Answer:
28.0mL of the 0.0500M NaOH solution
Explanation:
0.126g of lactic acid diluted to 250mL. Titrated with 0.0500M NaOH solution.
The reaction of lactic acid, H₃C-CH(OH)-COOH (Molar mass: 90.08g/mol) with NaOH is:
H₃C-CH(OH)-COOH + NaOH → H₃C-CH(OH)-COO⁻ + Na⁺ + H₂O
Where 1 mole of the acid reacts per mole of the base.
You must know the student will reach equivalence point when moles of lactic acid = moles NaOH.
the student will titrate the 0.126g of H₃C-CH(OH)-COOH. In moles (Using molar mass) are:
0.126g ₓ (1mol / 90.08g) = 1.40x10⁻³ moles of H₃C-CH(OH)-COOH
To reach equivalence point, the student must add 1.40x10⁻³ moles of NaOH. These moles comes from:
1.40x10⁻³ moles of NaOH ₓ (1L / 0.0500moles NaOH) = 0.0280L of the 0.0500M NaOH =
28.0mL of the 0.0500M NaOH solutionThe nutrition label on the back of a package of hotdogs (purchased within the US) indicates that one hotdog contains 100 calories. How many calories does a hotdog actually have?
A. 1,000
B. It depends on how many hotdogs you eat
C. 100
D. 10
E. 100,000
Answer:
C. 100
Explanation:
Biochemical researches and studies have found out that an average health hotdog has a calorie of between 100 and 150 which is usually dependent on the additives.
Since the nutrition label on the back of a package of hotdogs (purchased within the US) indicates that one hotdog contains 100 calories then it truly contains such amount of calories. The standard number of calories present in a hotdog is independent of the amount eaten by individuals.
Determine whether each of the following salts will form a solution that is acidic, basic, or pH-neutral. Drag the appropriate items to their respective bins.
Al(NO3)3
C2H5NH3NO3
NaClO
RbI
CH3NH3CN
Answer:
Al(NO₃)₃: Acidic.
C₂H₅NH₃NO₃: Acidic.
NaClO: Basic
RbI: pH-neutral
CH₃NH₃CN: Solution basic
Explanation:
The general rules to determine if a solution is acidic, basic or neutral are:
If it is a salt of a strong acid and base, the solution will be pH-neutral. If it is a salt of a strong acid and a weak base, the solution will be acidic due to the hydrolysis of the weak base component (cation). If it is a salt of a strong base and a weak acid, the solution will be basic due to the hydrolysis of the weak acid component (anion).For the salts:
Al(NO₃)₃. The repective acid is HNO₃ (Strong acid) and the base is Al(OH)₃ (Weak base). As the salt comes from strong acid and weak base. SOLUTION ACIDIC
C₂H₅NH₃NO₃. The acid is HNO₃ (Strong acid) and the base C₂H₅NH₃OH (Weak base). SOLUTION ACIDIC.
NaClO. Tha acid is HClO (weak acid), and the base NaOH (Strong base). SOLUTION BASIC.
RbI: The acid is HI (Strong acid) and the base RbOH (Strong base). pH-NEUTRAL
CH₃NH₃CN. The acid is HCN (weak acid; pKb = 4.79) and the base CH₃NH₃OH (weak base; pKa = 10.64). Both weak acid and base will produce each hydrolisis. The lower pK will predominate. That is the weak acid. SOLUTION BASIC
Solution of Al(NO₃)₃ and C₂H₅NH₃NO₃ salts is acidic, NaClO is basic and of RbI & CH₃NH₃cyanide is neutral in nature.
What is pH?pH of any solution tells about the acidity or basicity of the solution, pH of any solution ranges from 0 to 14 and from acidity to basicity.
Al(NO₃)₃ is a salt which is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base Al(OH)₃, so the resultant solution of the salt is acidic in nature.C₂H₅NH₃NO₃ salt is formed by the mixing of strong acid HNO₃ (Nitric acid) and weak base C₂H₅NH₃OH, so the resultant solution of the salt is acidic in nature.NaClO is a salt of weak acid is HClO and strong base NaOH, so the resultant solution of the salt is basic in nature.RbI salt is formed by the combination of strong acid HI and strong base RbOH, so the resultant solution of the salt is neutral in nature.CH₃NH₃Cyanide is a salt of weak acid hydrogen cyanide and weak base CH₃NH₃OH, so the resultant solution of the salt is neutral in nature.Hence, appropriate differentiation was done above.
To know more acidity or basicity, visit the below link:
https://brainly.com/question/172153
Rank the following substances in order from most soluble in water to least soluble in water: ethane, C2H6; 1-pentanol, C5H11OH; potassium chloride, KCl; and propane, C3H8.
Rank from most to least soluble in water. To rank items as equivalent, overlap them.
Most soluble Least soluble
Answer:
Explanation:
The substances are:
-) Ethane, [tex]C_2H_6[/tex]
-) 1-pentanol, [tex]C_5H_1_1OH[/tex]
-) Potassium chloride, [tex]KCl[/tex]
-) Propane, [tex]C_3H_8[/tex]
For this question, we have to remember the structure of water. Due to the electronegativity difference between oxygen and hydrogen in this structure, we will have the formation of dipoles. The dipoles interact better with net charges, due to this, the Potassium chloride is the compound with highest solubility (due to the formation of a cation and an anion):
[tex]KC~l->~K^~+~Cl^-[/tex]
Then, in 1-pentanol we an "OH". This structure due to the presence of the hydroxyl group can form hydrogen bonds. Therefore, this compound would be the second more soluble.
Finally, the difference between propane and ethane is a carbon. In propane, we have an additional carbon. If we have more carbons we will have more area of interaction. If we have more area we will have more solubility therefore propane is more soluble than ethanol.
In conclusion, the rank from most soluble to least soluble is:
1) Potassium chloride, [tex]KCl[/tex]
2) 1-pentanol, [tex]C_5H_1_1OH[/tex]
3) Propane, [tex]C_3H_8[/tex]
4) Ethane, [tex]C_2H_6[/tex]
I hope it helps!
Order of solubility in water will be:
KCl > C₅H₁₁OH > C₃H₈ > C₂H₆
Solubility in water:Any solvent soluble in water due to its polarity and ability to form hydrogen bonds. The presence of hydrogen bonding between molecules of a substance indicates that the molecules are polar. This means the molecules will be soluble in a polar solvent such as water.
Substances that are given:
Ethane(C₂H₆), 1-pentanol(C₅H₁₁OH), Potassium chloride(KCl) and propane(C₃H₈).
We will look at each compound one by one:
Potassium chloride is an ionic compound, it has ionic interactions between its solubility in water is highest due to the formation of potassium ([tex]K^{+}[/tex]) and ([tex]Cl^{-}[/tex]) ions.In 1-pentanol, there is presence of hydroxyl group thus it can easily form hydrogen bonds with water. Therefore it will be soluble in water and comes after potassium chloride in ranking order.In ethane and propane molecule, there is one extra carbon in case of propane due to which it leads to the more area for interactions therefore more area for interaction leads to more solubility thus propane is more soluble than ethane in water.Order of solubility in water will be:
KCl > C₅H₁₁OH > C₃H₈ > C₂H₆
Learn more:
https://brainly.com/question/17681113
In a combustion chamber, ethane (C2H6) is burned at a rate of 8 kg/h with air that enters the combustion chamber at a rate of 176 kg/h. Determine the percentage of excess air used during this process.
Answer:
37%
Explanation:
From the question, the equation goes does.
C2H6+ (1-x)+a(O2+3.76N2)=bC02 + cH2O + axO2 + 3.76dN2.
Mair=Mair/Rin
( MN)O2 + (MN)N2÷ (MN)O2 + (MN)N2 +(MN)C2H6.
33 . 3.25(1-x) + 28 × 13.16(1-x) ÷ 33 × 3.25(1-x) + 28 × 13.16(1-x). + 30.1
= 176/176+8
X= 0.37
0.37 × 100
X= 37%
A student accidentally let some of the vapor escape the beaker. As a result of this error, will the mass of naphthalene you record be too high, too low, or unaffected? Why?
Answer:
too low
Explanation:
If our aim is to recover the naphthalene and measure its mass after separation, then we must not allow any vapour to escape.
Naphthalene is a sublime substance, it can be separated by sublimation. It changes directly from solid to gas. This vapour must be kept securely so that none of it escapes. If part of the naphthalene vapour happens to escape accidentally, then the measured mass of naphthalene will be too low compared to the mass of naphthalene originally present in the mixture.
Give the major organic products from the oxidation with KMnO4 for the following compounds. Assume an excess of KMnO4.
a) ethylbenzene
b) m-Xylene (1,3- dimethylbenzene)
c) 4-Propyl-3-t-butyltoluene
Answer:
Explanation:
a ) Benzoic acid is formed . In any alkyl benzene derivative , potassium permanganate reacts to form carboxylic acid . It oxidises side chains to carboxylic acid .
C₆H₅CH₃ + 0 = C₆H₅COOH + H₂O
O is provided by KMnO₄
b ) In this reaction isophthalic acid is formed .
C₆H₄(CH₃)₂ +O = C₆H₄(COOH)₂
c)
4-Propyl-3-t-butyltoluene
In this oxidation , three side chains of ring are 1 ) 1-methyl 2 ) 3- butyl 3 ) 4 propyl .
The methyl and 4 - propyl groups are oxidised to di- carboxylic acid and 3 butyl group remains intact ( unoxidised )
The heat of vaporization of 1-pentanol is 55.5 kJ/mol, and its entropy of vaporization is 148 J/K.mol. What is the approximate boiling point of 1-pentanol? 100 oC 375 oC 0 oC 25 oC
Answer:
Approximately 100 °C.
Explanation:
Hello,
In this case, since the entropy of vaporization is computed in terms of the heat of vaporization and the temperature as:
[tex]\Delta S_{vap}=\frac{\Delta H_{vap}}{T}[/tex]
We can solve for the temperature as follows:
[tex]T=\frac{\Delta H_{vap}}{\Delta S_{vap}}[/tex]
Thus, with the proper units, we obtain:
[tex]T=\frac{55500J/mol}{148J/(mol*K)} =375K\\\\T=102 \°C[/tex]
Hence, answer is approximately 100 °C.
Best regards.
M(8,7) is the midpoint of rs. The coordinates of s are (9,5) what is the coordinates of r
Answer:
Coordinate or r = (7,9).
Explanation:
Data obtained from the question include the following:
Mid point = (8,7)
Coordinate of S = (9,5)
Coordinate of r =...?
We shall determine the coordinate of r as follow:
Let the coordinate of r be (x2, y2)
Mid point = (x1 + x2)/2 , (y1 + y2)/2
Mid point = (8,7)
Coordinate of S = (9,5)
x1 = 9
y1 = 5
x2 =?
y2 =?
The value of x2 can be obtained as follow:
8 = (x1 + x2)/2
8 = (9 + x2)/2
Cross multiply
9 + x2 = 2 × 8
9 + x2 = 16
Collect like terms
x2 = 16 – 9
x2 = 7
The value of y2 can be obtained as follow:
5 = (y1 + y2)/2
7 = (5 + y2)/2
Cross multiply
5 + y2 = 2 × 7
5 + y2 = 14
Collect like terms
y2 = 14 – 5
y2 = 9
Coordinate of r = (x2, y2)
Coordinate or r = (7,9)
The Handbook of Chemistry and Physics gives solubilities of the following compounds in grams per 100 mL water. Because these compounds are only slightly soluble, assume that the volume does not change on dissolution and calculate the solubility product for each.
(a) BaSeO4, 0.0118 g/100 mL
(b) Ba(BrO3)2 H20, 0.30 g/100 mL
(c) NH4MgAsO4-6H20, 0.038 g/100 mL
(d) La2(MoOs)3, 0.00179 g/100 mL
Answer:
(a) [tex]Ksp=4.50x10^{-7}[/tex]
(b) [tex]Ksp=1.55x10^{-6}[/tex]
(c) [tex]Ksp=2.27x10^{-12}[/tex]
(d) [tex]Ksp=1.05x10^{-22}[/tex]
Explanation:
Hello,
In this case, given the solubility of each salt, we can compute their molar solubilities by using the molar masses. Afterwards, by using the mole ratio between ions, we can compute the concentration of each dissolved and therefore the solubility product:
(a) [tex]BaSeO_4(s)\rightleftharpoons Ba^{2+}(aq)+SeO_4^{2-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.0188g}{100mL} *\frac{1mol}{280.3g}*\frac{1000mL}{1L}=6.7x10^{-4}\frac{mol}{L}[/tex]
In such a way, as barium and selenate ions are in 1:1 molar ratio, they have the same concentration, for which the solubility product turns out:
[tex]Ksp=[Ba^{2+}][SeO_4^{2-}]=(6.7x10^{-4}\frac{mol}{L} )^2\\\\Ksp=4.50x10^{-7}[/tex]
(B) [tex]Ba(BrO_3)_2(s)\rightleftharpoons Ba^{2+}(aq)+2BrO_3^{-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.30g}{100mL} *\frac{1mol}{411.15g}*\frac{1000mL}{1L}=7.30x10^{-3}\frac{mol}{L}[/tex]
In such a way, as barium and bromate ions are in 1:2 molar ratio, bromate ions have twice the concentration of barium ions, for which the solubility product turns out:
[tex]Ksp=[Ba^{2+}][BrO_3^-]^2=(7.30x10^{-3}\frac{mol}{L})(3.65x10^{-3}\frac{mol}{L})^2\\\\Ksp=1.55x10^{-6}[/tex]
(C) [tex]NH_4MgAsO_4(s)\rightleftharpoons NH_4^+(aq)+Mg^{2+}(aq)+AsO_4^{3-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.038g}{100mL} *\frac{1mol}{289.35g}*\frac{1000mL}{1L}=1.31x10^{-4}\frac{mol}{L}[/tex]
In such a way, as ammonium, magnesium and arsenate ions are in 1:1:1 molar ratio, they have the same concentrations, for which the solubility product turns out:
[tex]Ksp=[NH_4^+][Mg^{2+}][AsO_4^{3-}]^2=(1.31x10^{-4}\frac{mol}{L})^3\\\\Ksp=2.27x10^{-12}[/tex]
(D) [tex]La_2(MoOs)_3(s)\rightleftharpoons 2La^{3+}(aq)+3MoOs^{2-}(aq)[/tex]
[tex]Molar\ solubility=\frac{0.00179g}{100mL} *\frac{1mol}{1136.38g}*\frac{1000mL}{1L}=1.58x10^{-5}\frac{mol}{L}[/tex]
In such a way, as the involved ions are in 2:3 molar ratio, La ion is twice the molar solubility and MoOs ion is three times it, for which the solubility product turns out:
[tex]Ksp=[La^{3+}]^2[MoOs^{-2}]^3=(2*1.58x10^{-5}\frac{mol}{L})^2(3*1.58x10^{-5}\frac{mol}{L})^3\\\\Ksp=1.05x10^{-22}[/tex]
Best regards.
Zn + 2 HCl --> H2 + ZnCl2 If 1.70 g of Zn are reacted, how many grams of ZnCl2 can be created? Show work and process and I will give brainliest
Explanation:
first find the the number of moles of of zinc .
as the number of moles of zinc and ZnCl2 is same we can calculate the mass of ZnCl2.
To infer means to do what?
A. reach a conclusion about data
B. make a hypothesis about data
C. decide to collect some more data
D. state something found indirectly from data
Answer:
A
Explanation:
infer means use data to reach conclusion.
Which of the following functional groups is formed from the condensation of carboxylic acids???
a. acid anhydride
b. acid halide
c. amide
d. ester
e. ether
Answer:
a
Explanation:
its made up of carbon and hydrogen
Which one of the following is most likely to gain electrons when forming an ion, based on the natural tendency of the element?
A Ni
B S
C Na
D Cr
E Be
Answer:
Option B. S
Explanation:
All of the options except sulphur, S is metal.
Metals tend to lose electron in order to form ion. Non metals on the other hand gain electron to form ion.
Sulphur, S has atomic number of 16 with electronic configuration as:
S (16) => 1s² 2s²2p⁶ 3s²3p⁴
From the above illustration, we can see that sulphur needs two more electrons to complete it's octet configuration.
Therefore, sulphur, S will gain two electrons to form ion.
As stated earlier, the rest option given are all metals which will form ion by losing electron(s).
Answer
B) Sulphur (S)
Explanation
Here in the options we have been provided with elements like Nickel (Ni), Sulphur (S), Sodium (Na), Chromium (Cr) and Beryllium (Be) but except for Sulphur all the other ones are metals.
Now, let us understand what is a metal and a non-metal.
Metal- electron donors are called as metal.Non-metal- electron acceptors are called non-metals.So, sulphur being the only non metal will accept electron to complete its octate and to stablize itself and form a Anion.
Now let us also look at the electronic configuration of Sulphur to get the picture more clearly
atomic no. of sulphur would be = 16[tex]S\rightarrow 1s^2\; 2s^2\;2p^6\;3s^2\;3p^4[/tex]
so here the p-subshell is incomplete and is in need of 2 electrons.
Therefore the element which is most likely to gain electrons, forming an Anion will be sulphur.
To learn more about Ion Formation
https://brainly.com/question/12740145
what bsic difference is between NMR and MS spectroscopic techniques?
Answer:
The Nuclear magnetic resonance is the process this technique does not use radiation.
The ms is an sensitive technology can be a massive number and small sample of the blood.
Explanation:
The Nuclear magnetic resonance we look at the both side of that coin.
The technique provides that fatty acid composition and various including amino acids.
These are contain the complementary these biomarkers, that are suitable for all kinds of studies. there are many types of research:-
(1) A powerful tool metabolic (2) A versatile tool research (3) Quick analysis (4) Low cost analysis.
The MS is an extremely sensitive technology using a very small number of the blood.
(1) Powerful techniques (2) Highly method (3) Large number of metabolites (4)Small sample volume
MS can be fine mapping metabolic pathways to sign analytical strategy.
Explain the term isomers?
Answer:
Isomers are molecules that have the same molecular method, however have a unique association of the atoms in space. That excludes any extraordinary preparations which can be sincerely because of the molecule rotating as an entire, or rotating about precise bonds.
Write a balanced equation for the single-replacement oxidation-reduction reaction described, using the smallest possible integer coefficients. The reaction that takes place when chlorine gas combines with aqueous potassium bromide. (Use the lowest possible coefficients. Omit states of matter.)
Answer:
[tex]\rm Cl_2 + 2\; KBr \to Br_2 + 2\; KCl[/tex].
One chlorine molecule reacts with two formula units of (aqueous) potassium bromide to produce one bromine molecule and two formula units of (aqueous) potassium chloride.
Explanation:
Formula for each of the speciesStart by finding the formula for each of the compound.
Both chlorine [tex]\rm Cl[/tex] and bromine [tex]\rm Br[/tex] are group 17 elements (halogens.) Each On the other hand, potassium [tex]\rm K[/tex] is a group 1 element (alkaline metal.) EachTherefore, the ratio between [tex]\rm K[/tex] atoms and [tex]\rm Br[/tex] atoms in potassium bromide is supposed to be one-to-one. That corresponds to the empirical formula [tex]\rm KBr[/tex]. Similarly, the ratio between
The formula for chlorine gas is [tex]\rm Cl_2[/tex], while the formula for bromine gas is [tex]\rm Br_2[/tex].
Balanced equation for the reactionWrite down the equation using these chemical formulas.
[tex]\rm ?\; Cl_2 + ?\; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Start by assuming that the coefficient of compound with the largest number of elements is one. In this particular equation, both [tex]\rm KBr[/tex] and [tex]\rm KCl[/tex] features two elements each.
Assume that the coefficient of [tex]\rm KCl[/tex] is one. Hence:
[tex]\rm ?\; Cl_2 + 1 \; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Note that [tex]\rm KBr[/tex] is the only source of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms among the reactants of this reaction.
There would thus be one [tex]\rm K[/tex] atom and one [tex]\rm Br[/tex] atom on the reactant side of the equation.
Because atoms are conserved in a chemical equation, there should be the same number of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms on the product side of the equation.
In this reaction, [tex]\rm Br_2[/tex] is the only product with [tex]\rm Br[/tex] atoms.
One [tex]\rm Br[/tex] atom would correspond to [tex]0.5[/tex] units of [tex]\rm Br_2[/tex].
Similarly, in this reaction, [tex]\rm KCl[/tex] is the only product with [tex]\rm K[/tex] atoms.
One [tex]\rm K[/tex] atom would correspond to one formula unit of [tex]\rm KCl[/tex].
Hence:
[tex]\displaystyle \rm ?\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
Similarly, there should be exactly one [tex]\rm Cl[/tex] atom on either side of this equation. The coefficient of [tex]\rm Cl_2[/tex] should thus be [tex]0.5[/tex]. Hence:
[tex]\displaystyle \rm \frac{1}{2}\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
That does not meet the requirements, because two of these coefficients are not integers. Multiply all these coefficients by two (the least common multiple- LCM- of these two denominators) to obtain:
[tex]\displaystyle \rm 1\; Cl_2 + 2 \; KBr \to 1\;Br_2 + 2\; KCl[/tex].
If a bottle of olive oil contains 1.2 kg of olive oil, what is the volume, in milliliters (mL), of the olive oil?
Answer:
1.3 mL
Explanation:
First, get the density of the olive oil, which is 0.917 kg/mL. Then divide the mass by the density:
1.2kg/0.917kg/mL= 1.3086150491 mL. The kg cancel out, leaving us with mL.
It should have 2 significant figures, because 1.2kg has 2 and we are dividing.
The volume of olive oil will be nearly 1300mL or 1.30 L as per the given data.
What is volume?Volume is a measurement of three-dimensional space that is occupied. It is frequently numerically quantified using SI derived units or various imperial units. The definition of length is linked to the definition of volume.
Volume is, at its most basic, a measure of space. The units liters (L) and milliliters (mL) are used to measure the volume of a liquid, also known as capacity.
This measurement is done with graduated cylinders, beakers, and Erlenmeyer flasks.
Here, it is given that mass of olive oil is 1.2kg.
We know that,
Density of olive oil = 0.917kg/l.
Volume = mass/density
Volume = 1.2/0.917.
Volume = 1.30 lit.
Volume = 1300mL.
Thus, the volume of olive oil will be 1300 mL.
For more details regarding volume, visit:
https://brainly.com/question/1578538
#SPJ2
A mercury manometer is used to measure pressure in the container illustrated. Calculate the pressure exerted by the gas if atmospheric pressure is 751 torr and the distance labeled is 176 mm.
Answer:
Pressure exerted by the gas is 574.85 torr
Explanation:
Atmospheric pressure = 751 torr
but 1 torr = 1 mmHg
therefore,
atmospheric pressure = 751 mmHg
1 mmHg = 133.3 Pa
therefore,
atmospheric pressure = 751 x 133.3 = 100108.3 Pa
distance labeled (tube section with mercury) = 176 mm
the pressure within the tube will be
[tex]P_{tube}[/tex] = ρgh
where ρ is the density of mercury = 13600 kg/m^3
h is the labeled distance = 176 mm = 0.176 m
g is acceleration due to gravity = 9.81 m/s^2
[tex]P_{tube}[/tex] = 13600 x 9.81 x 0.176 = 23481.216 Pa
The general equation for the pressure in the manometer will be
[tex]P_{atm}[/tex] = [tex]P_{tube}[/tex] + [tex]P_{gas}[/tex]
where [tex]P_{atm}[/tex] is the atmospheric pressure
[tex]P_{tube}[/tex] is the pressure within the tube with mercury
[tex]P_{gas}[/tex] is the pressure of the gas
substituting, we have
100108.3 = 23481.216 + [tex]P_{gas}[/tex]
[tex]P_{gas}[/tex] = 100108.3 - 23481.216 = 76627.1 Pa
This pressure can be stated in mmHg as
76627.1 /133.3 = 574.85 mmHg
and also equal to 574.85 torr
The addition of 0.242 L of 1.92 M KCl to a solution containing Ag+ and Pb2+ ions is just enough to precipitate all of the ions as AgCl and PbCl2. The total mass of the resulting precipitate is 65.08 g. Find the mass of PbCl2 and AgCl in the precipitate. Calculate the mass of PbCl2 and AgCl in grams.
Answer:
Mass PbCl₂ = 50.24g
Mass AgCl = 14.84g
Explanation:
The addition of Cl⁻ ions from the KCl solution results in the precipitation of AgCl and PbCl₂ as follows:
Ag⁺ + Cl⁻ → AgCl(s)
Pb²⁺ + 2Cl⁻ → PbCl₂(s)
If we define X as mass of PbCl₂, moles of Cl⁻ from PbCl₂ are:
Xg × (1mol PbCl₂/ 278.1g) × (2moles Cl⁻ / 1 mole PbCl₂) = 0.00719X moles of Cl⁻ from PbCl₂
And mass of AgCl will be 65.08g-X. Moles of Cl⁻ from AgCl is:
(65.08g-Xg) × (1mol AgCl/ 143.32g) × (1mole Cl⁻ / 1 mole AgCl) = 0.45409 - 0.00698X moles of Cl⁻ from AgCl
Moles of Cl⁻ that were added in the KCl solution are:
0.242L × (1.92mol KCl / L) × (1mole Cl⁻ / 1 mole KCl) = 0.46464 moles of Cl⁻ added.
Moles Cl⁻(AgCl) + Moles Cl⁻(PbCl₂) = Moles Cl⁻(added)
0.45409 - 0.00698X moles + (0.00719X moles) = 0.46464 moles
0.45409 + 0.00021X = 0.46464
0.00021X = 0.01055
X = 0.01055 / 0.00021
X = 50.24g
As X = Mass PbCl₂
Mass PbCl₂ = 50.24gAnd mass of AgCl = 65.08 - 50.24
Mass AgCl = 14.84gThe masses of the compounds in the precipitate can be found my knowing
the number of moles of chloride ion contributed by each compound.
The mass of PbCl₂ in the precipitate is approximately 49.24 gThe mass of AgCl in the precipitate is approximately 15.84 gReasons:
The given parameter are;
Volume of KCl solution added = 0.242 L
Concentration of KCl solution = 1.92 M KCl
The ions in the solution to which KCl is added = Ag⁺ and Pb²⁺ ions
Precipitates formed = AgCl and PbCl₂
The mass of the precipitate = 65.08 g
Required:
The mass of PbCl₂ and AgCl in the precipitate
Solution;
Number of moles of chloride ions in a mole of PbCl₂ = 2 moles
Number of moles of chloride ions in a mole of AgCl = 1 mole
Let X represent the mass of PbCl₂ in the precipitate, we have;
The mass of AgCl in the precipitate = 65.08 g - X
[tex]\mathrm{Number \ of \ moles \ of \ PbCl_2} = \dfrac{X \, g}{278.1 \, g} =\mathbf{ \dfrac{X }{278.1}}[/tex]
Number of moles of chloride ions from PbCl₂ is therefore;
[tex]\mathrm{Number \ of \ moles \ of \ Cl^- from \ PbCl_2} =\mathbf{ 2 \times \dfrac{X }{278.1} \ moles \ of \ Cl^-}[/tex]
[tex]\mathrm{Number \ of \ moles \ of \ AgCl \ in \ the \ precipitate} = \dfrac{65.08 -X }{143.32}[/tex]
[tex]\mathrm{Number \ of \ moles \ of \ Cl^- from \ AgCl} = \mathbf{ \dfrac{65.08 -X }{143.32}} \ moles \ of \ Cl^-[/tex]
The number of moles of chloride ions from one mole of KCl = 1 mole
Number of moles of chloride ions from 0.242 L of 1.92 M KCl is therefore;
0.242 L × 1.92 moles/L = 0.46464 moles
Number of moles of chloride ions from KCl = 0.46464 moles
[tex]0.46464 \ moles \ from \ KCl = \overbrace{ \dfrac{ 2 \times X }{278.1} + \dfrac{65.08 -X }{143.32}} \ moles \ in \ PbCl_2 \ and \ AgCl[/tex]
Which gives;
[tex]\displaystyle \frac{192}{896089} \cdot X + \frac{1627}{3583} = \frac{1452}{3125}[/tex]
Therefore;
[tex]\displaystyle X = \frac{\frac{1452}{3125} - \frac{1627}{3583} }{ \frac{192}{896089} } = \frac{105864850549}{2149800000} \approx \mathbf{ 49.24}[/tex]
The mass of PbCl₂ in the precipitate, X ≈ 49.24 g
The mass of AgCl in the precipitate = 65.08 g - 49.24 g ≈ 15.84 g
Learn more here:
https://brainly.com/question/13652772
The correct IUPAC name for the following compound is
Answer:
1-cyclopentylhexan-2-one
Explanation:
1-cyclopentylhexan-2-one
Resonance Structures are ways to represent the bonding in a molecule or ion when a single Lewis structure fails to describe accurately the actual electronic structure. Equivalent resonance structures occur when there are identical patterns of bonding within the molecule or ion. The actual structure is a composite, or resonance hybrid, of the equivalent contributing structures. Draw Lewis structures for thecarbonate ion and for phosphine in which the central atom obeys the octet rule. ... How many equivalent Lewis structures are necessary to describe the bonding in CO32-
Answer:
See explanation
Explanation:
A Lewis structure is also called a dot electron structure. A Lewis structure represents all the valence electrons on atoms in a molecule as dots. Lewis structures can be used to represent molecules in which the central atom obeys the octet rule as well as molecules whose central atom does not obey the octet rule.
Sometimes, one Lewis structure does not suffice in explaining the observed properties of a given chemical specie. In this case, we evoke the idea that the actual structure of the chemical specie lies somewhere between a limited number of bonding extremes called resonance or canonical structures.
The canonical structure of the carbonate ion as well as the lewis structure of phosphine is shown in the image attached to this answer.
Which of the following is a property of salts? Undergo combustion Do not make ionic bonds easily Do not conduct electricity as solids Formed due to reaction of acid with water
Answer:
Do not conduct electricity as solids.
Explanation:
Hello,
In this case, we should remember that salts are formed when an acid and base react in order to yield the salt and water due to the ions exchange during neutralization chemical reactions. For instance, when hydrochloric acid (acid) reacts with potassium hydroxide (base), sodium chloride (salt) and water are yielded via:
[tex]HCl+NaOH\rightarrow NaCl+H_2O[/tex]
Moreover, it is widely known that salts are formed by electrovalent/ionic bonds which involves electron transfer so the metallic atom becomes positively charged (cation) whereas the non-metallic atom becomes negatively charged (anion) once the electrons are received so it can conduct electricity when dissolved in water yet not when solid since electron transfer is facilitated by the aqueous media, otherwise, ions remain together. Thereby, answer is do not conduct electricity as solids.
Regards.
Answer:
c
Explanation:
This substituent deactivates the benzene ring towards electrophilic substitution but directs the incoming group chiefly to the ortho and para positions.
A) -F
B) -OCH2CH3
C) -CF3
D) -NHCOCH3
E) -NO2
Answer:
F
Explanation:
Halogens may interact with the benzene ring via inductive or resonance effects. Halogens deactivate the benzene ring by inductive effect rather than by resonance effects.
The lone pairs of electrons present on the halogen atoms may be donated to the ring by resonance, but an opposite effect, the inductive pull (-I inductive effect) of the halogen atoms on electrons away from the benzene ring due to the high electro negativity of the halogens leads to a deactivation of the ring towards electrophilic substitution.
Hence inductive electron withdrawal by the halogen atom predominates over electron donation by resonance effect and the benzene ring g is deactivated towards electrophilic substitution at the ortho and para positions.
Classify each of these reactions.
1) Ba(ClO3)2(s)--->BaCl2(s)+3O2(g)
2) 2NaCl(aq)+K2S(aq)--->Na2S(aq)+2KCl(aq)
3) CaO(s)+CO2(g)--->CaCO3(s)
4) KOH(aq)+AgCl(aq)---->KCl(aq)+AgOH(s)
5) Ba(OH)2(aq)+2HNO2(aq)--->Ba(NO2)2(aq)+2H2O(l)
Each classify reaction should be either one of this.
a. acid-base neutralization
b. precipitation
c. redox
d. none of the above
Answer:
1. REDOX
2. None of the above
3. Precipitation
4. Preicipitation
5. Acid base neutralization
Explanation:
Reactions where a solid is formed, are named as precipitation. This solid is called precipitated.
Option 4 and 3.
3) CaO (s) + CO₂ (g) → CaCO₃(s)
4) KOH (aq) + AgCl (aq) → KCl (aq) + AgOH(s)
Reactions where water is produced, and you have an acid and a base as reactants, are named as neutralization. You called them acid-base because, the products.
5) Ba(OH)₂ (aq) + 2HNO₂(aq) → Ba(NO₂)₂ (aq) + 2H₂O(l)
Redox, are the reactions where one of the reactans can be oxidized and reduced, when a mole of electrons is released, or gained.
1) Ba(ClO₃)₂ (s) → BaCl₂ (s) + 3O₂(g)
Oxygen from the chlorate is oxidized (increases the oxidation state from -2 to 0) and the chlorine is reduced (decreases the oxidation state from +5 to -1).
2. 2NaCl(aq) + K₂S(aq) Na₂S (aq) + 2KCl (aq)
None of the above
what is radiologist
Radiologists are medical doctors that treat injuries using medical imaging (radiology)
Answer:
a person who uses X-rays or other high-energy radiation, especially a doctor specializing in radiology.
Explanation:
How long should you hold the iron on the hair to heat the strand and set the base ?
A) 5 seconds
B) 15 seconds
C) 30 seconds
D) 1 minute
Write a balanced equation for: capture of an electron by cadmium-104
Answer:
104 48 Cd + 0 -1 e ---------> 104 47 Ag
Explanation:
In the process of electron capture, the nucleus captures an electron and thus converts a proton into a neutron with the emission of a neutrino. This process increases the Neutron/Proton ratio, the captured electron is usually from the K shell. An electron from a higher energy level now drops down to fill the vacancy in the K shell and characteristic X-ray is emitted. This process usually occurs where the Neutron/proton ratio is very low and the nucleus has insufficient energy to undergo positron emission.
For 104 48 Cd, the balanced equation for K electron capture is;
104 48 Cd + 0 -1 e ---------> 104 47 Ag
A base solution contains 0.400 mol of OH–. The base solution is neutralized by 43.4 mL of sulfuric acid. What is the molarity of the sulfuric acid solution?
Answer:
Molarity of the sulfuric acid solution is 4.61M
Explanation:
The neutralization of a base of OH⁻ with sulfuric acid, H₂SO₄, occurs as follows:
2 OH⁻ + H₂SO₄ → 2H₂O + SO₄²⁻
That means, 2 moles of base react with 1 mole of sulfuric acid.
If you add 0.400 moles of OH⁻, moles of sulfuric acid you need to neutralize this amount of OH⁻ are:
0.400 moles OH⁻ ₓ (1 mole H₂SO₄ / 2 moles OH⁻) = 0.200 moles of H₂SO₄
As you add 43.4mL = 0.0434L of sulfuric acid to neutralize this solution, molarity (Ratio between moles and liters) is:
0.200 moles H₂SO₄ / 0.0434L = 4.61M
Molarity of the sulfuric acid solution is 4.61M33. Hydrocarbons that release pleasant odors are called_________
hydrocarbons. (1 point)
Answer:
Aromatic Hydrocarbons
Explanation:
Aromatic (Pleasant Odour) Hydrocarbons are those having pleasant odours.
Answer:
substituted hydrocarbons
Explanation:
i think
An atom with 19 protons and 18 neutrons is a(n)
A. Isotope of potassium(K)
B. Standard atom of argon(Ar)
C. Standard atom of (K)
D. Isotope of argon (Ar)
Answer:
A
Explanation:
The number of protons indicates the element so we know it's potassium. To get the number of neutrons you subtract the number of protons (19) from the mass number which for potassium is 39.
39-19=20 neutrons
Because you have 18 neutrons then yours would be an isotope.
Answer: A. Isotope of potassium(K)
Explanation: Founders Educere answer.