A flat loop of wire consisting of a single turn of cross-sectional area 8.60 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.40 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.80

Answers

Answer 1

Answer:

The  induced current is [tex]I = 5.72*10^{-4 } \ A[/tex]

Explanation:

From the question we are told that

     The cross-sectional area is  [tex]A = 8.60 \ cm^2 = \frac{8.60 }{10000} = 8.60 *10^{-4} \ m[/tex]

     The initial value of magnetic field is  [tex]B_1 = 0.500 \ T[/tex]

     The  value of magnetic field  at  time  t     is  [tex]B_f = 2.40 \ T[/tex]

     The number of turns  is  N  =  1  

     The  time taken is   [tex]dt[/tex]=  1.02 \ s  

       The resistance of the loop is  [tex]R = 2.80\ \Omega[/tex]

Generally the induced emf is mathematically represented as

         [tex]e = - \frac{d \phi}{dt }[/tex]

Where  [tex]d \phi[/tex] is the change n the magnetic flux which is mathematically represented as

          [tex]d \phi = N *A * d B[/tex]

Where [tex]dB[/tex] is the change in magnetic field which is mathematically represented as  

          [tex]d B = B_f - B_i[/tex]

substituting values  

         [tex]d B = 2.40 - 0.500[/tex]

         [tex]d B = 1.9 \ T[/tex]

So  

        [tex]d \phi = 1 * 1.9 * 8.60 *10^{-4}[/tex]

       [tex]d \phi = 1.63*10^{-3} \ T[/tex]

So  

      [tex]e = - \frac{1.63 *10^{-3}}{ 1.02 }[/tex]

      [tex]e = - 1.60*10^{-3} \ V[/tex]

     Here the negative only indicates that the emf is acting in opposite direction of the motion producing it so the magnitude of the emf is  

       [tex]e = 1.60*10^{-3} \ V[/tex]

Now the induced current is evaluated as follows

       [tex]I = \frac{e}{R }[/tex]

substituting values  

      [tex]I = \frac{1.60 *10^{-3}}{2.80 }[/tex]

      [tex]I = 5.72*10^{-4 } \ A[/tex]


Related Questions

An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron

Answers

Answer:

acting force is the answer

The direction of the magnetic force on the moving electron is upward.

The direction of the magnetic force on the electron can be determined by applying right hand rule.

This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.

Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.

Learn more here:https://brainly.com/question/14434299

A department store expects to have 225 customers and 20 employees at peak times in summer. Determine the contribution of people to the total cooling load of the store. The average rate of heat generation from people doing light work is 115 W, and 70% of it is in sensible form.

Answers

Answer:

The  contribution of people to the cooling load of the store is 19722.5 W

Explanation:

Total amount of customers = 225

Total amount of employees = 20

Total amount of people in the store at that instant n = 245 people

Average rate of heat generation Q = 115 W

percentage of these heat generated that is sensible heat = 70%

Sensible heat raises the surrounding temperature. Latent heat only causes a change of state.

The total heat generated by all the people in the store = n x Q

==> 245 x 115 = 28175 W

but only 70% of this heat is sensible heat that raises the temperature of the store, therefore, the contribution of people to the cooling load of the store = 70% of 28175 W

==> 0.7 x 28175 = 19722.5 W

If a bicycle starts from rest and is pedaled normally until the bike is moving at 6 meters per second across level ground, what kinds of energy have its tires been given? (Select all that apply) g

Answers

Answer: Translational Kinetic Energy

Rotational Kinetic Energy

Explanation:

An object has translational kinetic energy when it is undergoing through a linear displacement.

Rotational energy is kinetic energy due to the rotation of an object .

Here the wheel of bicycle undergoes both translational and rotational kinetic energy has it moves with linear displacement with rotation in it.

Hence, the tires have been two kinds of energy : translational and rotational kinetic energy

A cube has one corner at the origin and the opposite corner at the point (L,L,L)(L,L,L). The sides of the cube are parallel to the coordinate planes. The electric field in and around the cube is given by

Answers

Answer:

Net charge = E• b • L^3.

Explanation:

NB: here, the symbol representation of the flux is "p" = electric Field • Area(dot Product).

So, we will take a look at the flux through -x face, through x face and through -y face, through y face and through - z face and through z face.

(1). Starting from -z and z faces which are the back and front faces of the cube:

Thus, We have that the flux,p = 0 for -z and z.

(2). Recall that we are given that E = =(a+bx)i^+cj^.

Thus, p_-y = (a + bx)i + cj (-j) (L^2)

Where y = 0

p_-y = -cL^2.

Obviously for p_j, we will have cL^2 and y = L

(3). For p_-x = =(a + bx)i + cj (-i) (L^2).

p_-x = -aL^2

Where x = 0.

When x = L and p_x = (a + bL)L^2.

This, adding all together gives Net charge = E • b • L^3.

g Question 11 pts Consider two masses connected by a string hanging over a pulley. The pulley is a uniform cylinder of mass 3.0 kg. Initially m1 is on the ground and m2 rests 2.9 m above the ground. After the system is released, what is the speed of m2 just before it hits the ground? m1= 30 kg and m2= 35 kg Group of answer choices 2.1 m/s 1.4 m/s 9.8 m/s 4.3 m/s 1.9 m/s

Answers

Answer:

The speed of m2 just before it hits the ground is 2.1 m/s

Explanation:

mass on the ground m1 = 30 kg

mass oat rest at the above the ground m2 = 35 kg

height of m2 above the ground =2.9 m

Let the tension on the string be taken as T

for the mass m2 to reach the ground, its force equation is given as

[tex]m_{2} g - T = m_{2}a[/tex]    ....equ 1

where g is acceleration due to gravity = 9.81 m/s^2

and a is the acceleration with which it moves down

For mass m1 to move up, its force equation is

[tex]T - m_{1} g = m_{1} a[/tex]

[tex]T = m_{1}a + m_{1}g[/tex]

[tex]T = m_{1}(a + g)[/tex]    ....equ 2

substituting T in equ 1, we have

[tex]m_{2} g - m_{1}(a+g) = m_{2}a[/tex]

imputing values, we have

 [tex](35*9.81) - 30(a+9.81) = 35a[/tex]

 [tex]343.35 - 30a-294.3 = 35a[/tex]

[tex]343.35 -294.3 = 35a+ 30a[/tex]

[tex]49.05 = 65a[/tex]

a = 49.05/65 = 0.755 m/s^2

The initial velocity of mass m2 = u = 0

acceleration of mass m2 = a = 0.755 m/s^2

distance to the ground = d = 2.9 m

final velocity = v = ?

using Newton's equation of motion

[tex]v^{2}= u^{2} + 2ad[/tex]

substituting values, we have

[tex]v^{2}= 0^{2} + 2*0.755*2.9[/tex]

[tex]v^{2}= 2*0.755*2.9 = 4.379\\v = \sqrt{4.379}[/tex]

v = 2.1 m/s

A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium:__________.
1. the electric fields at the surfaces of the two spheres are equal.
2. the amount of charge on each sphere is q/2.
3. both spheres are at the same potential. the potentials are in the ratio V2/V1 = q2/q1.
4. the potentials are in the ratio V2/V1 = r2/r1 .

Answers

Answer:

Option 3 = both spheres are at the same potential.

Explanation:

So, let us complete or fill the missing gap in the question above;

" A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium BOTH SPHERES ARE AT THE SAME POTENTIAL"

The reason both spheres are at the same potential after the charges on the spheres are in equilibrium is given below:

=> So, if we take a look at the Question again, the kind of connection described in the question above (that is a charged sphere, say X is connected another charged sphere, say Y by a conducting wire) will eventually cause the movement of charges(which initially are not of the same potential) from X to Y and from Y to X and this will continue until both spheres are at the same potential.

You are given two infinite, parallel wires, each carrying current.The wires are separated by a distance, and the current in the two wires is flowing in the same direction. This problem concerns the force per unit length between the wires.
A. Is the force between the wires attractive orrepulsive?
B. What is the force per unit length between the two wires?

Answers

Answer:

A. Attractive

B. ( μ₀I² ) / ( 2πd )

Explanation:

A. We know that currents in the same direction attract, and currents in the opposite direction repel, according to ampere's law. In this case the current in the two wires are flowing in the same direction, and hence the force between the two wires are attractive.

B. Suppose that two wires of length [tex]l_1[/tex] and [tex]l_2[/tex] both carry the current [tex]I[/tex] in the same direction ( given ). In the presence of a magnetic field produced by wire 1, a force of magnitude m say, is experienced by wire 2. The magnitude of the magnetic field produced by wire 1 at distance say d, from it's axis, should thus be the following -

[tex]B_1[/tex] = μ₀I / 2πd

The force experienced by wire 2 should thus be -

[tex]F_2[/tex] = I( [tex]l_2[/tex] [tex]*[/tex] [tex]B_1[/tex] )

= I [tex]*[/tex] [tex]l_2 * B_1 *[/tex] Sin( 90 )

= I [tex]*[/tex] [tex]l_2[/tex] ( μ₀I / 2πd )

Therefore the force per unit length experienced by wire 2 toward wire 1 should be ...

( [tex]F_2[/tex] / [tex]l_2[/tex] ) = ( μ₀I² ) / ( 2πd ) ... which is our solution

In a polar coordinate system, the velocity vector can be written as . The term theta with dot on top is called _______________________ angular velocity transverse velocity radial velocity angular acceleration

Answers

Answer:

I believe it's called rapid growth

Explanation:

that is my answer no matter what

A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70

Answers

Answer:

The  induced current is [tex]I = 6.25*10^{-4} \ A[/tex]

Explanation:

From the question we are told that  

    The number of turns is  [tex]N = 1[/tex]

     The  cross-sectional area is  [tex]A = 8.20 cm^2 = 8.20 * 10^{-4} \ m^2[/tex]

    The  initial magnetic field is  [tex]B_i = 0.500 \ T[/tex]

     The  magnetic field at time =  1.02 s  is  [tex]B_t = 2.60 \ T[/tex]

     The  resistance is  [tex]R = 2.70\ \Omega[/tex]

The  induced emf is mathematically represented as

       [tex]\epsilon = - N * \frac{ d\phi }{dt}[/tex]

The  negative sign tells us that the induced emf is moving opposite to the change in magnetic flux

      Here  [tex]d\phi[/tex] is the change in magnetic flux which is mathematically represented as

        [tex]d \phi = dB * A[/tex]

Where  dB  is the change in magnetic field which is mathematically represented as

        [tex]dB = B_t - B_i[/tex]

substituting values

        [tex]dB = 2.60 - 0.500[/tex]

        [tex]dB = 2.1 \ T[/tex]

Thus  

      [tex]d \phi = 2.1 * 8.20 *10^{-4}[/tex]

     [tex]d \phi = 1.722*10^{-3} \ weber[/tex]

So  

     [tex]|\epsilon| = 1 * \frac{ 1.722*10^{-3}}{1.02}[/tex]

     [tex]|\epsilon| = 1.69 *10^{-3} \ V[/tex]

The  induced current i mathematically represented as

      [tex]I = \frac{\epsilon}{ R }[/tex]

  substituting values

       [tex]I = \frac{1.69*10^{-3}}{ 2.70 }[/tex]

       [tex]I = 6.25*10^{-4} \ A[/tex]

A physics professor wants to perform a lecture demonstration of Young's double-slit experiment for her class using the 633-nm light from a He-Ne laser. Because the lecture hall is very large, the interference pattern will be projected on a wall that is 4.0 m from the slits. For easy viewing by all students in the class, the professor wants the distance between the m
What slit separation is required in order to produce the desired interference pattern?
d=________m

Answers

Note: if the professor wants the distance between the m = 0 and m = 1 maxima to be 25 cm

Answer:

d = 1.0128×10⁻⁵m

Explanation:

given:

length L = 4.0m

maximum distance between m = 0 and m = 1 , y = 25cm = 0.25m

wavelength λ = 633nm = 633×10⁻⁹m

note:

dsinθ = mλ (constructive interference)

where d is slit seperation, θ is angle of seperation , m is order of interference , and λ is wavelength

for small angle

sinθ ≈ tanθ

[tex]d (\frac{y}{L}) =[/tex] mλ

[tex]d (\frac{y}{L}) = (1)(633nm)[/tex]

[tex]d(\frac{0.25}{4} ) = (1)(633nm)[/tex]

d = 1.0128×10⁻⁵m

You want the output current from the secondary coil of a transformer to be 10 times the input current to the primary coil. The ratio of the number of turns N2/N1 must be:_____________.
A. 100
B. 10
C. 1
D. 0.1

Answers

Answer:

D. 0.1

Explanation:

Using transformer equation,

N2/N1 = I1/I2................... Equation 1

Where N2 = secondary coil, N1 = primary coil, I1 = input current, I2 = output current.

make I2  the subject of the equation

I2 = I1/(N2/N1)............ Equation 2

From equation 2 above, For the output current of the secondary coil to be 10 times the input current, N2/N1 = 0.1

Hence the right option is D. 0.1

An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels for a time t0 along a half-circle of radius R before leaving the magnetic field traveling opposite the direction it initially entered the field. Which of the following quantities would change if the electron had entered the field with a speed 2v? (There may be more than one correct answer.)
a. The radius of the circular path the electron travels
b. The magnitude of the electron's acceleration inside the field
c. The time the electron is in the magnetic field
d. The magnitude of the net force acting on the electron inside the field

Answers

Answer:

Explanation:

For circular path in magnetic field

mv² / R = Bqv ,

m is mass , v is velocity , R is radius of circular path , B is magnetic field , q is charge on the particle .

a )

R = mv / Bq

If v is changed  to 2v , keeping other factors unchanged , R will be doubled

b )

magnitude of acceleration inside field

= v² / R

= Bqv / m

As v is doubled , acceleration will also be doubled

c )

If T be the time inside the magnetic field

T = π R / v

=  π  / v x  mv / Bq

= π m / Bq

As is does not contain v that means T  remains unchanged .

d )

Net force acting on electron

= m v² / R = Bqv

Net force = Bqv

As v becomes twice force too becomes twice .

So a . b , d are correct answer.

a large crane has a mass of 8500kg calculate the weight of the crane

Answers

Answer:

Weight is 83 385 N

Explanation:

Weight is calculated by multiplying the mass by the gravitational acceleration constant

       Weight = mass* gravity

Assuming that the gravitational constant is 9.81 m/s^2

        Weight = mass* gravity

        Weight of crane = (8500 kg)*(9.81 m/s^2)

        Weight = 83 385 kg*m/s^2 or 83 385 N

Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation.

Answers

Answer:

The object with the twice the area of the other object, will have the larger drag coefficient.

Explanation:

The equation for drag force is given as

[tex]F_{D} = \frac{1}{2}pu^{2} C_{D} A[/tex]

where [tex]F_{D}[/tex] IS the drag force on the object

p = density of the fluid through which the object moves

u = relative velocity of the object through the fluid

p = density of the fluid

[tex]C_{D}[/tex] = coefficient of drag

A = area of the object

Note that [tex]C_{D}[/tex] is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid

The above equation can also be broken down as

[tex]F_{D}[/tex] ∝ [tex]P_{D}[/tex] A

where [tex]P_{D}[/tex] is the pressure exerted by the fluid on the area A

Also note that [tex]P_{D}[/tex] = [tex]\frac{1}{2}pu^{2}[/tex]

which also clarifies that the drag force is approximately proportional to the abject's area.

In this case, the object with the twice the area of the other object, will have the larger drag coefficient.

Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.

Answers

Answer:

The 1/2 inch barrel will burst at the same height of 20 ft

Explanation:

The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.

From the equation of fluid pressure,

P = ρgh

where

P is the pressure at the bottom of the fluid due to its height

ρ is the density of the fluid in question

h is the height to which the water stand.

You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.

We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.

That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.

NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.

. If you live in a region that has a particular TV station, you can sometimes pick up some of its audio portion on your FM radio receiver. Explain how this is possible. Does it imply that TV audio is broadcast as FM

Answers

Answer:

Please see below as the answer is self-explanatory.

Explanation:

The low band of the VHF TV Spectrum, spans channels 2-6, from 54 to 88 Mhz.

In the analog TV, in the Americas, the total bandwidth of any channel is 6 Mhz, with the visual carrier modulated in VSS (Vestigial Side Band) at 1.25 Mhz from the lowest frequency of the channel.

The aural carrier is located at 4.5 Mhz from the visual carrier, and is FM modulated.

For Channel 6, which spans between 82 and  88 Mhz, the visual carrier is at 83.25 Mhz, so the aural carrier is at 87.75 Mhz, which falls within the FM Band, so it is possible to listen the audio part of this channel in a FM radio receiver, even at a lower volume, due to the FM radio has a greater deviation than TV aural carrier.

The reason why it is possible for TV station to sometimes pick up some of the audio portion on your FM radio receiver is because; TV waves can sometimes deviate into the FM radio frequency range.

Let us start with explaining the waves of TV and radio.

The frequency range utilized by TV stations is either the range 54 MHz to 88 MHz or 174 MHz to 222 MHz. In contrast, the frequency range utilized by FM Radio band is between 88 MHz and 174 MHz.

Now, in some cases, it is possible that the TV signal may deviate into the range of the FM Radio and as such in that case, the TV signal will pick the audio portion of an FM Radio. These TV waves are very high frequency waves.

Finally, it does not imply that the TV wave is broadcasting as an FM because it only deviated a bit from the TV range and not like that is where it is made to operate.

Read more about TV waves at; https://brainly.com/question/9684913

A student is trying to decide what to wear.His bedroom is at 20.0 °C.His skin temperature is 35.0 °C.The area of his exposed skin is 1.50 m².People all over the world have skin that is dark in the infrared,with emissivity about 0.900.Find the net energy transfer from his body by radiation in 10.0 min.

Answers

Answer:

vgghcgkxcjpfiffj,ncfzfzujfzxxxoifkc xuzrusdoxTXcxgifdhh

. A 24-V battery is attached to a 3.0-mF capacitor and a 100-ohm resistor. If the capacitor is initially uncharged, what is the voltage across the capacitor 0.16 seconds after the circuit is connected to the battery

Answers

Answer:

The  voltage is [tex]V_c = 9.92 \ V[/tex]

Explanation:

From the question we are told that

     The voltage of the battery is  [tex]V_b = 24 \ V[/tex]

     The capacitance of the capacitor is  [tex]C = 3.0 mF = 3.0 *10^{-3} \ F[/tex]

     The  resistance of the resistor is [tex]R = 100\ \Omega[/tex]

     The time taken is  [tex]t = 0.16 \ s[/tex]  

Generally the voltage of a charging charging capacitor after time t is mathematically represented as

       [tex]V_c = V_o (1 - e^{- \frac{t}{RC} })[/tex]

Here [tex]V_o[/tex] is the voltage of the capacitor when it is fully charged which in the case of this question is equivalent to the voltage of the battery so  

      [tex]V_c = 24 (1 - e^{- \frac{0.16}{100 * 3.0 *10^{-1}} })[/tex]

      [tex]V_c = 9.92 \ V[/tex]

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will

Answers

Assuming that the voltage is constant, and the resistance was doubled, since I=V/R, the current through the circuit will be halved. As P=IV, with the same voltage and halved current, the power dissipated by the circuit will be halved

A motorcycle travels up one side of a hill over the top and down the other side. The crest of the hill can be considered to be a circular arc with radius of 45.0 m. Determine the maximum speed that the cycle can have while moving over the crest without losing contact with the road.

Answers

Answer:

The maximum speed of the motorcycle should be 21 m/s

Explanation:

Since the hill is considered to be a circular arc, the motorcycle will experience centripetal force that tends to flip it away from the center of the hill.

Since the motorcycle does not lose contact with the ground, it means that the weight of the motorcycle downwards just balances the centripetal force on the motorcycle.

we know that the centripetal force on the motorcycle is equal to

centripetal force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the motorcycle,

v is the velocity of the motorcycle,

and r is the radius of the hill = 45.0 m

Also we now that the weight of the motorcycle is equal to

weight = mg

where m is still the mass of the motorcycle,

and g is the acceleration due to gravity = 9.81 m/s

Equating the both forces since they are equal, we'll have

[tex]\frac{mv^{2} }{r}[/tex] = mg

the mass of the motorcycle will cancel out, and we'll be left with

[tex]v^{2} = gr[/tex]

[tex]v = \sqrt{gr}[/tex]

[tex]v = \sqrt{9.81*45}[/tex]

[tex]v = \sqrt{441.45}[/tex]

[tex]v[/tex] = 21 m/s

The length of a certain wire is doubled and at the same time its radius is also doubled. What is the new resistance of this wire

Answers

Answer:

R' = R/2

Therefore, the new resistance of the wire is twice the value of the initial resistance.

Explanation:

Consider a wire with:

Resistance = R

Length = L

Area = A = πr²

where, r = radius

ρ = resistivity

Then:

R = ρL/A

R = ρL/πr²   --------------- equation 1

Now, the new wire has:

Resistance = R'

Resistivity = ρ

Length = L' = 2 L

Radius = r' = 2r

Area = πr'² = π(2r)² = 4πr²

Therefore,

R' = ρL'/πr'²

R' = ρ(2 L)/4πr²

R' = (1/2)(ρL/πr²)

using equation 1:

R' = R/2

Therefore, the new resistance of the wire is twice the value of the initial resistance.

An aluminum cup of mass 150 g contains 800 g of water in thermal equilibrium at 80.0°C. The combination of cup and water is cooled uniformly so that the temperature decreases by 1.50°C per minute. At what rate is energy being removed by heat? Express your answer in watts.

Answers

Answer:

Heat Flow Rate : ( About ) 87 W

Explanation:

The heat flowing out of the system each minute, will be represented by the following equation,

Q( cup ) + Q( water ) = m( cup ) [tex]*[/tex] c( al ) [tex]*[/tex] ΔT + m( w ) [tex]*[/tex] c( w ) [tex]*[/tex] ΔT

So as you can see, the mass of the aluminum cup is 150 grams. For convenience, let us convert that into kilograms,

150 grams = .15 kilograms - respectively let us convert the mass of water to kilograms,

800 grams = .8 kilograms

Now remember that the specific heat of aluminum is 900 J / kg [tex]*[/tex] K, and the specific heat of water = 4186 J / kg [tex]*[/tex] K. Therefore let us solve for " the heat flowing out of the system per minute, "

Q( cup ) + Q( water ) = .15 [tex]*[/tex] ( 900 J / kg [tex]*[/tex] K )  [tex]*[/tex] 1.5 + .8 [tex]*[/tex] ( 4186 J / kg [tex]*[/tex] K ) [tex]*[/tex] 1.5,

Q( cup ) + Q( water ) = 5225.7 Joules

And the heat flow rate should be Joules per minute,

5225.7 Joules / 60 seconds = ( About ) 87 W

In a shot-put competition, a shot moving at 15m/s has 450J of mechanical kinetic energy. What is the mass of the shot? Please help, and include the formula for the answer and a step by step explanation

Answers

Answer:

Mass of shot (m) = 4 kg

Explanation:

Given:

Velocity (v) = 15 m/s

Mechanical kinetic energy (K.E) = 450 J

Find:

Mass of shot (m) = ?

Computation:

Mechanical kinetic energy (K.E) = 1/2mv²

Mechanical kinetic energy (K.E) = [1/2](m)(15)²

450 = [1/2](m)(15)²

900 = 225 m

Mass of shot (m) = 4 kg

Suppose you have a lens system that is to be used primarily for 775-nm light. What is the second thinnest coating of fluorite (calcium fluoride) that would be non-reflective for this wavelength?

Answers

Answer:

406 nm

Explanation:

We are given;

Wavelength; λ = 775 nm

Refractive index of Calcium fluoride with wavelength of 775 nm as seen in the graph attached is approximately 1.4308.

n = 1.4308

Formula for the thickness of the film that would destruct the light is;

t = (m + 0.5)(λ/2n)

Where m is the order of the thickness.

The first smallest thickness is at m = 0 while the second smallest thickness is at m = 1.

Thus;

t = (1 + 0.5)(775/(2 × 1.4308))

t ≈ 406 nm

Which of the following is an element? A. Fire B. Carbon C. Salt D. Water

Answers

Answer:

OPTION B is correct

Carbon

Explanation:

element can be defined as a pure substance which cannot be broken down by into smaller units through a chemical method, an element has atoms with identical numbers of protons in their atomic nuclei

Each element is composed of its own type of atom. And this gives the reason why chemical elements are all very different from each other. And all substance on Earth has atoms of at least one of this elements.

There about 118 elements and all arranged in a row and colomn of the periodic table .This elements of the periodic table are arranged by their atomic number, which helps with the chemical properties. Example of elements are; Hydrogen, Oxygeñ, carbon.

Therefore, among the option only carbon is an element because it cannot be broken down into smaller unit unlike water which is made up of oxygen and hydrogen. Also salt is a compound containing more elements.

The substance which represents an element given the following option is carbon (option B)

What is an element?

An element is a pure substance that consist of identical atoms.

An element can not be broken down into simple substances by ordinary methods.

The period table consist of a large number of elements. Some of which are:

HydrogenHeliumLithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon

We must also understand that when two or more elements are chemically combined together it is called a compound and when they are not chemically combined together, it is called a mixture.

Thus, we can conclude that the correct answer to the question is Carbon (option B)

Learn more about element:

https://brainly.com/question/20716171

#SPJ6

Two ships of equal mass are 109 m apart. What is the acceleration of either ship due to the gravitational attraction of the other? Treat the ships as particles and assume each has a mass of 39,000 metric tons. (Give the magnitude of your answer in m/s2.)

Answers

Answer:

The acceleration is  [tex]a = 2.190 *10^{-7} \ m/s^2[/tex]

Explanation:

From the question we are told that

      The  distance of separation of the ship is  [tex]r= 109 \ m[/tex]

       The mass of each ship is  [tex]M = 39,000 \ metric\ tons =39,000 * 1000 = 3.9 *10^{7}\ kg[/tex]

     

The gravitational force of attraction exerted on each other is mathematically represented as

            [tex]F_g = \frac{ GMM}{r^2}[/tex]

Where G is the gravitational  constant with value

substituting values

          [tex]F_g = \frac{ 6.674 30 * 10^{-11} (3.9 *10^{7})^2}{109^2}[/tex]

         [tex]F_g = 8.54 \ N[/tex]

This force can also be mathematically represented as

        [tex]F_g = M * a[/tex]

=>   [tex]a = \frac{F_g}{M}[/tex]

substituting values

     [tex]a = \frac{8.544}{3.9 *10^{7}}[/tex]

     [tex]a = 2.190 *10^{-7} \ m/s^2[/tex]

     

A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns through an angle of 80 radians. Assuming the wheel started from rest, how long had it been in motion at the start of the 4.0-s interval

Answers

Answer:

The  time interval is  [tex]t = 3 \ s[/tex]

Explanation:

From the question we are told that

    The angular acceleration is  [tex]\alpha = 4.0 \ rad/s^2[/tex]

     The  time taken is  [tex]t = 4.0 \ s[/tex]

      The angular displacement is  [tex]\theta = 80 \ radians[/tex]

     

The angular displacement can be represented by the second equation of motion as shown below

          [tex]\theta = w_i t + \frac{1}{2} \alpha t^2[/tex]

where  [tex]w_i[/tex] is the initial velocity at the start of the 4 second interval

So substituting values

        [tex]80 = w_i * 4 + 0.5 * 4.0 * (4^2)[/tex]

=>    [tex]w_i = 12 \ rad/s[/tex]

Now considering this motion starting from the start point (that is rest ) we have

       [tex]w__{4.0 }} = w__{0}} + \alpha * t[/tex]

Where  [tex]w__{0}}[/tex] is the angular velocity at rest which is zero  and  [tex]w__{4}}[/tex] is the angular velocity after 4.0 second which is calculated as 12 rad/s s

        [tex]12 = 0 + 4 t[/tex]

=>       [tex]t = 3 \ s[/tex]

Following are the response to the given question:

Given:

[tex]\to \alpha = 4.0 \ \frac{rad}{s^2}\\\\[/tex]

[tex]\to \theta= 80\ radians\\\\\to t= 4.0 \ s\\\\ \to \theta_0=0\\[/tex]

To find:

[tex]\to \omega=?\\\\\to t=?\\\\[/tex]

Solution:

Using formula:

[tex]\to \theta- \theta_0 = w_{0} t+ \frac{1}{2} \alpha t^2\\\\ \to 80-0= \omega_{0}(4) + \frac{1}{2} (4)(4^2)\\\\ \to 80= \omega_{0}(4) + \frac{1}{2} (4)(16)\\\\\\to 80= \omega_{0}(4) + (4)(8)\\\\\to 80= \omega_{0}(4) + 32\\\\\to 80-32 = \omega_{0}(4) \\\\\to \omega_{0}(4)= 48 \\\\\to \omega_{0}= \frac{48}{4} \\\\ \to \omega_{0} = 12 \frac{rad}{ s} \\\\[/tex]  

It would be the angle for rotation at the start of the 4-second interval.

This duration can be estimated by leveraging the fact that the wheel begins from rest.  

[tex]\to \omega = \omega_{0} + \alpha t\\\\\to 12 = 0 +4(t) \\\\\to 12 = 4(t) \\\\ \to t=\frac{12}{4}\\\\\to t= 3\ s[/tex]

Therefore, the answer is "[tex]12\ \frac{rad}{s}[/tex] and [tex]3 \ s[/tex]".

Learn more:

brainly.com/question/7464119

If a system has 4.50×102 kcal of work done to it, and releases 5.00×102 kJ of heat into its surroundings, what is the change in internal energy (ΔE or Δ????) of the system?

Answers

The change in internal energy (ΔE) of the system is equal to -18823 Kilojoules.

Given the following data:

Quantity of heat = [tex]5.00 \times 10^2 \;kJ[/tex]Work done = [tex]4.50 \times 10^2 \;kcal[/tex]

Conversion:

1 kcal = 4.184 kJ

[tex]4.50 \times 10^2 \;kcal[/tex] = [tex]4.50 \times 10^2 \times 4.184 = 18828 \; kJ[/tex]

To determine the change in internal energy (ΔE) of the system, we would apply the first law of thermodynamics.​

Mathematically, the first law of thermodynamics is given by the formula:

[tex]\Delta E = Q - W[/tex]

Where;

[tex]\Delta E[/tex] is the change in internal energy.Q is the quantity of heat released.W is the work done.

Substituting the given parameters into the formula, we have;

[tex]\Delta E = 5 - 18828\\\\\Delta E = -18823[/tex]

Change in internal energy, E = -18823 Kilojoules

Read more: https://brainly.com/question/20599052

g How many rpm would a 25 m diameter Ferris wheel need to travel if a 75 kg person were to experience an effective weight of 810 N at the lower-most point of the ride

Answers

Answer:

2.52 rpm

Explanation:

given that

diameter of the wheel, d = 25 m

Mass of the person, m = 75 kg

Weight experienced, N = 810 N

Since diameter is 25, radius then is 25/2 = 12.5 m

We all know that,

v = rw

Also, the passengers weight is equal to the centripetal acceleration, and thus

mg = mv²/r

Substitute for v, we have

mg = m/r * (rw)²

mg = mr²w²/r

g = rw²

If we make w the subject of formula, we have

w² = g/r

w = √(g/r)

mg = 810

75 * g = 810

g = 810 / 75

g = 1.08 m/s²

w = √(g/r)

w = √(1.08 / 12.5)

w = √0.0864

w = 0.294 rad/s

Since the question asked us in rpm, we convert to rpm

0.294 * (60 / 2π)

2.52 revolution per minute.

You should have observed that there are some frequencies where the output is stronger than the input. Discuss how that is even possible from a conservation of energy standpoint. Also, can you relate this behavior to the transient (natural) response of the circuit that you observed in the previous lab

Answers

Answer:

w = √ 1 / CL

This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence

Explanation:

This problem refers to electrical circuits, the circuits where this phenomenon occurs are series RLC circuits, where the resistor, the capacitor and the inductance are placed in series.

In these circuits the impedance is

             X = √ (R² +  ([tex]X_{C}[/tex] -[tex]X_{L}[/tex])² )

where Xc and XL is the capacitive and inductive impedance, respectively

            X_{C} = 1 / wC

           X_{L} = wL

From this expression we can see that for the resonance frequency

           X_{C} = X_{L}

the impedance of the circuit is minimal, therefore the current and voltage are maximum and an increase in signal intensity is observed.

This does not violate energy conservation because the voltage of the power source is equal to the voltage drop in the resistence

               V = IR

Since the contribution of the two other components is canceled, this occurs for

                X_{C} = X_{L}

                1 / wC = w L

                w = √ 1 / CL

Other Questions
The charge to rent a trailer is $2525 for up to 2 hours plus $99 per additional hour or portion of an hour. Find the cost to rent a trailer for 2.82.8 hours, 33 hours, and 8.78.7 hours. Then graph all ordered pairs, (hours, cost), for the function. Ellen thinks if it has no slope it never touches the y axis , what can prove that her Statement is correct PLEASE ANSWER FAST PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The point (1, 1) is on the terminal side of angle , in standard position. What are the values of sine, cosine, and tangent of ? Make sure to show all work. a) John is 3 years older than his brother Brian, the product of their ages is 54 i) Express this information in equation form ii) Show this information as a quadratic equation iii) Hence, solve the equation to find their individual ages. Which consequence resulted from unresolved international conflictsthroughout the 20th century?O A. Countries were repeatedly drawn into new wars shortly after otherconflicts had ended.O B. European states were able to exercise greater control over theirAfrican and Asian colonies.C. Societies around the world became more socially, culturally, andeconomically linkedO D. World leaders began to openly violate international treatiesprotecting human rights.THE ANSWER IS A Please answer this question now in two minutes Because the thirteen American colonies were part of the British Empire, In a sequence, the 40th term is 70, the 41st term is 72 and the 42nd term is 74.a) State the term-to-term ruleb) Work out the first termc) Work out the 80th term Enter a range of values for x.85255x - 10[ ? ]Enter WILL MARK BRAINLIEST!!!!PLZ HELP!!!! An expression is shown below: 3pf2 21p2f + 6pf 42p2 Part A: Rewrite the expression by factoring out the greatest common factor. Part B: Factor the entire expression completely. Show the steps of your work. The second-order decomposition of HI has a rate constant of 1.80 10-3 M-1s-1. How much HI remains after 27.3 s if the initial concentration of HI is 4.78 M? C create a class called Plane, to implement the functionality of the Airline Reservation System. Write an application that uses the Plane class and test its functionality. Write a method called Check In() as part of the Plane class to handle the check in process Prompts the user to enter 1 to select First Class Seat (Choice: 1) Prompts the user to enter 2 to select Economy Seat (Choice: 2) Assume there are only 5-seats for each First Class and Economy When all the seats are taken, display no more seats available for you selection Otherwise it displays the seat that was selected. Repeat until seats are filled in both sections Selections can be made from each class at any time. When using the cost of production report to analyze the change in direct materials cost per equivalent unit compared to conversion cost per equivalent unit, an investigation may reveal that direct materials costs:_____.a. will never decrease due to the way the cost is calculated. b. will never increase due to the way the cost is calculated. c. may increase or decrease between periods, depending on the fluctuation of the cost of the direct materials.d. will only increase if conversion costs increase as well. Problemas con el correo electrnico Completa la conversacin con las palabras de la lista. Vas a usar algunas de las palabras ms de una vez. Word Bank reference cunto desde hace haca que Question 1 with 8 blanks MIGUEL (1) tiempo (2) que me enviaste ese mensaje electrnico? MARA Mmm... (3) por lo menos tres horas. MIGUEL (4) dos minutos (5) he revisado mi correo y no est ah. MARA He trabajado en esta oficina (6) hace siete aos y nunca he visto nada igual. Ests seguro de que no lo has borrado? MIGUEL No, no he borrado ningn mensaje desde (7) meses. Envamelo otra vez, por favor. MARA Ay! Pues yo guardaba todos mis mensajes desde (8) siete aos, pero esta maana los he borrado todos. An insulating hollow sphere has inner radius a and outer radius b. Within the insulating material the volume charge density is given by rho(r)=r,where is a positive constant.A). What is the magnitude of the electric field at a distance r from the center of the shell, where aExpress your answer in terms of the variables , a, r, and electric constant 0.B) .A point chargeq is placed at the center of the hollow space, at r=0. What value must q have (sign and magnitude) in order for the electric field to be constant in the region aExpress your answer in terms of the variables , a, and appropriate constants.C). What then is the value of the constant field in this region?Express your answer in terms of the variable and electric constant 0. In this story, what is a symbol of the destruction of South Africas future?the gold minesthe couples homethe barbed wirethe neighborhood watch organization The relation Ris shown below as a list of orderedpairs.R = {(1,4), (1,3), (-1,3), (2, 15) }Which ordered pairs prevent this relation frombeing a function?(1,4) and (1,3), because they have the sameX-value(1,3) and (-1,3), because they have thesame y-valueDONE Third-degree, with zeros of 5, 4, and 1, and a y-intercept of 15 You observe a portfolio for five years and determine that its average return is % and the standard deviation of its returns in %. Would a 30% loss next year be outside the 95% confidence interval for this portfolio? The low end of the 95% prediction interval is nothing%. (Enter your response as a percent rounded to one decimal place.) A. Yes, you can be confident that the portfolio will not lose more than 30% of its value next year. This is because the low end of the prediction interval is less than 30%. B. No, you cannot be confident that the portfolio will not lose more than 30% of its value next year. This is because the low end of the prediction interval is greater than 30%. C. Yes, you can be confident that the portfolio will not lose more than 30% of its value next year. This is because the low end of the prediction interval is greater than 30%. D. No, you cannot be confident that the portfolio will not lose more than 30% of its value next year. This is because the low end of the prediction interval is less than 30%. During the month of April, it is permissible for an institution's basketball coach to lecture at a non institutional, privately owned basketball camp that is operated under restrictions applicable to institutional camps. True or False