 4H2O(g)

Next, we shall determine the masses of N2O4 and N2H4 that reacted and the mass of H2O produced from the balanced equation.

This is illustrated below:

Molar mass of N2O4 = (14x2) + (16x4) = 92 g/mol

Mass of N2O4 from the balanced equation = 1 x 92 = 92g

Molar mass of N2H4 = (14x2) + (4x1) = 32 g/mol

Mass of N2H4 from the balanced equation = 2 x 32 = 64 g

Molar mass of H2O = (2x1) + 16 = 18 g/mol

Mass of H2O from the balanced equation = 4 x 18 = 72 g

Summary:

From the balanced equation above,

92 g of N2O4 reacted with 64 g of N2H4 to produce 72 g of H2O.

Next, we shall determine the limiting reactant.

This can be obtained as follow:

From the balanced equation above,

92 g of N2O4 reacted with 64 g of N2H4.

Therefore, 40 g of N2O4 will react with = (40 x 64)/92 = 27.83 g of N2H4.

From the calculations made above, we can see that it will take a higher mass i.e 27.83 g than what was given i.e 25 g of N2H4 to react completely with 40 g of N2O4.

Therefore, N2H4 is the limiting reactant and N2O4 is the excess reactant.

Finally, we shall determine the mass of H2O produced from the reaction of 40.0 g of N2O4 and 25.0 g of N2H4.

In this case the limiting reactant will be used because it will produce the maximum amount of H2O as all of it is consumed in the reaction.

The limiting reactant is N2H4 and the mass of H2O produced can be obtained as follow:

From the balanced equation above,

64 g of N2H4 reacted to produce 72 g of H2O.

Therefore, 25 g of N2H4 will react to produce = (25 x 72)/64 = 28.13 g of H2O.

Therefore, 28.13 g of H2O were obtained from the reaction.

A saturated solution was formed when 5.16×10−2 L of argon, at a pressure of 1.0 atm and temperature of 25 ∘C, was dissolved in 1.0 L of water.
Calculate the Henry's law constant for argon. it must be im M/atm

Answers

Answer:

The Henry's law constant for argon is [tex]k=2.11*10^{-3}\frac{ M}{atm}[/tex]

Explanation:

Henry's Law indicates that the solubility of a gas in a liquid at a certain temperature is proportional to the partial pressure of the gas on the liquid.

C = k*P

where C is the solubility, P the partial pressure and k is the Henry constant.

So, being the concentration [tex]C=\frac{ngas}{V}[/tex]  

where ngas is the number of moles of gas and V is the volume of the solution, you must calculate the number of moles ngas. This is determined by the Ideal Gas Law: P*V=n*R*T where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. So [tex]n=\frac{P*V}{R*T}[/tex]

In this case:

P=PAr= 1 atmV=VAr= 5.16*10⁻² LR=0.082 [tex]\frac{atm*L}{mol*K}[/tex]T=25 °C=298 °K

Then:

[tex]n=\frac{1 atm*5.16*10^{-2} L}{0.082 \frac{atm*L}{mol*K} *298K}[/tex]

Solving:

n= 2.11 *10⁻³ moles

So: [tex]C=\frac{ngas}{V}=\frac{2.11*10^{-3} moles}{1 L} =2.11*10^{-3} \frac{moles}{L}= 2.11*10^{-3} M[/tex]

Using Henry's Law and being C=CAr and P =PAr:

2.11*10⁻³ M= k* 1 atm

Solving:

[tex]k=\frac{2.11*10^{-3} M}{1 atm}[/tex]

You get:

[tex]k=2.11*10^{-3}\frac{ M}{atm}[/tex]

The Henry's law constant for argon is [tex]k=2.11*10^{-3}\frac{ M}{atm}[/tex]

The Henry's law constant for argon gas in 1 litre of water is 2.1 × 10⁻³M/atm.

What is Henry's law?

Henry's law of gas states that solubility of a gas in any liquid at particular temperature is directly proportional to the partial pressure of the gas.

C∝P

C = kP, where

k = Henry's constant

P = partial pressure of gas

C is the solubility and it is present in the form of concentration and will be calculated as:
C = n/V

n = no. of moles

V = volume

And moles of the gas will be calculated by using the ideal gas equation as:

PV = nRT

n = (1)(5.16×10⁻²) / (0.082)(298) = 2.1 × 10⁻³ moles

And Concentration in liquid will be:

C = 2.1 × 10⁻³mol / 1L = 2.1 × 10⁻³ M

Now we put all these values in the first equation to calculate the value of k as:

k = (2.1 × 10⁻³M) / (1atm) = 2.1 × 10⁻³M/atm

Hence required value of k is 2.1 × 10⁻³M/atm.

To know more about Henry's law, viist the below link:

https://brainly.com/question/12823901

11. How did the solubility product constant Ksp of KHT in pure water compare to its solubility product constant Ksp of KHT in KCl solution? Are these results what you would expect? Why?

Answers

Answer:

Explanation:

KHT is a salt which ionises in water as follows

KHT ⇄ K⁺ + HT⁻

Solubility product Kw= [ K⁺ ] [ HT⁻ ]

product of concentration of K⁺ and HT⁻ in water

In KCl solution , the solubility product of KHT will be decreased .

In KCl solution , there is already presence of K⁺  ion in the solution . So

in the equation  

[ K⁺ ] [ HT⁻ ]  = constant

when K⁺ increases [ HT⁻ ] decreases . Hence less of KHT dissociates due to which its  solubility decreases . It is called common ion effect . It is so because here the presence of common ion that is K⁺ in both salt to be dissolved and in solvent , results in decrease of solubility of the salt .

what is the meaning of the word tetraquark?​

Answers

Answer:

A tetraquark in physics is an exotic meson composed of four valence quarks.

Explanation:

It has been suspected to be allowed by quantum chromodynamics, the modern story of strong interactions.

Hope it helps.

Draw the Lewis structure for methane (CH4) and ethane (C2H6) in the box below. Then predict which would have the higher boiling point. Finally, explain how you came to that conclusion.

Answers

Answer:

Ethane would have a higher boiling point.

Explanation:

In this case, for the lewis structures, we have to keep in mind that all atoms must have 8 electrons (except hydrogen). Additionally, each carbon would have 4 valence electrons, with this in mind, for methane we have to put the hydrogens around the carbon, and with this structure, we will have 8 electrons for the carbon. In ethane, we will have a bond between the carbons, therefore we have to put three hydrogens around each carbon to obtain 8 electrons for each carbon.

Now, the main difference between methane and ethane is an additional carbon. In ethane, we have an additional carbon, therefore due to this additional carbon, we will have more area of interaction for ethane. If we have more area of interaction we have to give more energy to the molecule to convert from liquid to gas, so, the ethane will have a higher boiling point.

I hope it helps!

The Lewis structure shows the valence electrons in a molecule. Ethane will have a higher boiling point than methane.

We can deduce the number of valence electrons in a molecule by drawing the Lewis structure of the molecule. The Lewis structure consists of the symbols of elements in the compound and the valence electrons in the compound.

We know that the higher the molar mass of a compound the greater its boiling point. Looking at the Lewis structures of methane and ethane, we cam see that ethane has a higher molecular mass (more atoms) and consequently a higher boiling point than methane.

Learn more: https://brainly.com/question/2510654

Air contains nitrogen, oxygen, argon, and trace gases. Ifthe partial pressure of nitrogen is 592 mm Hg, oxygen is160 mm Hg, argon is 7 mm Hg, and trace gas is 1 mm Hg,what is the atmospheric pressure

Answers

Answer:

760 mmHg

Explanation:

Step 1: Given data

Partial pressure of nitrogen (pN₂): 592 mmHgPartial pressure of oxygen (pO₂): 160 mmHgPartial pressure of argon (pAr): 7 mmHgPartial pressure of the trace gas (pt): 1 mmHg

Step 2: Calculate the atmospheric pressure

Since air is a gaseous mixture, the atmospheric pressure is equal to the sum of the gases that compose it.

P = pN₂ + pO₂ + pAr + pt = 592 mmHg + 160 mmHg + 7 mmHg + 1 mmHg = 760 mmHg

The second-order decomposition of HI has a rate constant of 1.80 · 10-3 M-1s-1. How much HI remains after 27.3 s if the initial concentration of HI is 4.78 M?

Answers

Answer:   3.87M  of HI remains after 27.3 s

Explanation:

Using the Second order decomposition equation of

1/[H]t =K x t +1/[A]o

Given initial concentration ,[A]o = 4.78M

time, t = 27.3 s

rate of constant , k= 1.80 x 10^-3 M-1s-1

1/[H] t= 1/[A] t= concentration after time, t=?

SOLUTION

1/[A] t =kt +1/[A]o

1/[A] t =(1.80 x 10^-3 (27.3)+1/4.78

0.04914+0.2092=0.2583

1/[A] t =0.2583

[A] t =1/0.2583= 3.87M

Identify the elements that have the following abbreviated electron configurations.
A) [Ne] 3s23p5.
B) [Ar] 4s23d7.
C) [Xe] 6s1.

Answers

Answer:

A) Chlorine (Cl)

B) Cobalt (Co)

C) Caesium (Cs)

Hope this helps.

The abbreviated electron configurations that was given in the question belongs to

Chlorine (Cl)

Cobalt (Co)

Caesium (Cs) respectively.

Electronic configurations can be regarded as the  electronic structure, which is the way an electrons is arranged in energy levels towards an atomic nucleus.

The electron configurations is very useful when  describing  the orbitals of an atom in its ground state.

To calculate an electron configuration, we can put the periodic table into sections, and this section will represent the atomic orbitals which is the  regions that house the electrons.

Groups one of the period table and two belongs to s-block, group  3 through 12 belongs to the d-block, while  13 to 18 can be attributed to p-block ,The  rows that is found at bottom are the f-block

Therefore, electron configurations  explain orbitals of an atom when it is in it's ground state.

Learn more at:https://brainly.com/question/21940070?referrer=searchResults

A student obtained a clean flask. She weighed the flask and stopper on an analytical balance and found the total mass to be 34.232 g. She then filled the flask with water and found the new mass to be 60.167 g. The temperature of the water was measured to be

Answers

Answer:

25.99mL is the volume internal volume of the flask

Explanation:

To complete the question:

The temperature of the water was measured to be 21ºC. Use this data to find the internal volume of the stoppered flask

The flask was filled with water, that means the internal volume of the flask is equal to the volume that the water occupies.

To find the volume of the water you need to find the mass and by the use of density of water at 21ºC (0.997992g/mL), you can find the volume of the flask, thus:

Mass water = Mass filled flask - Mass of clean flask

Mass water = 60.167g - 34.232g

Mass water = 25.935g of water.

To convert this mass to volume:

25.935g × (1mL / 0.997992g) =

25.99mL is the volume internal volume of the flask

A student mixes wants to prepare 24.1 mmol of benzamide from benzoyl chloride and NH4OH. If the student uses excess 15 M NH4OH, how many mL of Benzoyl chloride must be used

Answers

Answer:

2.81mL

Explanation:

Based on the reaction:

C₆H₃COCl + 2NH₃ → C₆H₅CONH₂ + NH₄Cl

Benzoyl chloride + ammonia → Benzamide

1 mole of benzoyl chloride in excess of ammonia produce 1 mole of Benzamide.

Thus, assuming a theoretical yield, to produce 24.1mmoles of benzamide you require 24.1mmoles of benzoyl chloride.

As molar mass of benzoyl chloride is 141g/mol, mg you require are:

mg Benzoyl chloride: 24.1mmol × (141mg / 1mmol) = 3398.1mg = 3.3981g of benzoyl chloride.

to convert this mass to mL, you require density of Benzoyl chloride (1.21g/mL). Thus, mL you need are:

3.3981g × (1mL / 1.21g) =

2.81mL
Other Questions
Which barriers can make it difficult for individuals to obtain necessary health care At a pond, there were 24 ducks swimming. The ratio of ducklings to adult ducks is 5:1. How many ducklings were swimming at the pond? Thank you for the help!! Please answer this in two minutes A wooden artifact from a Chinese temple has a 14C activity of 41.0 counts per minute as compared with an activity of 58.2 counts per minute for a standard of zero age. You may want to reference (Pages 913 - 916) Section 21.4 while completing this problem. Part A From the half-life for 14C decay, 5715 yr, determine the age of the artifact. Express your answer using two significant figures. t Grade 7 : Civics chapter : 3 - Understanding Media Write a short note on : The impact of Advertising The Right to Information Act 2005 Plz do answer and I'll mark as brainliest if I'm satisfied with the answer : ) The second is freedom of every person to worship God inhis own way everywhere in the world.The third is freedom from want ....The fourth is freedom from fear ...Which best explains the role that the theme of "freedom" plays in thisexcerpt?A. It helps Roosevelt convince Americans that future generations willthink highly of the United States if it doesn't enter the war.B. It helps Roosevelt convince Americans that war is dangerous andexpensive.C. It helps Roosevelt convince Americans that the United Statesmust act quickly to enter the war.D. It helps Roosevelt convince Americans that everyone is entitled tofreedom are mutations good or bad Difference between short term manpower and long term manpower What is the length of in the right triangle below? A.150B.25C.D.625 3/x-2, i'm confused as to what the horizontal asymptote is. The resources I found online conclude that it has a horizontal asymptote of y=0. I know that in order for a horizontal asymptote to be y=0, the denominator has to have a greater degree than the numerator. Im confused because doesn't the numerator have the same degree as the denominator (degree of 1)? Need help finding major products help asap giving branlist plsss helppp What are the five senses? Type your brainstorm Angle 6 and 7, are complementary angles? Why is warm honey easier to pour than cold honey? A) Increasing the temperature breaks the molecules down into atoms, which are smaller. B) Increasing the temperature increases the kinetic energy of the molecules, which makes it easier to overcome the attractive forces between molecules. C) Increasing the temperature converts the sugars into water, which flows easier. D) Increasing the temperature makes the honey more viscous. pls help me i give brainliest Explain how Napoleon both rose and fell from power. Individual Retirement Accounts (IRAs) allow people to shelter some of their income from taxation. Suppose the maximum annual contribution to such accounts is $5,000 per person. Now suppose there is an increase in the maximum contribution, from $5,000 to $8,000 per year.a. This change in the tax treatment of saving causes the equilibrium interest rate in the market for loanable funds to _ and the level of investment spending to _.b. An investment tax credit effectively lowers the tax bill of any firm that purchases new capital in the relevant time period. Suppose the government repeals a previously existing investment tax credit.The repeal of the previously existing tax credit causes the interest rate to _______ and the level of investment to ________.c. Initially, the government's budget is balanced, then the government responds to the conclusion of a war by significantly reducing defense spending without changing taxes.This change in spending causes the government to run a budget __________ which ________ national saving. This causes the interest rate to ________ and the level of investment spending to _______ what is the difference between acidic and basic protein