Answer:
3.383x10⁻³ micromoles of HgCl
Explanation:
The chemist adds 170mL of a 1.99x10⁻⁵mmol/L Mercury (I) chloride, HgCl.
The solution contains 1.99x10⁻⁵milimoles of HgCl in 1L. That means in 170mL = 0.170L there are:
0.170L × (1.99x10⁻⁵milimoles HgCl / L) = 3.383x10⁻⁶ milimoles of HgCl.
Now, in 1milimole you have 1000 micromoles. That means in 3.383x10⁻⁶ milimoles of HgCl you have:
3.383x10⁻⁶ milimoles of HgCl ₓ (1000micromoles / 1milimole) =
3.383x10⁻³ micromoles of HgClQuestion 14 of 25
What type of reaction is BaCl2 + Na,504 → 2NaCl + Baso,?
A. Single-replacement
B. Synthesis
C. Double-replacement
D. Decomposition
double displacement
bcoz each of the reactants combines with other reactants to obtain the product
How many moles of aqueous magnesium ions and chloride ions are formed when 0.250 mol of magnesium chloride dissolves in water
Answer:
0.250 mol Mg²⁺
0.500 mol Cl⁻
Explanation:
Magnesium chloride (MgCl₂) dissociates into ions according to the following equilibrium:
MgCl₂ ⇒ Mg²⁺ + 2 Cl⁻
1 mol 1 mol 2 mol
1 mol of Mg²⁺ and 2 moles of Cl⁻ are formed per mole of MgCl₂. If we have 0.250 mol of MgCl₂, the following amounts of ions will be formed:
0.250 mol MgCl₂ x 1 mol Mg²⁺/mol MgCl₂= 0.250 mol Mg²⁺
0.250 mol MgCl₂ x 2 mol Cl⁻/mol MgCl₂= 0.500 mol Cl⁻
Answer:
HEY THE ANSWER ABOVE ME IS RIGHT!! i defientely misclicked my rating :/
5/5 all the way.
Explanation:
The pH of a solution prepared by mixing 40.00 mL of 0.10 M NH3 with 50.00 mL of 0.10 M NH4Cl and 30mL of 0.05 M H2SO4 is 5.17. Assume that the volume of the solutions are additive . What would be the Ka for NH4
Answer:
Following are the answer to this question:
Explanation:
The value of pH solution is =5.17 So, the p^{OH}:
[tex]p^{OH}[/tex]=14-56.17
=8.823
The volume of the [tex]NH_{3}[/tex] = 40.00 ml
convert into the liter= 0.040L
The value of the concentrated [tex]NH_{3}[/tex] =0.10 M
The volume of the [tex]NH_{4}Cl[/tex]= 50.00 ml
convert into the liter= 0.050L
The value of concentrated [tex]NH_{4}Cl[/tex]= 0.10 M
The volume of the [tex]H_{2}So_{4}[/tex]= 30 ml
convert into the liter= 0.030L
The value of concentrated [tex]H_2So_4[/tex]=0.05 M
Calculating total volume=(0.40+0.050+0.030)
=0.120 L
calculating the new concentrated value of [tex]NH_3[/tex] = [tex]\frac{0.10\times 0.040}{0.120}= 0.33 \ M[/tex]
calculating the new concentrated value of [tex]NH_4Cl[/tex]= [tex]\frac{0.050\times 0.10}{0.120}= 0.04166 \ M[/tex]calculating the new concentrated value of [tex]H_2So_4= \frac{0.030\times 0.05}{0.120}= 0.0125 \ M[/tex] when 1 mol [tex]H_2So_4[/tex] produced 2 mols [tex]H^{+}[/tex] so, 0.0125 in [tex]H_2So_4[/tex]produced:
[tex]=4 \times (2 \times 0.0125) \ mol H^{+}\\\\= 0.025 mol H^{+}[/tex]
create the ICE table:
[tex]NH_3 \ \ \ \ \ \ \ \ + H^{+} \ \ \ \ \ \ \longrightarrow NH_4^{+}[/tex]
I (m) 0.033(m) 0.025 0.04166
C -0.025 -0.025 + 0.025
E 8.3\times 10^{-3} 0 0.0667
now calculating pH:
when ph= 8.83:
[tex]P^{H}= p^{kb}|+ \log\frac{[NH_4^{+}]}{[NH_3]}\\\\8.83=p^{kb}+\log\frac{0.0667}{8.3 \times 10^{-3}}\\\\p^{kb}=8.83-0.9069\\\\ \ \ \ =7.7231 \\\\\ The P^{kb} \ for \ NH_3 \ is =7.7231\\\\\ The P^{kb} \ for N^{+}H_4=14-7.7231\\\\\ \ \ \ \ \ =6.2769[/tex]
A 400 mL sample of hydrogen gas is collected over water at 20°C and 760 torr the vapor pressure of water at 20°C is 17.5 torr. what volume will the dry hydrogen gas occupy at 20°C and 760 torr?
Answer:
V2 = 17371.43ml
Explanation:
We use Boyles laws
since temperature is constant
P1V1=P2V2
760 x 400 = 17.5 x V2
304000 = 17.5 x V2
V2 = 304000/17.5
V2 = 17371.43ml
The volume will the dry hydrogen gas occupy at the temperature of 20°C and vapor pressure at 760 torrs will be 18 ml.
What is vapor pressure?
The vapor pressure of a liquid is independent of the volume of liquid in the container, whether one liter or thirty liters; both samples will have the same vapor pressure at the same temperature.
The temperature has an exponential connection with vapor pressure, which means that as the temperature rises, the vapor pressure rises as well the equation is -
P1 V1 / T1 = P2 V2 / T1
here, P = pressure
T = temperature
V = volume
substituting the value in the equation,
400 ×760 / 20 = 17.5× V / 20
V = 400× 760 / 20 × 17.5 / 20
V = 18 ml
Therefore the volume of the hydrogen gas remaining at this temperature will be 18 ml.
learn more about vapor pressure, here :
https://brainly.com/question/27682495
#SPJ5
If the H+ concentration is 0.00001 M, what is the OH- concentration?
Answer:
1.00x10^-9
Explanation:
Q1. Calculate the amount of copper produced in 1.0 hour when aqueous CuBr2 solution was electrolyzed by using a current of 4.50 A. Q2. In another electroplating experiment, if electric current was passed for 3 hours and 2.00 g of silver was deposited from a AgNO3 solution, what was the current used in amperes
Answer:
[tex]\boxed{\text{Q1. 3.6 g; Q2. 0.2 A}}[/tex]
Explanation:
Q1. Mass of Cu
(a) Write the equation for the half-reaction.
Cu²⁺ + 2e⁻ ⟶ Cu
The number of electrons transferred (z) is 2 mol per mole of Cu.
(b) Calculate the number of coulombs
q = It
[tex]\text{t} = \text{1.0 h} \times \dfrac{\text{3600 s}}{\text{1 h}} = \text{3600 s}\\\\q = \text{3 C/s} \times \text{ 3600 s} = \textbf{10 800 C}[/tex]
(c) Mass of Cu
We can summarize Faraday's laws of electrolysis as
[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\& = &\dfrac{10 800 \times 63.55}{2 \times 96 485}\\\\& = & \textbf{3.6 g}\\\end{array}\\\text{The mass of Cu produced is $\boxed{\textbf{3.6 g}}$}[/tex]
Note: The answer can have only two significant figures because that is all you gave for the time.
Q2. Current used
(a) Write the equation for the half-reaction.
Ag⁺ + e⁻ ⟶ Ag
The number of electrons transferred (z) is 1 mol per mole of Ag.
(a) Calculate q
[tex]\begin{array}{rcl}m &=& \dfrac{qM}{zF}\\\\2.00& = &\dfrac{q \times 107.87}{1 \times 96 485}\\\\q &=& \dfrac{2.00 \times 96485}{107.87}\\\\& = & \textbf{1789 C}\\\end{array}[/tex]
(b) Calculate the current
t = 3 h = 3 × 3600 s = 10 800 s
[tex]\begin{array}{rcl}q&=& It\\1789 & = & I \times 10800\\I & = & \dfrac{1789}{10800}\\\\& = & \textbf{0.2 A}\\\end{array}\\\text{The current used was $\large \boxed{\textbf{0.2 A}}$}[/tex]
Note: The answer can have only one significant figure because that is all you gave for the time.
Given a fixed amount of gas in a rigid container (no change in volume), what pressure will the gas exert if the pressure is initially 1.50 atm at 22.0oC, and the temperature is changed to 11.0oC?
A. 301 atm
B. 1.56 atm
C. 0.750 atm
D. 1.44 atm
E. 3.00 atm
Answer:
The pressure the gas will have if the pressure is initially 1.50 atm at 22.0 ° C and the temperature changes at 11.0 ° C is 1.44 atm (option D)
Explanation:
Gay Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move more rapidly. Then the number of collisions against the walls increases, that is, the pressure increases. That is, the gas pressure is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
[tex]\frac{P}{T}=k[/tex]
Where P = pressure, T = temperature, K = Constant
You have a gas that is at a pressure P1 and at a temperature T1. When the temperature varies to a new T2 value, then the pressure will change to P2, and then:
[tex]\frac{P1}{T1}=\frac{P2}{T2}[/tex]
In this case:
P1= 1.50 atmT1= 22 °C= 295 °K (being 0°C= 273 °K)P2= ?T2= 11 °C= 284 KReplacing:
[tex]\frac{1.5 atm}{295 K}=\frac{P2}{284 K}[/tex]
Solving:
[tex]P2= 284 K*\frac{1.5 atm}{295 K}[/tex]
P2=1.44 atm
The pressure the gas will have if the pressure is initially 1.50 atm at 22.0 ° C and the temperature changes at 11.0 ° C is 1.44 atm (option D)
Question 7 options: The cell potential of an electrochemical cell made of an Fe, Fe2 half-cell and a Pb, Pb2 half-cell is _____ V. Enter your answer to the hundredths place and do not leave off the leading zero, if needed.
Answer: Thus the cell potential of an electrochemical cell is +0.28 V
Explanation:
The calculation of cell potential is done by :
[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]
Where both [tex]E^0[/tex] are standard reduction potentials.
[tex]E^0_{[Fe^{2+}/Fe]}= -0.41V[/tex]
[tex]E^0_{[Pb^{2+}/Pb]}=-0.13V[/tex]
As Reduction takes place easily if the standard reduction potential is higher(positive) and oxidation takes place easily if the standard reduction potential is less(more negative). Thus iron acts as anode and lead acts as cathode.
[tex]E^0=E^0_{[Pb^{2+}/Pb]}- E^0_{[Fe^{2+}/Fe]}[/tex]
[tex]E^0=-0.13- (-0.41V)=0.28V[/tex]
Thus the cell potential of an electrochemical cell is +0.28 V
Which of these are elimination reactions? Check all that apply.
CH3OH + CH3COOH → CH3CO2CH3 + H20
C3H7OH → C3H6 + H20
H9C2Br + NaOH → C2H4 + NaBr + H20
Answer:
C3H7OH → C3H6 + H20
Explanation:
If we look at the reactant and the product we will realize that the reactant is an alcohol while the product is an alkene. The reaction involves acid catalysed elimination of water from an alcohol.
Water is a good leaving group, hence an important synthetic route to alkenes is the acid catalysed elimination of water from alcohols. Hence the conversion represented by C3H7OH → C3H6 + H20 is an elimination reaction in which water is the leaving group.
Answer:
B and C. Just finished my lesson on Edge.
True or False: Adding 4.18 joules to water will increase the temperature more than adding 1 calorie to water.
Answer:
Because one calorie is equal to 4.18 J, it takes 4.18 J to raise the temperature of one gram of water by 1°C. In joules, water's specific heat is 4.18 J per gram per °C. If you look at the specific heat graph shown below, you will see that 4.18 is an unusually large value.
Nitrogen has different oxidation states in the following compounds: nitrite ion, nitrous oxide, nitrate ion, ammonia, and nitrogen gas. Arrange these species in order of increasing nitrogen oxidation state. Select the correct answer below: A. ammonia, nitrogen gas, nitrite, nitrous oxide, nitrate B. nitrogen gas, ammonia, nitrous oxide, nitrite, nitrate C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate D. ammonia, nitrogen gas, nitrate, nitrite, nitrous oxide
Answer:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Explanation:
To establish the oxidation number of nitrogen in each compound, we know that the sum of the oxidation numbers of the elements is equal to the charge of the species.
Nitrite ion (NO₂⁻)
1 × N + 2 × O = -1
1 × N + 2 × (-2) = -1
N = +3
Nitrous oxide (NO)
1 × N + 1 × O = 0
1 × N + 1 × (-2) = 0
N = +2
Nitrate ion (NO₃⁻)
1 × N + 3 × O = -1
1 × N + 3 × (-2) = -1
N = +5
Ammonia (NH₃)
1 × N + 3 × H = 0
1 × N + 3 × (+1) = 0
N = -3
Nitrogen gas (N₂)
2 × N = 0
N = 0
The order of increasing nitrogen oxidation state is:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Calculate the heat absorbed by a sample of water that has a mass of 45.00 g when the temperature increases from 21.0oC to 38.5 oC. (s=4.184 J/g.o C)
Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
Q=?m= 45 gc= 4.184 [tex]\frac{J}{g*C}[/tex]ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 CReplacing:
Q= 4.184 [tex]\frac{J}{g*C}[/tex] * 45 g* 17.5 C
Solving:
Q=3,294.9 J
The heat absorbed by the sample of water is 3,294.9 J
oxygen get stable configuration by ____________two electrons
please give the answer as fast as you can
please
Answer:
gaining two electrons
Explanation:
electron configuration
2:6
so add two to 6 to get stable 2:8
Aluminum and oxygen react according to the following equation: 4Al + 3O2 -> 2Al2O3 In a certain experiment, 4.6g Al was reacted with excess oxygen and 6.8g of product was obtained. What was the percent yield of the reaction?
Answer:
Percent yield: 78.2%
Explanation:
Based on the reaction:
4Al + 3O₂ → 2Al₂O₃
4 moles of Al produce 2 moles of Al₂O₃
To find percent yield we need to find theoretical yield (Assuming a yield of 100%) and using:
(Actual yield (6.8g) / Theoretical yield) × 100
Moles of 4.6g of Al (Molar mass: 26.98g/mol) are:
4.6g Al × (1mol / 26.98g) = 0.1705 moles of Al.
As 4 moles of Al produce 2 moles of Al₂O₃, theoretical moles of Al₂O₃ obtained from 0.1705 moles of Al are:
0.17505 moles Al × (2 moles Al₂O₃ / 4 moles Al) = 0.0852 moles of Al₂O₃,
In grams (Molar mass Al₂O₃ = 101.96g/mol):
0.0852 moles of Al₂O₃ × (101.96g / mol) =
8.7g of Al₂O₃ can be produced (Theoretical yield)Thus, Percent yield is:
(6.8g / 8.7g) × 100 =
78.2%Assume that a nickel weighs exactly 5.038650 g for the sets of weights listed below obtained by a single weighing on the balance below
Answer:
afshkkyfugutuiryfyi
An analytical laboratory balance typically measures mass to the nearest 0.1 mg. You may want to reference (Page) Section 21.6 while completing this problem. Part A What energy change would accompany the loss of 0.1 mg in mass
Answer:
The energy change is [tex]E = 9.0 *10^{9}\ J[/tex]
Explanation:
From the question we are told that
Mass loss is [tex]m_l = 0.1 \ mg = 0.1 *10^{-3} mkg = 0.1 *10^{-6} \ kg[/tex]
Generally the energy change that would accompany this loss is mathematically represented as
[tex]E = m * c^2[/tex]
Where c is the speed of light with values [tex]c = 3.0*10^{8} \ m/s[/tex]
[tex]E = 0.1 *10^{-6} * [3.0 *10^{8}]^2[/tex]
[tex]E = 9.0 *10^{9}\ J[/tex]
Interpret the following equation for a chemical reaction using the coefficients given:
Cl2(g) + F2(g) 2ClF(g)
On the particulate level:
________ of Cl2(g) reacts with ______ of F2(g) to form______ of ClF(g).
On the molar level:
______ of Cl2(g) reacts with______ of F2(g) to form______ of ClF(g).
Answer and Explanation:
Given the following chemical equation:
Cl₂(g) + F₂(g) ⇒ 2ClF(g)
The coefficients are: 1 for Cl₂, 1 for F₂ and 2 for ClF. The coefficients indicate the number of units of each ompound that participates in the reaction. It gives the proportion of reactants and products in the reaction. These units can be molecules or moles. In this reaction, we can say:
On the particulate level: 1 molecule of Cl₂(g) reacts with 1 molecule of F₂(g) to form 2 molecules of ClF(g).
On the molar level: 1 mol of Cl₂(g) reacts with 1 mol of F₂(g) to form 2 mol of ClF(g).
Find the [OH−] of a 0.32 M methylamine (CH3NH2) solution. (The value of Kb for methylamine (CH3NH2) is 4.4×10−4.) Express your answer to two significant figures and include the appropriate units.
Answer:
[tex][OH^-]=0.01165M[/tex]
Explanation:
Hello,
In this case, for the dissociation of methylamine:
[tex]CH_3NH_2(aq)+H_2O(l)\rightleftharpoons CH_3NH_3^+(aq)+OH^-(aq)[/tex]
We can write the basic dissociation constant as:
[tex]Kb=\frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}[/tex]
That in terms of the reaction extent [tex]x[/tex], turns out:
[tex]Kb=\frac{x*x}{[CH_3NH_2]_0-x}[/tex]
[tex]4.4x10^{-4}=\frac{x^2}{0.32M-x}[/tex]
That has the following solution for [tex]x[/tex]:
[tex]x_1=-0.01209M\\x_2=0.01165M[/tex]
Yer 0.01165M is valid only as no negative concentrations are eligible. It means that it is the concentration of hydroxyl ions in the solution:
[tex][OH^-]=0.01165M[/tex]
Best regards.
Which of the following is an alkaline earth metal?
A. Silicon (Si)
B. Magnesium (Mg)
C. Carbon (C)
D. Aluminum (AI)
Answer:
B
Explanation:
The alkaline earth metals are the elements located in Group 2. The only element out of our choices that is in Group 2 is Magnesium.
Given a fixed amount of gas help at a constant pressure, calculate the temperature to which the gas would have to be changed if a 1.75 L sample at 23.0*C were to have a final volume of 3.50 L.
A. 46.0*C
B. 89.5*C
C. 169*C
D. 319*C
E. 592*C
Answer:
592 K or 319° C
Explanation:
From the statement of Charles law we know that the volume of a given mass of gas is directly proportional to its absolute temperature at constant pressure. Thus;
V1/T1= V2/T2
Initial volume V1 = 1.75 L
Initial temperature T1= 23.0 +273 = 296 K
Final volume V2= 3.50 L
Final temperature T2 = the unknown
T2= V2T1/V1= 3.50 × 296 / 1.75
T2 = 592 K or 319° C
1. Suppose 1.00 g of NaOH is used to prepare 250 mL of an NaOH solution. Compare the expected molarity of this solution to the actual average molarity you measured in the standardization. What do you notice
Answer:
0.1M solution of NaOH
Explanation:
1 mole of NaOH - 40g
? moles - 1 g = 1/40 = 0.025 moles.
Molarity of 1.00g of NaOH in 0.25L (250 mL) = no. of moles/volume
= 0.025/0.25
= 0.1M.
What states can electrons exist in? A. Electron clouds or energy levels B. Positive and negative C. Up and down spin D. In phase and out of phase
Answer:
A. Electron clouds or energy levels
Explanation:
Electrons can exist in two states:
Stablized in electronic orbitalsFreely movingElectrons can exist in an electron cloud or energy level. Electron in an atoms have ability to change energy levels either by emitting or absorbing a photon that form the energy equal to the energy difference between the two levels.
Hence, the correct answer is A.
Answer:
Up and DOWN spin
Explanation:
Explain why o-vanillin does not fully protonate p-toluidine. Reference appropriate pKa values and include a balanced chemical reaction and an appropriate reaction arrow in your answer.
Answer:
Here's what I get
Explanation:
pKₐ of o-vanillin = 7.81; pKₐ of p-toluidine = 4.44
The higher the pKₐ, the weaker the acid.
Thus, o-vanillin is the weaker acid and has a stronger conjugate base.
The conjugate acid of p-toluidine is the stronger and has the weaker conjugate base.
The equation for the equilibrium is
H-OC₆H₃(OCH₃)CHO + CH₃C₆H₄NH₂ ⇌ ⁻OC₆H₃(OCH₃)CHO + CH₃C₆H₄NH₃⁺
weaker acid weaker base stronger base stronger acid
The reaction between the stronger acid and the stronger base pushes the position of equilibrium to the left.
Thus, o-vanillin does not fully protonate p-toluidine.
O-vanillin is a weaker acid than p-toluidine and has a more stable conjugate base; hence, o-vanillin does not fully protonate p-toluidine.
The pKa is defined as the negative logarithm of Ka. The dissociation constant of an acid Ka shows the extent of dissociation of an acid in solution. The higher the pKa, the lower the Ka and the weaker the acid.
The pKₐ of o-vanillin is 7.81 while the pKₐ of p-toluidine is 4.44. This means that o-vanillin is a weaker acid than p-toluidine and has a more stable conjugate base. Hence, o-vanillin does not fully protonate p-toluidine.
Learn more: https://brainly.com/question/9743981
Identify the Lewis acid and Lewis base from among the reactants in each of the following equations. Match the words in the left column to the appropriate blanks in the sentences on the right.
1. Fe3+ (aq)+6CN (aq) Fe(CN) (aq)______is the Lewis acid and_____is the Lewis base. is the Lewis
2. CI- (aq) + AlCl3 (aq) AlCl4-____is the Lewis acid and______is the Lewis base.
3. AlBr3 + NH3 H3NAlBr3______is the Lewis acid and______is the Lewis base.
A. AlCl3
B. CN-
C. AlBr3
D. Cl-
E. NH3
F. Fe3+
Answer:
1. Lewis acid: F. Fe₃⁺, Lewis base: B. CN⁻
2. Lewis acid: A. AlCl₃, Lewis base: D. Cl⁻
3. Lewis acid: C. AlBr₃, Lewis base: E. NH₃
Hope this helps.
The Lewis acid is chemical substance which possesses an empty orbital and accepts an electron pair from a Lewis base ( donor ), in order to create a Lewis adduct ( molecule created from the bonding of Lewis base and acid ).
The Lewis acid from reaction 1 is Fe₃⁺ while the Lewis base is CN⁻ also the Lewis acid from reaction 2 is AICI₃ while the Lewis base is CI⁻
Hence we can conclude that the Lewis acids and Lewis bases of the reactions in the question are as listed above.
Learn more: https://brainly.com/question/16108775
If D+2 would react with E-1, what do you predict to be the formula?
Answer:
DE2
Explanation: for every one D+2 you need two E-1 because +2=-2
Determine the number of moles of the anhydrous salt present after heating, assuming that the contents of the aluminum cup after heating are pure anhydrous KAl(SO 4 ) 2 .
Answer:
0.2 moles, assuming weight of dried salt
Explanation:
In order to determine the number of moles, we need to be aware of the mass of the substance in question.
Assuming the mass of the dehydrated [tex]KAl(SO_{4} )_{2}.H_{2} O[/tex] is 50g.
No. of moles = mass of substance/ molar mass of the substance.
= [tex]\frac{50g}{39+27+32*2+16*4*2\\)g/mol}[/tex]
= 0.2 moles moles.
The free energy obtained from the oxidation (reaction with oxygen) of glucose (C6H12O6) to form carbon dioxide and water can be used to re-form ATP by driving the above reaction in reverse. Calculate the standard free energy change for the oxidation of glucose.
Answer:
The correct answer is -2878 kJ/mol.
Explanation:
The reaction that takes place at the time of the oxidation of glucose is,
C₆H₁₂O₆ (s) + 6O₂ (g) ⇒ 6CO₂ (g) + 6H₂O (l)
The standard free energy change for the oxidation of glucose can be determined by using the formula,
ΔG°rxn = ∑nΔG°f (products) - ∑nΔG°f (reactants)
The ΔG°f for glucose is -910.56 kJ/mol, for oxygen is 0 kJ/mol, for H2O -237.14 kJ/mol and for CO2 is -394.39 kJ/mol.
Therefore, ΔG°rxn = 6 (-237.14) + 6 (-394.39) - (-910.56)
ΔG°rxn = -2878 kJ/mol
Sulfuric acid is commonly used as an electrolyte in car batteries. Suppose you spill some on your garage floor. Before cleaning it up, you wisely decide to neutralize it with sodium bicarbonate (baking soda) from your kitchen. The reaction of sodium bicarbonate and sulfuric acid is
Answer:
The mass of NaHCO3 required is 235.22 g
Explanation:
*******
Continuation of Question:
2NaHCO3(s) + H2SO4(aq) → Na2SO4(aq) + 2CO2(g) + 2H2O(l)
You estimate that your acid spill contains about 1.4 mol H2SO4. What mass of NaHCO3 do you need to neutralize the acid?
********\
The question requires us to calculate the mass of NaHCO3 to neutralize the acid.
From the balanced chemical equation;
1 mol of H2SO4 requires 2 mol of NaHCO3
1.4 would require x?
Upon solving for x we have;
x = 1.4 * 2 = 2.8 mol of NaHCO3
The relationship between mass and number of moles is given as;
Mass = Number of moles * Molar mass
Mass = 2.8 mol * 84.007 g/mol
Mass = 235.22 g
What's the electron configuration of a Ca+2 ion?
A. [Kr]
B. [Ar]
C. [Ne]
D. [He]
Answer:
B
Explanation:
The Ca+2 ion means that 2 electrons have been given away. So when you try and find the answer, you have to count backwards from Calcium. When you do, you get K+ first and then Argon which is either column 8 orc column 18 depending on your periodic table.
The element you hit is Argon.
The answer is B
Answer:
B ar
Explanation:
pen foster answer
Which of the following solutions would have the highest pH? Assume that they are all 0.10 M in acid at 25°C. The acid is followed by its Ka value.
a. HCHO2, 1.8 x 10-4
b. HF, 3.5 x 10-4
c. HClO2, 1.1 x 10-2
d. HCN, 4.9 x 10-10
e. HNO2, 4.6 x 10-4
Answer:
[tex]HCN~~Ka=4.9x10^-^1^0[/tex]
Explanation:
In this case, we have to remember the relationship between the Ka value and the pH. We can use the general reaction for any acid with his Ka value expression:
[tex]HA~->~H^+~+~A^-[/tex] [tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]
In the Ka expression, we have a proportional relationship between Ka and the concentration of [tex]H^+[/tex]. Therefore, if we have a higher Ka value we will have a smaller pH (lets keep in mind that with a higher
So, if we have to find the higher pH value we need to search the smaller Ka value in this case [tex]HCN~~Ka=4.9x10^-^1^0[/tex].
I hope helps!
HCN has the highest pH among all the acids listed in the question.
The Ka is called the acid dissociation constant. It shows the extent to which an acid is ionized in water. The pH shows the hydrogen ion concentration of water. The higher the Ka, the higher the hydrogen ion concentration and the lower the pH.
Hence, HCN has the lowest Ka and the lowest hydrogen ion concentration. Therefore, HCN has the highest pH among all the acids listed in the question.
Learn more: https://brainly.com/question/6505878