Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center
Answer:
moment of inertia I ≈ 4.0 x 10⁻³ kg.m²
Explanation:
given
point masses = 50g = 0.050kg
note: m₁=m₂=m₃=m₄=50g = 0.050kg
distance, r, from masses to eachother = 20cm = 0.20m
the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by
= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m
moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center
mathematically,
I = ∑m×d²
remember, a square will have 4 equal points
I = ∑m×d² = 4(m×d²)
I = 4 × 0.050 × (14.12 x 10⁻² m)²
I = 0.20 × 1.96 × 10⁻²
I = 3.92 x 10⁻³ kg.m²
I ≈ 4.0 x 10⁻³ kg.m²
attached is the diagram of the equation
3. According to Hund's rule, what's the expected magnetic behavior of vanadium (V)?
O A. Ferromagnetic
O B. Non-magnetic
C. Diamagnetic
O D. Paramagnetic
Answer:
Diamagnetic
Explanation:
Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).
For vanadium V ion, there are 18 electrons which will be arranged as follows;
1s2 2s2 2p6 3s2 3p6.
All the electrons present are spin paired hence the ion is expected to be diamagnetic.
Answer:
its paramagnetic
Explanation:
i took this quiz
Sally who weighs 450 N, stands on a skate board while roger pushes it forward 13.0 m at constant velocity on a level straight street. He applies a constant 100 N force.
Work done on the skateboard
a. Rodger Work= 0J
b. Rodger work= 1300J
c. sally work= 1300J
d. sally work= 5850J
e. rodger work= 5850J
Answer:
b. Rodger work = 1300 J
Explanation:
Work done: This can be defined as the product of force and distance along the direction of the force.
From the question,
Work is done by Rodger using a force of 100 N in pushing the skateboard through a distance of 13.0 m.
W = F×d............. Equation 1
Where W = work done, F = force, d = distance.
Given: F = 100 N, d = 13 m
Substitute these values into equation 1
W = 100(13)
W = 1300 J.
Hence the right option is b. Rodger work = 1300 J
Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.
Answer:
a) 6.57 m/s
b) 53.75 J
c) 6.37 m/s
d) -98.297 J
Explanation:
mass of player = [tex]m_{p}[/tex] = 117.5 kg
speed of player = [tex]v_{p}[/tex] = 6.5 m/s
mass of ball = [tex]m_{b}[/tex] = 0.43 kg
velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s
Recall that momentum of a body = mass x velocity = mv
initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s
initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s
initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] = 2482.187 J
a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.
for this first case that they travel in the same direction, their momenta carry the same sign
[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v
where v is the final velocity of the player.
inserting calculated momenta of ball and player from above, we have
763.75 + 11.395 = (117.5 + 0.43)v
775.145 = 117.93v
v = 775.145/117.93 = 6.57 m/s
b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J
change in kinetic energy = 2535.94 - 2482.187 = 53.75 J gained
c) if they travel in opposite direction, equation becomes
[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v
763.75 - 11.395 = (117.5 + 0.43)v
752.355 = 117.93v
v = 752.355/117.93 = 6.37 m/s
d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex] = 2383.89 J
change in kinetic energy = 2383.89 - 2482.187 = -98.297 J
that is 98.297 J lost
A typical home uses approximately 1600 kWh of energy per month. If the energy came from a nuclear reaction, what mass would have to be converted to energy per year to meet the energy needs of the home
Answer:
7.68×10^25kg
Explanation:
The formula for energy used per year is calculated as
Energy used per year =12 x Energy used per month
By substituting Energy used per month in the above formula, we get
Energy used per year =12 x 1600kWh
= 19200kWh
Conversion:
From kWh to J:
1 kWh=3.6 x 10^6 J
Therefore, it is converted to J as
19200 kWh =19200 x 3.6 x 10^6 J
= 6.912×10^10 J
Hence, energy used per year is 6.912×10^10 J
To find the mass that is converted to energy per year.
E = MC^2 ............1
E is the energy used per year
C is the speed of light = 3.0× 10^8m/s
Where E= 6.912×10^10 J
Substituting the values into equation 1
6.912×10^10 J = M × 3.0× 10^8m/s
M = 6.912×10^10 J / (3.0× 10^8m/s)^2
M = 6.912×10^10 J/9×10^16
M = 7.68×10^25kg
Hence the mass to be converted is
7.68×10^25kg
Uses of pressure and the uses of density
Answer:
Pressure is a scalar quantity defined as per unit area.
Density is the objects ,times its the acceleration due to gravity.
Explanation:
Pressure is the alternative object increases the area of contact decrease .
Pressure is the force component to the surface used to calculate pressure.
pressure is that collisions of the gas to container as the per unit time .
pressure is an physical important quantity to play the solid and fluid .
Pressure is the expressed in a number of units depend the context use, pressure exerted by the liquid alone.
Density is the objects, times, volume of the object that times acceleration objects.
Density is the used to the system complex objects and materials.
Density force is the weight of a region or objects static fluid.
In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum
Complete Question
In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 57.9 cm from the slits?
Answer:
a
[tex]\theta = 0.3819^o[/tex]
b
[tex]y = 0.00386 \ m[/tex]
Explanation:
From the question we are told that
The slit separation is [tex]d = 150 \lambda[/tex]
The distance from the screen is [tex]D = 57.9 \ cm = 0.579 \ m[/tex]
Generally the condition for constructive interference is mathematically represented as
[tex]dsin (\theta ) = n * \lambda[/tex]
=> [tex]\theta = sin ^{-1} [\frac{n * \lambda }{ d } ][/tex]
where n is the order of the maxima and value is 1 because we are considering the central maximum and an adjacent maximum
and [tex]\lambda[/tex] is the wavelength of the light
So
[tex]\theta = sin ^{-1} [\frac{ 1 * \lambda }{ 150 \lambda } ][/tex]
[tex]\theta = 0.3819^o[/tex]
Generally the distance between the maxima is mathematically represented as
[tex]y = D tan (\theta )[/tex]
=> [tex]y = 0.579 tan (0.3819 )[/tex]
=> [tex]y = 0.00386 \ m[/tex]
A person is nearsighted with a far point of 75.0 cm. a. What focal length contact lens is needed to give him normal vision
Complete Question
The complete question is shown on the first uploaded image
Answer:
a
[tex]f= -75 \ cm = - 0.75 \ m[/tex]
b
[tex]P = -1.33 \ diopters[/tex]
Explanation:
From the question we are told that
The image distance is [tex]d_i = -75 cm[/tex]
The value of the image is negative because it is on the same side with the corrective glasses
The object distance is [tex]d_o = \infty[/tex]
The reason object distance is because the object father than it being picture by the eye
General focal length is mathematically represented as
[tex]\frac{1}{f} = \frac{1}{d_i} - \frac{1}{d_o}[/tex]
substituting values
[tex]\frac{1}{f} = \frac{1}{-75} - \frac{1}{\infty}[/tex]
=> [tex]f= -75 \ cm = - 0.75 \ m[/tex]
Generally the power of the corrective lens is mathematically represented as
[tex]P = \frac{1}{f}[/tex]
substituting values
[tex]P = \frac{1}{-0.75}[/tex]
[tex]P = -1.33 \ diopters[/tex]
4. The Richter scale describes how much energy an earthquake releases. With every increase of 1.0 on the scale, 32 times more energy is released. How many times more energy would be released by a quake measuring 2.0 more units on the Richter scale?
Answer:
64 times
Explanation:
if increase of 1 gives you 32
then increase of 2 will give you its double
64
If you increase one, you get 32 then multiplying by 2 will give you 64, which is its double.
What is Earthquake?An earthquake is a sudden energy released in the Earth's lithosphere that causes shock wave, which cause the Earth's surface to shake. Earthquakes can range in strength from ones that are so small that no one can feel them to quakes that are so powerful that they uproot entire cities, launch individuals and objects into the air, and harm vital infrastructure.
The frequency, kind, and intensity of earthquakes observed over a specific time period are considered to be the seismic activity of an area.
The average rate of earthquake energy output per unit volume determines the basicity of a certain area of the Earth. The non-earthquake seismic rumbling is also alluded to as a tremor.
To know more about Earthquake:
https://brainly.com/question/1296104
#SPJ5
the efficiency of a carnot cycle is 1/6.If on reducing the temperature of the sink 75 degrees celcius ,the efficiency becomes 1/3,determine he initial and final temperatures between which the cycle is working.
Answer:
450°C
Explanation: Given that the efficiency of Carnot engine if T₁ and T₂ temperature are initial and final temperature .
η = 1 - T2 / T1
η = 1/6 initially
when T2 is reduced by 65°C then η becomes 1/3
Solution
η = 1/6
1 - T2 / T1 = 1/6 [ using the Formula ]........................(1)
When η = 1/3 :
η = 1 - ( T2 - 75 ) / T1
1/3 = 1 - (T2 - 75)/T1.........................(2)
T2 - T1 = -75 [ because T2 is reduced by 75°C ]
T2 = T1 - 75...........................(3)
Put this in (2) :
> 1/3 = 1 - ( T1 - 75 - 75 ) / T1
> 1/3 = 1 - (T1 - 150 ) /T1
> (T1 - 150) / T1 = 1 - 1/3
> ( T1 -150 ) / T1 = 2/3
> 3 ( T1 - 150 ) = 2 T1
> 3 T1 - 450 = 2 T1
Collecting the like terms
3 T1- 2 T1 = 450
T1 = 450
The temperature initially was 450°C
A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?
Answer:
Explanation:
a = F / m
where a is acceleration , F is thrust and m is mass
taking log and differentiating
da / a = dF / F - dm / m
(da / a)x 100 = (dF / F)x100 - (dm / m) x100
percentage increase in a = percentage increase in F - percentage increase in m
= percentage increase in acceleration a = 39 - 13 = 26 %
required increase = 26 %.
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following.
(a) the radius of the circular path ............ cm
(b) the time interval required to complete one revolution ............ s
Answer:
(a) 3.9cm
(b) 1.66 x 10⁻⁸s
Explanation:
Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,
F = m x a --------------(i)
Where;
m = mass of the particle
a = acceleration of the mass
The centripetal acceleration is given by;
a = v² / r [v = linear velocity of particle, r = radius of circular path]
Therefore, equation (i) becomes;
F = m v²/ r --------------------(ii)
The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;
F = qvBsinθ -------------(iii)
Where;
q = charge of the particle
v = velocity of the particle
B = magnetic field
θ = angle between the velocity and the magnetic field
Combine equations (ii) and (iii) as follows;
m (v² / r) = qvBsinθ [divide both side by v]
m v / r = qBsinθ [make r subject of the formula]
r = (m v) / (qBsinθ) ---------(iv)
(a) From the question;
v = 1.48 x 10⁷m/s
B = 2.14mT = 2.14 x 10⁻³T
θ = 90° [since the direction of velocity is perpendicular to magnetic field]
m = mass of electron = 9.11 x 10⁻³¹kg
q = charge of electron = 1.6 x 10⁻¹⁹C
Substitute these values into equation (iv) as follows;
r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)
r = 3.9 x 10⁻²m
r = 3.9cm
Therefore, the radius of the circular path is 3.9cm
(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by
T = d / v --------------(*)
Where;
d = distance traveled in the circular path in one complete turn = 2πr
v = velocity of the motion = 1.48 x 10⁷m/s
d = 2 π (3.9 x 10⁻²) [Take π = 22/7 = 3.142]
d = 2(3.142)(3.9 x 10⁻²) = 0.245m
Substitute the values of d and v into equation (*) as follows;
T = 0.245 / 1.48 x 10⁷
T = 0.166 x 10⁻⁷s
T = 1.66 x 10⁻⁸s
Therefore, the time interval is 1.66 x 10⁻⁸s
"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."
Answer:
9.6×10⁹ A
Explanation:
From the question above,
P = VI.................... Equation 1
Where P = Electric power, V = Voltage, I = current.
make I the subject of the equation
I = P/V............. Equation 2
Given: P = 200 kW = 200×10³ W, V = 48000 V.
Substitute these vales into equation 2
I = 200×10³×48000
I = 9.6×10⁹ A.
Hence the current in the line is 9.6×10⁹ A.
"On a movie set, an alien spacecraft is to be lifted to a height of 32.0 m for use in a scene. The 260.0-kg spacecraft is attached by ropes to a massless pulley on a crane, and four members of the film's construction crew lift the prop at constant speed by delivering 135 W of power each. If 18.0% of the mechanical energy delivered to the pulley is lost to friction, what is the time interval required to lift the spacecraft to the specified height?"
Answer:
The time interval required to lift the spacecraft to this specified height is 123.94 seconds
Explanation:
Height through which the spacecraft is to be lifted = 32.0 m
Mass of the spacecraft = 260.0 kg
Four crew member each pull with a power of 135 W
18.0% of the mechanical energy is lost to friction.
work done in this situation is proportional to the mechanical energy used to move the spacecraft up
work done = (weight of spacecraft) x (the height through which it is lifted)
but the weight of spacecraft = mg
where m is the mass,
and g is acceleration due to gravity 9.81 m/s
weight of spacecraft = 260 x 9.81 = 2550.6 N
work done on the space craft = weight x height
==> work = 2550.6 x 32 = 81619.2 J
this is equal to the mechanical energy delivered to the system
18.0% of this mechanical energy delivered to the pulley is lost to friction.
this means that
0.18 x 81619.2 = 14691.456 J is lost to friction.
Total useful mechanical energy = 81619.2 J - 14691.456 J = 66927.74 J
Total power delivered by the crew to do this work = 135 x 4 = 540 W
But we know tat power is the rate at which work is done i.e
[tex]P = \frac{w}{t}[/tex]
where p is the power
where w is the useful work done
t is the time taken to do this work
imputing values, we'll have
540 = 66927.74/t
t = 66927.74/540
time taken t = 123.94 seconds
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.
Answer:
a) 6738.27 J
b) 61.908 J
c) [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]
Explanation:
The complete question is
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.
moment of inertia is given as
[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex]
where m is the mass of the flywheel,
and r is the radius of the flywheel
for the flywheel with radius 1.1 m
and mass 11 kg
moment of inertia will be
[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]*11*1.1^{2}[/tex] = 6.655 kg-m^2
The maximum speed of the flywheel = 35 m/s
we know that v = ωr
where v is the linear speed = 35 m/s
ω = angular speed
r = radius
therefore,
ω = v/r = 35/1.1 = 31.82 rad/s
maximum rotational energy of the flywheel will be
E = [tex]Iw^{2}[/tex] = 6.655 x [tex]31.82^{2}[/tex] = 6738.27 J
b) second flywheel has
radius = 2.8 m
mass = 16 kg
moment of inertia is
[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex] = [tex]\frac{1}{2}[/tex][tex]*16*2.8^{2}[/tex] = 62.72 kg-m^2
According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels
for the first flywheel, rotational momentum = [tex]Iw[/tex] = 6.655 x 31.82 = 211.76 kg-m^2-rad/s
for their combination, the rotational momentum is
[tex](I_{1} +I_{2} )w[/tex]
where the subscripts 1 and 2 indicates the values first and second flywheels
[tex](I_{1} +I_{2} )w[/tex] = (6.655 + 62.72)ω
where ω here is their final angular momentum together
==> 69.375ω
Equating the two rotational momenta, we have
211.76 = 69.375ω
ω = 211.76/69.375 = 3.05 rad/s
Therefore, the energy stored in the first flywheel in this situation is
E = [tex]Iw^{2}[/tex] = 6.655 x [tex]3.05^{2}[/tex] = 61.908 J
c) one third of the initial energy of the flywheel is
6738.27/3 = 2246.09 J
For the car, the kinetic energy = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]
where m is the mass of the car
[tex]v_{car}[/tex] is the velocity of the car
Equating the energy
2246.09 = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]
making m the subject of the formula
mass of the car m = [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]
EXAMPLE 5 Find the radius of gyration about the x-axis of a homogeneous disk D with density rho(x, y) = rho, center the origin, and radius a. SOLUTION The mass of the disk is m = rhoπa2, so from these equations we have 2 = Ix m = 1 4πrhoa4 rhoπa2 = a2 4 .
Answer:
Radius of gyration = a/2.
Explanation:
So, from the question above I can see that the you are already answering the question and you are stuck up or maybe that's how the problem is set from the start. Do not worry, you are covered in any of the ways. So, from the question we have that;
"The mass of the disk is m = ρπa^2, so from these equations we have y^2 = Ix/m."
(NB: I changed the "rho" word to its symbol).
Thus, the radius of gyration with respect to x-axis = (1/4 πρa^4)/ πρa^2 = a^2/4.
Therefore, the Radius of gyration = a/2.
An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.
Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
A horizontal uniform meter stick is supported at the 50.0 cm mark. It has a mass of 0.52 kg, hanging from it at the 20.0 cm mark and a mass of 0.31 kg mass hanging from the 60.0 cm mark. Determine the position on the meter stick, at which one would hang a third mass of 0.61 kg, to keep the meter stick in balance. Group of answer choices
Answer: 70.5 cm
Explanation:
The position on the meter stick, at which one would hang a third mass of 0.61 kg, to keep the meter stick in balance will be at the side of 0.31kg.
You will use the moment techniques.
That is,
Sum of the clockwise moment = sum of anticlockwise moments
Please find the attached file for the remaining explanation and solution.
(a) Find the speed of waves on a violin string of mass 717 mg and length 24.3 cm if the fundamental frequency is 980 Hz. (b) What is the tension in the string? For the fundamental, what is the wavelength of (c) the waves on the string and (d) the sound waves emitted by the string? (Take the speed of sound in air to be 343 m/s.)
Answer:
a)v = 476.28 m / s , b) T = 6.69 10⁵ N , c) λ = 0.486 m , d) λ = 0.35 m
Explanation:
a) The speed of a wave on a string is
v = √T /μ
also all the waves fulfill the relationship
v = λ f
they indicate that the fundamental frequency is f = 980 Hz.
The wavelength that is fixed at its ends and has a maximum in the center
L = λ / 2
λ = 2L
we substitute
v = 2 L f
let's calculate
v = 2 0.243 980
v = 476.28 m / s
b) The tension of the rope
T = v² μ
the density of the string is
μ = m / L
T = v² m / L
T = 476.28² 0.717 / 0.243
T = 6.69 10⁵ N
c) λ = 2L
λ = 2 0.243
λ = 0.486 m
d) The violin has a resonance process with the air therefore the frequency of the wave in the air is the same as the wave in the string. Let's find the wavelength in the air
v = λ f
λ= v / f
λ = 343/980
λ = 0.35 m
Someone help find centripetal acceleration plus centripetal force!
Answer:Centripetal force that acts an object keep it along a moving circular path.
Explanation:Centripetal force along a path circular of radius(r) with velocity(V) acceleration the center of the path.
a=v/r
object will along moving continue a straight path unless by the external force.External force is the centripetal force.
Centripetal force is to moving in horizontal circle,Centripetal force is not a fundamental force.Gravitational force satellite and orbit of centripetal force.
Centripetal acceleration and centripetal force are used to calculate the motion of objects in circular motion. The main answer to the question is given below:The centripetal force is given by:F = mv²/rwhere m is the mass of the object, v is the speed of the object and r is the radius of the circle. The unit of centripetal force is Newtons (N).The centripetal acceleration is given by:a = v²/rThe unit of centripetal acceleration is meters per second squared
(m/s²).Explanation:When an object moves in a circular motion, there is a force that acts upon it. This force is called the centripetal force. This force always points towards the center of the circle. It is responsible for keeping the object moving in a circular motion.The centripetal force is related to the centripetal acceleration.
The centripetal acceleration is the acceleration of an object moving in a circle. It is always directed towards the center of the circle.The magnitude of the centripetal force is given by:F = mv²/rwhere F is the force, m is the mass of the object, v is the speed of the object and r is the radius of the circle.The magnitude of the centripetal acceleration is given by:a = v²/rwhere a is the acceleration, v is the speed of the object and r is the radius of the circle.
To know more about thatNewtons visit :
https://brainly.com/question/4128948
#SPJ11
Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what method is each of the spheres charged?
Answer:
If they are metallic spheres they are connected to earth and a charged body approaches
non- metallic (insulating) spheres in this case are charged by rubbing
Explanation:
For fillers, there are two fundamental methods, depending on the type of material.
If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.
If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.
How many electrons circulate each second through the cross section of a conductor, which has a current intensity of 4A.
Answer:
2.5×10¹⁹
Explanation:
4 C/s × (1 electron / 1.60×10⁻¹⁹ C) = 2.5×10¹⁹ electrons/second
A uniform stick 1.5 m long with a total mass of 250 g is pivoted at its center. A 3.3-g bullet is shot through the stick midway between the pivot and one end The bullet approaches at 250 m/s and leaves at 140 m/s
With what angular speed is the stick spinning after the collision?
Answer:
63.44 rad/s
Explanation:
mass of bullet = 3.3 g = 0.0033 kg
initial velocity of bullet [tex]v_{1}[/tex] = 250 m/s
final velocity of bullet [tex]v_{2}[/tex] = 140 m/s
loss of kinetic energy of the bullet = [tex]\frac{1}{2}m(v^{2} _{1} - v^{2} _{2})[/tex]
==> [tex]\frac{1}{2}*0.0033*(250^{2} - 140^{2} )[/tex] = 70.785 J
this energy is given to the stick
The stick has mass = 250 g =0.25 kg
its kinetic energy = 70.785 J
from
KE = [tex]\frac{1}{2} mv^{2}[/tex]
70.785 = [tex]\frac{1}{2}*0.25*v^{2}[/tex]
566.28 = [tex]v^{2}[/tex]
[tex]v= \sqrt{566.28}[/tex] = 23.79 m/s
the stick is 1.5 m long
this energy is impacted midway between the pivot and one end of the stick, which leaves it with a radius of 1.5/4 = 0.375 m
The angular speed will be
Ω = v/r = 23.79/0.375 = 63.44 rad/s
A scooter is traveling at a constant speed v when it encounters a circular hill of radius r = 480 m. The driver and scooter together have mass m = 159 kg.
(a) What speed in m/s does the scooter have if the driver feels weightlessness (i.e., has an apparent weight of zero) at the top of the hill?
(b) If the driver is traveling at the speed above and encounters a hill with a radius 2r,
Answer:
68.585m/sec , 779.1 N
Explanation:
To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.
From centripetal motion.
F =( mv^2)/2
But since we are dealing with weightlessness
r = 480m
g = 9.8m/s^2
M also cancels, so forget M.
V^2 = Fr
V = √ Fr
V =√ (9.8 x 480) = 4704
= 68.585m/sec.
b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960
= 4.9m/sec^2.
Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)
159kg × ( 9.8-4.9)
159kg × 4.9
= 779.1N
A) The speed of the scooter at which the driver will feel weightlessness is;
v = 68.586 m/s
B) The apparent weight of both the driver and the scooter at the top of the hill is;
F_net = 779.1 N
We are given;
Mass; m = 159 kg
Radius; r = 480 m
A) Since it's motion about a circular hill, it means we are dealing with centripetal force.
Formula for centripetal force is given as;
F = mv²/r
Now, we want to find the speed of the scooter if the driver feels weightlessness.
This means that the centripetal force would be equal to the gravitational force.
Thus;
mg = mv²/r
m will cancel out to give;
v²/r = g
v² = gr
v = √(gr)
v = √(9.8 × 480)
v = √4704
v = 68.586 m/s
B) Now, he is travelling with speed of;
v = 68.586 m/s
And the radius is 2r
Let's first find the centripetal acceleration from the formula; α = v²/r
Thus; α = 4704/(2 × 480)
α = 4.9 m/s²
Now, since he has encountered a hill with a radius of 2r up the slope, it means that the apparent weight will now be;
F_app = m(g - α)
F_net = 159(9.8 - 4.9)
F_net = 779.1 N
Read more at; https://brainly.com/question/9017432
Determine the slit spacing d. Explain which measurement you made, show your calculation and your result for the slit spacing. There are several measurements you can make.
Answer:
The quantities to measure are:
* the distance to the screen
* The distance from the central maximum to each interference
* in order of interference
* wavelength
Explanation:
To determine the gap spacing we must use the constructive interference equation
d sin θ = m λ
as the angles are small
tan θ = sin θ / cos θ
tan θ = sin θ
and the definition of tangent is
tan θ = y / L
Thus
sin θ = y / L
when replacing
d y / L = m λ
d = m λ L / y
with this equation we can know what parameter should be measured.
The quantities to measure are:
* the distance to the screen
* The distance from the central maximum to each interference
* in order of interference
* wavelength
How much heat is needed to melt 2.5 KG of water at its melting point? Use Q= mass x latent heat of fusion.
Answer:
Q = 832 kJ
Explanation:
It is given that,
Mass of the water, m = 2.5 kg
The latent heat of fusion, L = 333 kJ/kg
We need to find the heat needed to melt water at its melting point. The formula of heat needed to melt is given by :
Q = mL
[tex]Q=2.5\ kg\times 333\ kJ/kg\\\\Q=832.5\ kJ[/tex]
or
Q = 832 kJ
So, the heat needed to melt the water is 832 kJ.
Suppose a 185 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m.
Randomized Variables
m = 185 kg
v = 29 m/s
h = 32 m
A. How high can it coast up the hill. if you neglect friction in m?
B. How much energy is lost to friction if the motorcycle only gains an altitude of 33 m before coming to rest?
Answer:
a) Height reached before coming to rest is 42.86 m
b) Energy lost to friction is 17902.45 J
Explanation:
mass of the motorcycle = 185 kg
speed of the towards the hill = 29 m/s
The wheels weigh 12 kg each
Wheels are annular rings with an inner radius of 0.280 m and outer radius of 0.330 m
a) To go up the hill, the kinetic energy of motion of the motorcycle will be converted to the potential energy it will gain in going up a given height
the kinetic energy of the motorcycle is given as
[tex]KE[/tex] = [tex]\frac{1}{2}mv^{2}[/tex]
where m is the mass of the motorcycle
v is the velocity of the motorcycle
[tex]KE[/tex] = [tex]\frac{1}{2}*185*29^{2}[/tex] = 77792.5 J
This will be converted to potential energy
The potential energy up the hill will be
[tex]PE[/tex] = mgh
where m is the mass
g is acceleration due to gravity 9.81 m/s^2
h is the height reached before coming to rest
[tex]PE[/tex] = 185 x 9.81 x m = 1814.85h
equating the kinetic energy to the potential energy for energy conservation, we'll have
77792.5 = 1814.85h
height reached before coming to rest = 77792.5/1814.85 = 42.86 m
b) if an altitude of 33 m was reached before coming to rest, then the potential energy at this height is
[tex]PE[/tex] = mgh
[tex]PE[/tex] = 185 x 9.81 x 33 = 59890.05 J
The energy lost to friction will be the kinetic energy minus this potential energy.
energy lost = 77792.5 - 59890.05 = 17902.45 J
A) The motorcycle can coast up the hill by ; 42.86m
B) The amount of energy lost to friction : 17902.45 J
A) Determine how high the motorcycle can coast up the hill when friction is neglected
apply the formula for kinetic and potential energies
K.E = 1/2 mv² ---- ( 1 )
P.E = mgH ---- ( 2 )
As the motorcycle goes uphiLl the kinetic energy is converted to potential energy.
∴ K.E = P.E
1/2 * mv² = mgH
∴ H = ( 1/2 * mv² ) / mg ---- ( 3 )
where ; m = 185 kg , v = 29 m/s , g = 9.81
Insert values into equation ( 3 )
H ( height travelled by motorcycle neglecting friction ) = 42.86m
B) Determine how much energy is lost to friction if the motorcycle attains 33m before coming to rest
P.E = mgh = 185 * 9.81 * 33 = 59890.05 J
where : h = 33 m , g = 9.81
K.E = 1/2 * mv² = 77792.5 J ( question A )
∴ Energy lost ( ΔE ) = ( 77792.5 - 59890.05 ) = 17902.45 J
Hence we can conclude that The motorcycle can coast up the hill by ; 42.86m , The amount of energy lost to friction : 17902.45 J.
Learn more : https://brainly.com/question/3586510
A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.
Answer:
The percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %
Explanation:
Given;
mass of bullet, m₁ = 4g = 0.004kg
initial velocity of bullet, u₁ = 589 m/s
mass of block of wood, m₂ = 2.3 kg
initial velocity of the block of wood, u₂ = 0
let the final velocity of the system after collision = v
Apply the principle of conservation of linear momentum
m₁u₁ + m₂u₂ = v(m₁+m₂)
0.004(589) + 2.3(0) = v(0.004 + 2.3)
2.356 = 2.304v
v = 2.356 / 2.304
v = 1.0226 m/s
Initial kinetic energy of the system
K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²
K.E₁ = ¹/₂(0.004)(589)² = 693.842 J
Final kinetic energy of the system
K.E₂ = ¹/₂v²(m₁ + m₂)
K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)
K.E₂ = 1.209 J
The kinetic energy left in the system = final kinetic energy of the system
The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%
= (1.209 / 693.842) x 100%
= 0.174 %
Therefore, the percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %
A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?
Answer:
The current is [tex]I = 2042\ A[/tex]
Explanation:
From the question we are told that
The length of the solenoid is [tex]l = 2.2 \ m[/tex]
The radius is [tex]r_i = 30 \ cm = 0.30 \ m[/tex]
The number of turn is [tex]N = 1200 \ turns[/tex]
The magnetic field is [tex]B = 1.4 \ T[/tex]
The magnetic field produced is mathematically represented as
[tex]B = \frac{\mu_o * N * I }{l }[/tex]
making [tex]I[/tex] the subject
[tex]I = \frac{B * l}{\mu_o * N }[/tex]
Where [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]
substituting values
[tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]
[tex]I = 2042\ A[/tex]
Solve 3* +5-220t = 0
Answer:
t = 27.5
Explanation:
[tex]3 + 5 -220t = 0[/tex]
Well to solve for t we need to combine like terms and seperate t.
So 3+5= 8
8 - 220t = 0
We do +220 to both sides
8 = 220t
And now we divide 220 by 8 which is 27.5
Hence, t = 27.5