Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s
Which of the following statements are true? (mark all that apply)
A) Adaptive optics corrects for atmospheric distortion by following the distortion of a bright star, possibly an artificial star created by a laser, and rapidly changing the shape of a mirror using computer-controlled actuators to compensate for the distortion.
B) Improvements in technology will eventually allow the entire electromagnetic spectrum to be observed from high mountaintop observatories.
C) X rays from astronomical objects can only be detected from telescopes in space or in high altitude rockets.
D) The best observing sites for optical telescopes are atop remote mountains.
E) Radio telescopes must be carried to high altitudes by balloons in order to detect this type of radiation.
Answer:
The answer(s) for this question are as followed: A, C, & D
Explanation:
I hope this helped, let me know if i missed any.
Can anyone tell me how to read a micrometer screw gauge I want very clear instructions.
Explanation:
Things you need to know:
Accuracy refers to the maximum error encountered when a particular observation is made.
Error in measurement is normally one-half the magnitude of the smallest scale reading.
Because one has to align one end of the rule or device to the starting point of the measurement, the appropriate error is thus twice that of the smallest scale reading.
Error is usually expressed in at most 1 or 2 significant figures.
Tape
Equipment: It is made up of a long flexible tape and can measure objects or places up to 10 – 50 m in length. It has markings similar to that of the rigid rule. The smallest marking could be as small as 0.1 cm or could be as large as 0.5 cm or even 1 cm.
How to use: The zero-mark of the measuring tape is first aligned flat to one end of the object and the tape is stretched taut to the other end, the reading is taken where the other end of the object meets the tape.
Ruler
Equipment: It is made up of a long rigid piece of wood or steel and can measure objects up to 100 cm in length. The smallest marking is usually 0.1 cm.
How to use: The zero-end of the rule is first aligned flat with one end of the object and the reading is taken where the other end of the object meets the rule.
Vernier Caliper
Equipment: It is made up of a main scale and a vernier scale and can usually measure objects up to 15 cm in length. The smallest marking is usually 0.1 cm on the main scale.
It has:
a pair of external jaws to measure external diameters
a pair of internal jaws to measure internal diameters
a long rod to measure depths
How to use: The jaws are first closed to find any zero errors. The jaws are then opened to fit the object firmly and the reading is then taken.
Micrometer Screw Gauge
Equipment: It is made up of a main scale and a thimble scale and can measure objects up to 5 cm in length. The smallest marking is usually 1 mm on the main scale (sleeve) and 0.01 mm on the thimble scale (thimble). The thimble has a total of 50 markings representing 0.50 mm.
It has:
an anvil and a spindle to hold the object
a ratchet on the thimble for accurate tightening (prevent over-tightening)
How to use: The spindle is first closed on the anvil to find any zero errors ( use the ratchet for careful tightening). The spindle is then opened to fit the object firmly (use the ratchet for careful tightening) and the reading is then taken.
A wave travels at 295 m/s and has a wavelength of 2.50 m. What is the frequency of the wave?
O 118 Hz
O 292 Hz
O297 Hz
O 738 Hz
Answer:
[tex]118\; \rm Hz[/tex].
Explanation:
The frequency [tex]f[/tex] of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of [tex]v= 295\; \rm m\cdot s^{-1}[/tex]. In other words, the wave would have traveled [tex]295\; \rm m[/tex] in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that [tex]295\; \rm m[/tex]? The wavelength of this wave[tex]\lambda = 2.50\; \rm m[/tex] gives the length of one wave cycle. Therefore:
[tex]\displaystyle \frac{295\;\rm m}{2.50\; \rm m} = 118[/tex].
That is: there are [tex]118[/tex] wave cycles in [tex]295\; \rm m[/tex] of this wave.
On the other hand, Because that [tex]295\; \rm m[/tex] of this wave goes through that point in each second, that [tex]118[/tex] wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
[tex]f = 118\; \rm s^{-1} = 118\; \rm Hz[/tex].
The calculations above can be expressed with the formula:
[tex]\displaystyle f = \frac{v}{\lambda}[/tex],
where
[tex]v[/tex] represents the speed of this wave, and [tex]\lambda[/tex] represents the wavelength of this wave.Answer:
118
Explanation:
Which of the following does each different kind of atom represent?
O A. A nucleus
O B. An element
O C. An electron
OD. A neutron
Answer:
B
Explanation:
because atoms make up an element.
Answer:
B
Explanation:
it's b because an element makes up an atom and signifies the number of element in atom e.g (H2) the two signifies the number of atoms
The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.5 W. HooRU's surface area is 1.51 m^2 and the emissivity of its surface is 0.209. Ignore the radiation HooRU absorbs from the cold universe. What is HooRU's temperature?
Answer:
165.73 K
Explanation:
The computation of HooRU's temperature is shown below:-
As per the stefan's law, the power radiated by black body radiations which is
[tex]P = eA\sigma T^4[/tex]
where
A indicates surface area
e indicates emissitivity
T indicates temperature
now, we will put the values in the above equation
[tex]13.5 = 0.209 \times 1.51 \times \sigma \times T^4[/tex]
After solving the above equation we will get temperature which results
= 165.73 K
Therefore for computing the HooRU's temperature we simply applied the above formula.
An object weighs 0.250 kgf in air, 0.150 kgf in water and 0.125 kgf in an oil.
Find out the density of the object and the oil.
Answer: Upthrust = Weight - Apparent weight
= 0.250 kgf - 0. 150 kgf
= 0.100 kgf
Density = mass / volume
volume = mass / density
= 0.100 kg / (1000 kg / m³)
= 0.0001 m³
density of object = mass / volume
= 0.250 kg / 0.0001 m³
= 2500 kg / m³
upthrust of oil = Weight - Apparent weight
= 0.250 kgf - 0.125 kgf
= 0.125 kgf
density = mass / volume
= 0.125 kg / 0.0001 m³
= 1250 kg/m³
density of the object = 2500 kg / m³
density of oil = 1250 kg / m³
A ball is thrown vertically upwards from the roof of a building with an initial velocity of 30 m / s. If it stops in the air 220 m above the ground, what is the height of the building?
Answer:
175 m
Explanation:
Given:
y = 220 m
v₀ = 30 m/s
v = 0 m/s
a = -10 m/s²
Find: y₀
v² = v₀² + 2a (y − y₀)
(0 m/s)² = (30 m/s)² + 2 (-10 m/s²) (220 m − y₀)
y₀ = 175 m
the velocity is always _____ to the line of a circle
Answer:
tangent
Explanation:
hope it helps
Answer:
the answer is tangent
Explanation:
tangent means a straight line or plane that touches a curve or curved surface at a point, but if extended does not cross it at that point.
hope this helps please like and heart this answer and give 5 stars and brainliest pls i beg u thx!!! : )
in , the balls are quite small and come in a variety of
, ranging from extra- super slow to fast
Answer:
in squash, the balls are quite small and come in a variety of
speeds, ranging from extra- super slow to fast
Explanation:
Energy of the fossil fuels is also derived from solar energy. Give reason.
Answer:
Explanation:
All the energy in oil, gas, and coal originally came from the sun, captured through photosynthesis. In the same way that we burn wood to release energy that trees capture from the sun, we burn fossil fuels to release the energy that ancient plants captured from the sun
hey help me plzzzzz i will mark brainliest
Answer:
The answer to your question is given below.
Explanation:
Mechanical advantage (MA) = Load (L)/Effort (E)
MA = L/E
Velocity ratio (VR) = Distance moved by load (l) / Distance moved by effort (e)
VR = l/e
Efficiency = work done by machine (Wd) /work put into the machine (Wp) x 100
Efficiency = Wd/Wp x100
Recall:
Work = Force x distance
Therefore,
Work done by machine (wd) = load (L) x distance (l)
Wd = L x l
Work put into the machine (Wp) = effort (E) x distance (e)
Wp = E x e
Note: the load and effort are measured in Newton (N), while the distance is measured in metre (m)
Efficiency = Wd/Wp x100
Efficiency = (L x l) / (E x e) x 100
Rearrange
Efficiency = L/E ÷ l/e x 100
But:
MA = L/E
VR = l/e
Therefore,
Efficiency = L/E ÷ l/e x 100
Efficiency = MA ÷ VR x 100
Efficiency = MA / VR x 100
A horizontal spring with spring constant 210 Nm is compressed by 20 cm and then used to launch a 250 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed?
Answer:
ugmd = 1/2 kx²
d = (1/2 kx²) / (ugm)
= (1/2 * 250 N/m * (0.2 m)²) / (0.23 * 9.81 m/s² * 0.3 kg)
= 7.4 m
ugmd = 1/2 mv²
v = √2ugd
= √(2(0.23)(9.81 m/s²)(7.4 m)
= 5.8 m/s
Explanation:
The box's launch speed is 5.8 m/s.
What is energy?Energy is the ability or capability to do tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
Given in question spring with spring constant 210 Nm is compressed by 20 cm and then used to launch a 250 g box across the floor,
ugmd = 1/2 kx²
d = (1/2 kx²) / (ugm)
= (1/2 * 250 N/m * (0.2 m)²) / (0.23 * 9.81 m/s² * 0.3 kg)
= 7.4 m
ugmd = 1/2 mv²
v = √2ugd
= √(2(0.23)(9.81 m/s²)(7.4 m)
= 5.8 m/s
The box's launch speed is 5.8 m/s.
To learn more about energy refer to the link:
brainly.com/question/1932868
#SPJ5
Consider a solenoid of length L, N windings, and radius b (L is much longer than b). A current I is flowing through the wire. If the radius of the solenoid were doubled (becoming 2b), and all other quantities remained the same, the magnetic field inside the solenoid would
Answer:
The magnetic field remains the same.
Explanation:
If a solenoid has length L, N windings, and radius b, then the magnetic field inside the solenoid is given by :
[tex]B=\mu_o NI[/tex]
[tex]\mu_o[/tex] is magnetic permeability
If the radius of the solenoid were doubled and all other quantities remained the same, the magnetic field inside the solenoid would remains the same as it is independent of the radius of the solenoid.
which discribes what a velocity/time graph would look like with no accelaration
Four identical point charges (+6.0 nC) are placed at the corners of a rectangle which measures 6.0 m×8.0 m. If the electric potential is taken to be zero at infinity, what is the potential at the geometric center of this rectangle
The electric potential at the geometric center of this rectangle is determined as 43.2 V.
Potential at the center of the rectanglePotential at the center of the rectangle is calculated as follows;
Let the distance from each corner to the center = xLet the length = aLet the breadth = bDistance from each corner to the center is calculated as follows;
[tex]x = \sqrt{(a/2)^2 + (b/2)^2}[/tex]
Potential due to four point charges is calculated
[tex]V = \frac{kq}{x} \\\\V =4 (\frac{kq}{x} )\\\\V = 4(\frac{kq}{\sqrt{(a/2)^2 + (b/2)^2} } )\\\\V = \frac{4 \times 9\times 10^{9}\times 6\times 10^{-9}}{\sqrt{(6/2)^2 + (8/2)^2} } \\\\V = \frac{4 \times 9\times 10^{9}\times 6\times 10^{-9}}{5} \\\\V = 43.2 \ Volts[/tex]
Learn more about electric potential here: https://brainly.com/question/14306881
#SPJ2
Find the net force of the box and the acceleration. 10 points. Will give brainliest.
Answer:
38.6 N
2.57 m/s²
Explanation:
Draw a free body diagram of the box. There are four forces:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force P pulling at an angle 40°.
Sum of forces in the y direction:
∑F = ma
N + P sin 40° − mg = 0
N = mg − P sin 40°
The net force in the x direction is:
∑F = P cos 40° − Nμ
∑F = P cos 40° − (mg − P sin 40°) μ
∑F = P cos 40° − mgμ + Pμ sin 40°
∑F = P (cos 40° + μ sin 40°) − mgμ
Plugging in values:
∑F = (80 N) (cos 40° + 0.23 sin 40°) − (15 kg) (10 m/s²) (0.23)
∑F = 38.6 N
Net force equals mass times acceleration:
∑F = ma
38.6 N = (15 kg) a
a = 2.57 m/s²
what is the meaning of physics
Answer:
the branch of science concerned with the nature and properties of matter and energy
Power is _________________the force required to push something the work done by a system the speed of an object the rate that the energy of a system is transformed the energy of a system
Answer:
[defined as]
Explanation:
it is the missing word
Click this link to view O*NET Skills section for Electrical Engineers. Note that common skills are listed toward the top and less common skills are listed toward the bottom. According to O*NET, what are some common skills Electrical Engineers need?
Explanation:
O*NET stands for Occupational Network and it is an online platform for job seekers around the world who are searching for jobs. This platforms provides the job information along with the required qualities, education background, skill sets, etc.
The most common skill sets that are required for an electrical engineers are
1. Analytical skills
2. Monitoring and active learning
3. Decision making
4. Able to manage the personal resources
5. Time management.
6. Should have knowledge about different software.
What is the magnetic force on a particle that has 0.000500 C of charge and is moving at
2.50 10m/s to the right through a magnetic field that is 4.20 T and pointing away from
you? Specify both magnitude and direction in your answer.
Answer:
1.) F = 5.3×10^-3 N
2.) Positive y - direction
Explanation:
The parameters given are:
Charge q = 0.0005C
Velocity V = 2.5010 m/s
Magnetic field B = 4.2 T
Magnetic force F = BVqsinØ
F = BVq
since Ø = 90 degree
Substitute all the parameters into the formula
F = 4.2 × 2.5010 × 0.0005
Therefore, the magnetic force on a particle is F = 5.3 × 10^-3 N
2.) According to Fleming's left hand rule, the direction of the magnetic force will be perpendicular to the magnetic field which moving upward of the screen.
Answer:
it’s f=0.0005 x 2.5 x 10^5 x 4.20
F= 525 N
+ y direction (up)
Explanation:
got it right
Proved that
V = u+at
Answer:
[tex]\sf Proof \ below[/tex]
Explanation:
We know that acceleration is change in velocity over time.
[tex]\sf a=\frac{\triangle v}{t}[/tex]
[tex]\sf a=\frac{v-u}{t}[/tex]
v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.
[tex]\sf at=v-u[/tex]
Add u to both sides.
[tex]\sf at + u=v[/tex]
Answer:
Acceleration = v-u/t when we flip -u and t to right hand side
then -u changes to plus and denominator t changes to numerator
then then this equations becomes v=u+at
Explanation:
One solution to minimize resonance with buildings is to ______ the width to span ratio.
Answer:
Increase
Explanation:
Resonance is a phenomenon which occurs when a body A in motion set another body B into motion of it own natural frequency. So for resonance to be minimize in a body is to increase the width to span ratio. So as to reduce the overall vibration which affects directly building resonance, the stiffness or trusses and girders should be increase. The increase in this aspect helps to reinforce building structure and support.
If 2N force is applied on 2 kg mass due east and same magnitude of force due west, thechange in velocity of the body in 2 sec is
Explanation:
F=m(v-u)/t
F=2N
m=2kg
t=2s
2=2(v-u)/2
cross multiply
2*2=2(v-u)
4=2(v-u)
4/2=v-u
v-u=2m/s
v-u is the change is velocity.
The change in velocity of the body in 2 sec is 2m/s
According to Newton's second law which states that the change in momentum of an object is directly proportional to the applied force.
Mathematically:
[tex]F \ \alpha \ (\dfrac{v-u}{t} )[/tex]
[tex]F = m (\dfrac{v-u}{t} )[/tex]
where:
m is the mass
(v - u) is the change in velocity
t is the time
F is the applied force
Given the following:
mass m = 2kg
time t = 2secs
Force F = 2N
Required
Change in velocity (v-u)
Substitute the given parameters into the expression shown above:
[tex]2=2(\dfrac{v-u}{2})\\ 2 \times 2=2(v-u)\\4=2(v-u)\\v-u=\dfrac{4}{2}\\v-u=2m/s\\[/tex]
Hence the change in velocity of the body in 2 sec is 2m/s.
Learn more here: https://brainly.com/question/3232705
This mathematical model describes the changes that occur in a sample of
water as its temperature increases. Use this model to predict what will
happen to the motion of the molecules in a sample of water that is being
heated from 50° to 100°C.
200°C
vaporization
150°C
melting
100°C
Temperature (°C)
water vapor
50°C
liquid water
0°C-
--50°C
10
20
ice
30
Time (min)
40
50
60
70
O A. The motion will change very little.
O B. The molecules will stop moving.
O C. The movement of the molecules will gradually decrease.
O D. The movement of the molecules will gradually increase.
The correct answer is D. The movement of the molecules will gradually increase.
Explanation:
At the beginning of the model the state of matter of the water is solid, in this, particles have a defined arrangement and are together, which stops particles from moving freely and only allows them to vibrate. However, as the substance is heated the thermal energy (heat) increases in the sample, this causes particles to move more and the arrangement of it changes. Due to this, when the ice melts and there is liquid water particles move more than in solid states, which makes ice lacks a defined shape. Moreover, as the heat continues to increase the thermal and kinetic energy (movement) increases, indeed in gas state (water vapor) particles will move freely. This means the movement or kinetic energy in particles gradually increases in the model.
Answer: D
Explanation:
Which property describes the amount of energy that flows past a given area
per unit of time?
A. Wavelength
B. Speed
c. Intensity
D. Pitch
Answer:
c. Intensity
Explanation:
Wavelength is a distance (meters).
Speed is distance per time (meters / second).
Intensity is power per area (Watts / square meter).
Pitch is frequency (cycles / second).
The length, breadth and height of a box is 2m, 3m and 1m respectively. What is its volume?
Answer:
6m^3
Explanation:
volume of box= length×breadth×height
= 2×3×1
=6m^3
Answer:
i n k ok
Explanation:
A ball is projected at an angle of elevation of 60 ° with an initial velocity of 120m/s.calculate
1) The time taken to get to the maximum height
ii) the time of flight
Explanation:
It is given that,
The angle of projection is 60 degrees
Initial velocity of the ball is 120 m/s
We need to find the time taken to get to the maximum height and the time of flight.
Time taken to reach the maximum height is given by :
[tex]T=\dfrac{u^2\sin^2\theta}{2g}[/tex]
g is acceleration due to gravity
[tex]T=\dfrac{(120)^2\times \sin^2(60)}{2\times 10}\\\\T=540\ s[/tex]
(ii) Time of flight,
[tex]t=\dfrac{2u\sin\theta}{g}[/tex]
So,
[tex]t=\dfrac{2\times 120\times \sin(60)}{10}\\\\t=20.78\ s[/tex]
Hence, this is the required solution.
can someone proofread my Big freeze theory of the universe? does it make sense?
Answer:
Yes great job it was well written!:)
250 mL 0.1 M HCl solution is mixed with 250 mL
0.2 M NaOH. The concentration of OH- in the
mixture is
Answer:
The concentration of OH⁻ in the mixture is 0.05 M
Explanation:
The reaction of neutralization between HCl and NaOH is the following:
H⁺(aq) + OH⁻(aq) ⇄ H₂O(l)
The number of moles of HCl is:
[tex] n_{HCl} = C*V = 0.1 mol/L*0.250L = 0.025 moles [/tex]
Similarly, the number of moles of NaOH is:
[tex] n_{NaOH} = C*V = 0.2 mol/L*0.250L = 0.05 moles [/tex]
Now, from the reaction of HCl and NaOH we have the following number of moles of NaOH remaining:
[tex] n_{NaOH} = 0.05 moles - 0.025 moles = 0.025 moles [/tex]
Finally, the concentration of OH⁻ in the mixture is:
[tex]C =\frac{n_{NaOH}}{V_{T}}=\frac{0.025 moles}{0.250*2 L} = 0.05 moles/L[/tex]
Therefore, the concentration of OH⁻ in the mixture is 0.05 M.
I hope it helps you!
A 0.675 kg mass is attached to a
spring of spring constant 72.4 N/m,
pulled, and released. What is the
period of the resulting oscillation?
(Unit = s)
Answer:
T= 0.6 secExplanation:
This problem bothers on the simple harmonic motion of a loaded spring
Given data
mass attached, m= 0-.675 kg
spring constant, k= 72.4 N/m
the period of oscillation can be solved for using the formula bellow
[tex]T= 2\pi \sqrt{\frac{m}{k} }[/tex]
Substituting the given data into the expression above we have
[tex]T= 2*3.142\sqrt{\frac{0.675}{72.4} }\\T= 6.284*\sqrt{0.0093 }\\T= 0.6[/tex]
T= 0.6 sec
Answer:
0.607
Explanation:
Trust me