Answer:
16.704m
Step-by-step explanation:
To solve the above question, we are going to use the Trigonometric function of Sine.
sin θ = Opposite side/Hypotenuse
Where are given θ = 8°
Sin 8° = 0.1392
In the question, we are told that ,
A car travels 120m along a straight road that is inclined at 8° to the horizontal, hence,
Hypotenuse = 120m
We are asked to calculate the vertical distance through which the car rises hence,
Opposite side = vertical distance.
Therefore,
Sin 8° = Opposite/ 120m
Opposite = Sin 8° × 120m
Opposite = 0.1392 × 120m
Opposite = 16.704m
Therefore, the vertical distance through which the car rises is 16.704m
Which equation is modeled below?
4 x tiles and 2 negative 1 tiles = 2 x tiles and 4 1 tiles.
2 x + (negative 2) = negative 2 x + 6
4 x + (negative 2) = negative 2 x + 6
2 x + 4 = 6 x + 2
Negative 2 x + 4 = 6 x + (negative 2)
(Ignore the filled in bubble)
Answer:
B
Step-by-step explanation:
4 (x) + 2 (-1) = 2 (-x) + 6(1)
4x + -2 = -2x + 6
The equation for the given figure is 4x-2=-2x+6. Therefore, option B is the correct answer.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
From the given figure,
x+x+x+x+(-1-1)=(-x-x)+(1+1+1+1+1+1)
⇒ 4x-2=-2x+6
So, equation modeled as 4x-2=-2x+6
The equation for the given figure is 4x-2=-2x+6. Therefore, option B is the correct answer.
To learn more about an equation visit:
https://brainly.com/question/14686792.
#SPJ6
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Answer:
see below
Step-by-step explanation:
The cube root is defined for all real numbers, but squaring it makes the first term of F(x) be non-negative. Hence the domain of F(x) is all real numbers, and its range is [-2, ∞).
Shifting the function 2 units left does not change the domain.
Shifting the function 4 units up moves the range to [2, ∞).
Taylor had \$147$147dollar sign, 147. Then she spent \$42$42dollar sign, 42 on sneakers. Then, Taylor earned \$53$53dollar sign, 53 by winning a race in her new sneakers! Estimate how much money Taylor has left
Answer:
She has 158 dollars.
Step-by-step explanation:
This problem tells us that originally Taylor had 147 dollars, but she spent 42 dollars on sneakers, thus she now has [tex]147-42 = 105[/tex] dollars. However, she later won a race wearing those sneakers and earned 53 dollars, therefore she now has [tex]105 + 53 = 158[/tex] dollars.
Thus, Taylor has 158 dollars left now.
Please help! "Create a real-life scenario involving an angle of elevation or depression. Draw an appropriate diagram and explain how to solve your example."
Answer:
Height of the kite = 86.60 meter (Approx)
Step-by-step explanation:
The angle of elevation to see a kite from a stone lying to the ground is 60 degrees. If a thread is tied with a kite and a stone, then that thread is 100 meters long, find the height of the kite.
Given:
Length of thread = 100 meter
Angle of elevation = 60°
Find:
Height of the kite.
Computation:
Using trigonometry application:
Height of the kite / Length of thread = Sin 60°
Height of the kite / 100 = √3 / 2
Height of the kite = [√3 / 2]100
Height of the kite = 50√3
Height of the kite = 86.60 meter (Approx)
Evaluate 3(4 - 2)2
A. 108
B. 36
C. 12
D. 100
Answer:
12
Step-by-step explanation:
3(4 - 2)^2
Parentheses first
3 ( 2) ^2
Then exponents
3 *4
Then multiply
12
if a student is selected at random find the probability the student is a male given that it's a senior. Round to the nearest whole percent.
Answer: 40%.
Step-by-step explanation:
From the table : Total Seniors = 2+3= 5
Number of male seniors = 2
If a student is selected at random find the probability the student is a male given that it's a senior:
P(Male | senior)[tex]=\dfrac{\text{Number of male seniors}}{\text{Total seniors}}[/tex]
[tex]=\dfrac{2}{5}[/tex]
In percent, [tex]\dfrac{2}{5}\times100=40\%[/tex]
Hence, the probability the student is a male given that it's a senior. =40%.
The probability of the student is a male senior is 7%.
Given, here from the 2- way table the total no. students will be 30.
We have to find out the probability of the student select at random, student is a senior male .
We know that, the probability of an event E, will be
[tex]P(E)=\dfrac{No.\ of \ favaurable\ outcomes}{Total\ outcomes}[/tex]
Now,
[tex]P( Senior\ male)= \dfrac{2}{30} \\\\P( Senior\ male)=0.06\\[/tex]
Representing it in percentage as,
[tex]P( Senior\ male)=0.06666\times100\%\\P( Senior\ male=6.66\%[/tex]
Hence the nearest whole percent will be 7%.
Thus probability of the student is a male senior is 7%.
For more details on probability follow the link:
https://brainly.com/question/795909
WILL MARK BRAINLIEST!!! PLZ HELP!!! Which graph best represents the function f(x) = (x + 1)(x − 1)(x − 4)? I think it's D, but im not sure
Answer:
D
Step-by-step explanation:
Find the x intercepts from the equation and apply them to the graphs. It matches up with D. Your thought is correct
Answer:
[tex]\boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
[tex]y= (x + 1)(x - 1)(x - 4)[/tex]
Let x = 0, find the y-intercept.
[tex]y= (0 + 1)(0 - 1)(0 - 4)[/tex]
[tex]y= ( 1)(- 1)(- 4)[/tex]
[tex]y=4[/tex]
The function crosses the y-axis at 4.
The only graph that shows this is graph D.
HELP ME PLEASSSSEE On a winter morning, the temperature before sunrise was -10℉. The temperature then rose by 1℉ each hour for 7 hours before dropping by 2℉ each hour for 3 hours. What was the temperature, in degrees Fahrenheit, after 10 hours?
Answer:
3 degrees F
Step-by-step explanation:
if the temperature rose 1* for 7 hours, times 1 by 7. which is 7 and add to -10. which is -3. then, since the temperature rose by 2* for 3 hours, times 2 by 3 which is 6 and add to -3, which is 3.
i hope this helped?
The side length of an equilateral triangle is 6 cm. What is the height of the triangle? 2
Answer:
h=3√3 cm
Step-by-step explanation:
An equilateral triangle has 3 Equal sides
The height of an equilateral triangle with side a =a√3/2
That is,
h=a√3/2
Where,
h=height of the equilateral triangle
a=side length
From the triangle given,
a=6cm
Therefore,
h=6√3/2
=3√3
h=3√3 cm
Starting at home, Luis traveled uphill to the gift store for 50minutes at just 6 mph. He then traveled back home along the same path downhill at a speed of 12mph.
Answer:
Average speed for the entire trip, both ways, is
(Total distance) divided by (total time) .
We don't know the distance from his house to the gift store,
and we don't know how long it took him to get back.
We'll need to calculate these.
-- On the trip TO the store, it took him 50 minutes, at 6 mph.
-- 50 minutes is 5/6 of an hour.
-- Traveling at 6 mph for 5/6 of an hour, he covered 5 miles.
-- The gift store is 5 miles from his house.
-- The total trip both ways was 10 miles.
-- On the way BACK home from the store, he moved at 12 mph.
-- Going 5 miles at 12 mph, it takes (5/12 hour) = 25 minutes.
Now we have everything we need.
Distance:
Going: 5 miles
Returning: 5 miles
Total 10 miles
Time:
Going: 50 minutes
Returning: 25 minutes
Total: 75 minutes = 1.25 hours
Average speed for the whole trip =
(total distance) / (total time)
= (10 miles) / (1.25 hours)
= (10 / 1.25) miles/hours
= 8 miles per hour
Step-by-step explanation:
What the answer now to the question
Step-by-step explanation:
Hello!!!
Given, VXW is a Right angled triangle where WV =4 and XV =5.
now, by taking reference angle as angle W, and using tangent we get;
p=5
b=4
again,
tan thita =p/b
tan thita = 5/4
so, tan thita =1.25.
now, to find angle W, we should do tan thita inverse;
or, (tan thita)-1= tan thita-1(1.25)
or, (tan thita) -1 =51.3401°.
Now, by rounding off we get,
tan thita (angle W )= 51°.
Hope it helps....
can someone please help me
Answer:
B
Step-by-step explanation:
Because this equation is just a normal greater than symbol, it has to be a dotted line.
This graph starts at -2 and goes up 1 and right 3(this cancels out C as an option)
Than you shade the region with the larger number vaules, since it is greater than.
Jordon will play a triangle at his school’s music program. As its name suggests, the musical instrument is shaped like a triangle. Jordon has customized the dimensions to produce a unique melody, which is played when the shortest side is hanging down, parallel to the ground. Which side of the musical instrument should be parallel to the ground if its dimensions are as shown in the diagram?
Answer:
A. AB
Step-by-step explanation:
Given that the musical instrument has a shape of ∆ABC, we can determine the shortest side that would be parallel to the ground by comparison of the 3 angles of the triangle corresponding to each side that is opposite each of them.
What this means is that, the larger angle would have the largest side opposite it. The medium angle will have medium length side opposite it, while the smallest angle will have the smallest side opposite it.
m < A = 59°
m < C = 57°
m < C = 180 - (59+57) (sum of angles in a triangle)
m < C = 64°
The smallest angle out of the three angles is angle C = 57°.
The side opposite it, is side AB.
Side AB is the shortest side of ∆ABC.
Therefore, AB should be parallel to the ground.
The
side
of the musical instrument that should be parallel to the ground if the
dimensions
are as given is side AB, which is option A.
Given that:
Jordon will play a
triangle
in his school’s music program.
When playing, the shortest side
is hanging down,
parallel
to the ground.
From the figure:
m∠A = 59°
m∠C = 57°
By the
angle sum
property,
m∠A + m∠B + m∠C = 180°
59° + m∠B + 57° = 180°
m∠B + 116° = 180°
m∠B = 180° - 116°
= 64°
The
shortest side
will be the side that is opposite to the smallest angle.
So, the smallest side is the side opposite to C.
So, the side is AB.
Hence, the side is AB, which is option A.
Learn more about
Triangles
here :
https://brainly.com/question/2773823
#SPJ6
factorise
1)
8a(3x–2y)²–12x +8y
Answer:
Step-by-step explanation:
Hello,
[tex]8a(3x-2y)^2-12x +8y\\\\ = 8a(3x-2y)^2-4(3x-2y)\\\\ = (3x-2y)(8a(3x-2y)-4)\\\\=(3x-2)(24ax-16ay-4)[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Beth says that the graph of g(x)=x-5+1 is a
Translation of 5 units to the left and 1 unit up of
F(x)=x
She continues to explain that the point (0,0) on the square root function would be translated to the point (-5,1) on the graph of g(x) is Beths description of the transformation correct? Explain
Answer:
(-15,3)
Step-by-step explanation:
Answer:
No, Beth is not correct. The function g(x) has an h value of 5 and a k value of 1. This would be a horizontal translation of the square root function of 5 units to the right, rather than the left. Beth was correct about the vertical translation of the square root function of 1 unit up. The point (0, 0) from the square root function would be translated to the point (5, 1) on the graph of g(x).
Step-by-step explanation:
This came right from Edg
Zhi bought 18 tickets for games at a fair. Each game requires 3 tickets. Zhi wrote the expression 18 – 3g to find the number of tickets she has left after playing g games. Diego correctly wrote another expression, 3(6 – g), that will also find the number of tickets Zhi has left after playing g games. Use the drop-down menus to explain what each part of Zhi's and Diego's expressions mean.
Answer: In zhi's equation, the 18 is the initial amount of tickets, and the 3g means 3 times the amount of games.
Diegos equation is the same, but write in factorised form. The 3 multiplies with the 6 to create 18, and the 3 multiple with the g to create 3g
please help!!!!!!!!!!!
Answer:
The x value of the point 1/4 the distance from point C to point D is -0.25
Step-by-step explanation:
The given information are;
The location of point C = (1, 2)
The location of point D = (-4, -2)
The point 1/4 from point C to point D is the point 3/4 from point D to point C
Which gives;
The coordinate at point D + 3/4× The difference between the coordinates of point C and point D
Which is (-4 + 3/4×(1 - (-4), - 2 + 3/4×(2 - (-2))
Which gives;
(-4 + 3.75, -2 + 3) and (-0.25, 1)
The coordinates of the point 1/4 the distance from point C to point D is (-0.25, 1)
Therefore, the x value of the point 1/4 the distance from point C to point D = -0.25.
Andrew is putting reflective tape around the edge of a stop sign. The sign is a regular octagon, and each side is 11 inches long. How many inches of tape will Andrew need?
Answer:
88 inches
Step-by-step explanation:
We are finding the perimeter of the stop sign, therefor we have to either multiply or add the value of 11. Since this sign is an octagon we will have to multiply by eight or add 11 eight times. This will give you an answer of 88 inches.
Answer:
88 inches
Step-by-step explanation:
The stop sign is in the shape of an octagon. An octogon has 8 sides. If each side is 11 inches you multiply 11 * 8 which is 88.
Hassan built a fence around a square yard. It took 48 m^2 of lumber to build the fence. The fence is 1.5 meters tall.
Answer:
Step-by-step explanation:
Please check ones more because this might be incorrect.
The area is in square meters...Let's change it
Square 48= 48*48 =2304
2304 divided by 4( 4 since the formula for the area of a sqaure is s*s and square has 4 sides)
2304 divided by 4 = 576
The formula for area of a square is S*S(side times side)
Let's apply the formula here.
so, 576 times 576
331776 square meters
Hope this is right and helps! :)
( This just my point of view. Please check this onces again)
Answer:
the answer is 64
Step-by-step explanation:
khan
what is the measure of arc angle EG
Answer:
80 = EG
Step-by-step explanation:
Inscribed Angle = 1/2 Intercepted Arc
40 = 1/2 EG
Multiply each side by 2
80 = EG
Answer:
80 deg
Step-by-step explanation:
Theorem:
The measure of an inscribed angle is half the measure of the intercepted arc.
m<EFG = (1/2)m(arc)EG
40 deg = (1/2)m(arc)EG
m(arc)EG = 2 * 40 deg
m(arc)EG = 80 deg
factorise x^3-3x-2 ASAP
See the answer in attachment
Answer:
(x-2)(x+1)(x+1)
Step-by-step explanation:
x³-3x-2=
(x-2)(x+1)(x+1)
a football is fired upward with an initial speed of 800 feet per second. It is given that h=-12t^2+360t (h is the height of the football at any given time).what will you set h equal to in the equation to to find how many seconds it takes the football to hit the ground?
Answer:
30 s
Step-by-step explanation:
When the ball hits the ground h=0. To find the time t when this happens we must solve the equation h=0.
●h= 0
● -12t^2+360t =0
● t(-12t +360) = 0
● t = 0 or -12t +360 =0
● t=0 or -12t = -360
● t=0 or 12t =360
● t=0 or t=360/12
● t=0 or t= 30
The equation has two solutions.
The ball was fired with an initial speed of 800 feet per second so it cannot hit the ground at t=0.
So the ball hits the ground after 30 s.
Given the function [tex]h:x=px-\frac{5}{2}[/tex] and the inverse function [tex]h^{-1} :x=q+2x[/tex], where p and q are constants, find a) the value of p and q c)[tex]h^{-1} h(-3)[/tex]
Answer:
[tex]p = \frac{1}{2}[/tex]
[tex]q = 5[/tex]
[tex]h^{-1}(h(3)) = 3[/tex]
Step-by-step explanation:
Given
[tex]h(x) = px - \frac{5}{2}[/tex]
[tex]h^{-1}(x) = q + 2x[/tex]
Solving for p and q
Replace h(x) with y in [tex]h(x) = px - \frac{5}{2}[/tex]
[tex]y = px - \frac{5}{2}[/tex]
Swap the position of y and d
[tex]x = py - \frac{5}{2}[/tex]
Make y the subject of formula
[tex]py = x + \frac{5}{2}[/tex]
Divide through by p
[tex]y = \frac{x}{p} + \frac{5}{2p}[/tex]
Now, we've solved for the inverse of h(x);
Replace y with [tex]h^{-1}(x)[/tex]
[tex]h^{-1}(x) = \frac{x}{p} + \frac{5}{2p}[/tex]
Compare this with [tex]h^{-1}(x) = q + 2x[/tex]
We have that
[tex]\frac{x}{p} + \frac{5}{2p} = q + 2x[/tex]
By direct comparison
[tex]\frac{x}{p} = 2x[/tex] --- Equation 1
[tex]\frac{5}{2p} = q[/tex] --- Equation 2
Solving equation 1
[tex]\frac{x}{p} = 2x[/tex]
Divide both sides by x
[tex]\frac{1}{p} = 2[/tex]
Take inverse of both sides
[tex]p = \frac{1}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex] in equation 2
[tex]\frac{5}{2 * \frac{1}{2}} = q[/tex]
[tex]\frac{5}{1} = q[/tex]
[tex]5 = q[/tex]
[tex]q = 5[/tex]
Hence, the values of p and q are:[tex]p = \frac{1}{2}[/tex]; [tex]q = 5[/tex]
Solving for [tex]h^{-1}(h(3))[/tex]
First, we'll solve for h(3) using [tex]h(x) = px - \frac{5}{2}[/tex]
Substitute [tex]p = \frac{1}{2}[/tex]; and [tex]x = 3[/tex]
[tex]h(3) = \frac{1}{2} * 3 - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3}{2} - \frac{5}{2}[/tex]
[tex]h(3) = \frac{3 - 5}{2}[/tex]
[tex]h(3) = \frac{-2}{2}[/tex]
[tex]h(3) = -1[/tex]
So; [tex]h^{-1}(h(3))[/tex] becomes
[tex]h^{-1}(-1)[/tex]
Solving for [tex]h^{-1}(-1)[/tex] using [tex]h^{-1}(x) = q + 2x[/tex]
Substitute [tex]q = 5[/tex] and [tex]x = -1[/tex]
[tex]h^{-1}(x) = q + 2x[/tex] becomes
[tex]h^{-1}(-1) = 5 + 2 * -1[/tex]
[tex]h^{-1}(-1) = 5 - 2[/tex]
[tex]h^{-1}(-1) = 3[/tex]
Hence;
[tex]h^{-1}(h(3)) = 3[/tex]
Exercise topic: Permutations and Combinations. A company wants to hire 3 new employees, but there are 8 candidates, 6 of them which are men and 2 are women. If the selection is random: a) In how many different ways can choose new employees? b) In how many different ways can choose a single male candidate? c) In how many different ways can choose at least one male candidate? with procedures. Help me please..
Answer:
(a) 56 ways
(b) 6 ways
(c) 56 ways
Step-by-step explanation:
Given:
candidates: 6 mail, 1 female
number to hire : 3
a) In how many different ways can choose new employees?
use the combination formula to choose r to hire out of n candidates
C(n,r) = C(8,3) = 8! / (3! (8-3)! ) = 40320 / (120*6) = 56 ways
b) In how many different ways can choose a single male candidate?
6 ways to choose a male, one way to choose two female, so 6*1 = 6 ways
c) In how many different ways can choose at least one male candidate?
To choose at least 1 male candidate, we subtract the ways to choose no male candidates out of 56.
Since there are only two females, there is no way to choose 3 female candidates.
In other words, there are 56-0 = 56 ways (as in part (a) ) to hire 3 employees with at least one male candidate.
Hey loves. Again, needing help with a math question.When will this end? Never, or at least until I get it.:). Help is much appreciated
Answer:
Hey there!
SL=KR
We can't prove that the triangles are congruent, but since SL=SK+KL, and KR=RL+LK. We have RL=SK, so we have two lines:
SL=SK+KL
KR=SK+KL
These are clearly congruent, making these two lines congruent.
Hope this helps :)
if the denominator of a fraction is multiplied by 2,the value of the fraction is
Answer:
Half of its original
Step-by-step explanation:
When multiplying a denominator by a whole number, he value decreases accordingly, in other word, it changes inversely.
Examples:
In 1/2, if 2 is multiplied by 2, the value becomes 1/4, which is half of 1/2
In 1/4, if 4 is multiplied by 2, the value becomes 1/8 which is half of 1/4.
Hope this helps
Good luck
Consider the line . y = 7/3x +2 Find the equation of the line that is parallel to this line and passes through the point . (-9,4) Find the equation of the line that is perpendicular to this line and passes through the point (-9,4)
Answer:
parallel lines have the same slope. so your new equation will be y = 7/3x + b
to find b, plug in the (x, y) values of (-9, 4) since the line has to pass through this point.
a. 4 = (7/3)(-9) + b
b. 4 = -21 + b
c. b = 4 +21
d. b = 25
your equation is y = 7/3x + 25
perpendicular lines have reciprocated slopes. so your new equation will be y = -3/7x + b
to find b, plug in the (x, y) values of (-9, 4) since the line has to pass through this point.
a. 4 = (-3/7)(-9) + b
b. 4 = (27/7) + b
c. b = 4 - (27/7)
i. (112/28) - (108/28) = 4/28
d. b = 1/7
your equation is y = -3/7x + 1/7
hope this helps :)
find the value of x 4x+15=7x+2=
Answer:
4x+15=7x+2
15_2=7x_4x
13=3x
13/3=x
4.33=x
Answer:
[tex]\boxed{x=\frac{13}{3} }[/tex]
Step-by-step explanation:
Subtract both sides by 15 and 7x.
Then, divide both sides by -3.
[tex]4x+15=7x+2\\4x-7x=2-15\\-3x=-13\\\displaystyle x=\frac{13}{3}[/tex]
Question 30 The Royal Fruit Company produces two types of fruit drinks. The first type is pure fruit juice, and the second type is pure fruit juice. The company is attempting to produce a fruit drink that contains pure fruit juice. How many pints of each of the two existing types of drink must be used to make pints of a mixture that is pure fruit juice
Answer:
The answer is below
Step-by-step explanation:
The Royal Fruit Company produces two types of fruit drinks. The first type is 65% pure fruit juice, and the second type is 90% pure fruit juice. The company is attempting to produce a fruit drink that contains 85% pure fruit juice. How many pints of each of the two existing types of drink must be used to make 80 pints of a mixture that is 85% pure fruit juice?
Answer: Let x be the number of pints of the first fruit juice (i.e 65%) and y be the number of pints of the second fruit juice (i.e 90%).
Since the total number of pints to make the 85% pure fruit juice is 80, it can be represented using the equation:
x + y = 80 . . . 1)
Also, x pints of the first juice = 0.65x, y pints of the second juice = 0.9y and 80 pints of the mixture to be produced = 80(0.85) = 68. Therefore:
0.65x + 0.9y = 68 . . . 2)
We have to solve equation 1 and 2 simultaneously, first multiply equation 1 by 0.65 to get equation 3:
0.65x + 0.65y = 52 . . . 3)
Subtract equation 3 from 2 and solve for y:
0.25y = 16
y = 16/0.25 = 64
y = 64 pints
Put y = 64 in equation 1:
x + 64 = 80
x = 80 - 64 = 16
x = 16 pints
Therefore 16 pints of the 65% pure fruit juice, and 64 pints of the 90% pure fruit juice is required to make 80 pints of 80% fruit juice.
the question is in the attachment...
Answer:
11 minutes. 1/4 of 44 is 11