Answer:
Explanation:I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thnk me...
Answer:
0.86s
Explanation:
How long it takes is the time required.
Time = distance /speed
Time =2.11/2.45=0.86s
What is the gravitational potential energy of a ball of mass 2.00 kg which is tossed to a height of 13.0 m above the ground? Answer in J, taking the potential energy to be 0.00 J at the ground.
Answer:
I believe the answer is 254.8 J, or rounded 255 J.
Explanation:
The formula for potential energy is:
PE=m(h)g
This means the mass (m) times height (h) times gravity (m). Gravity is 9.8 m/s (meters per second). Putting all of the numbers into it would equal:
PE=2(13)9.8
This equals 254.8 exactly, or if the assignment calls for you to round, 255.
You hold block A with a mass of 1 kg in one hand and block B with a mass of 2 kg in the other. You release them both from the same height above the ground at the same time. (Air resistance can safely be ignored as they fall.) Which of the following describes and explains the motion of the two objects after you release them?
A) Before A hits the ground before the block B. The same force of gravity acts on both objects, but because block A has a lower mass, it will have a larger acceleration
B) Block B hits the ground before the block A. The larger force on block B causes it to have a greater acceleration than block A
C) The two blocks hit the ground at the same time, because they both ackelerate at the same rate while falling. The greater gravitational force on block B is compersated giving it the same acceleration
D) The two blocks hit the ground at the same time because they move at the same constant speed while falling.The force on the blocks are irrelevent once they start falling
ok so im not that good when it comes to physics but i think its C)
A 35.0-kg child swings in a swing supported by two chains, each 2.96 m long. The tension in each chain at the lowest point is 436 N. (a) Find the child's speed at the lowest point. Consider all the vertical components of force acting on the swing when it is at its lowest point and relate them to the acceleration of the swing at that instant. m/s (b) Find the force exerted by the seat on the child at the lowest point. (Ignore the mass of the seat.)
Answer:
6.69m/s,529N
Explanation:
Now we have 3 forces acting on the boy at its least point, the two tensions on the string and its weight. The tensions are acting upwards why its weight is acting downwards.
Hence the net force causes the child to swing in a circular fashion without skidding off the swing.
This net force is the centripetal force.
The weight of the child is mass × g
35×9.8=343N
The net force = 436+436-343 = 529N
The centripetal force is defined mathematically as;
F = mass × velocity square/ length of string.
Hence 529 = 35V^2/2.96
V^2 = 529×2.96/35 =44.7383
V=√44.7383 =6.69m/s
B. The force exerted by the seat on the child is the net force which keeps the boy from falling.
529N
How far does a roller coaster travel if it accelerates at 2.83 m/s2 from an initial
velocity of 3.19 m/s for 12.0 s?
Answer:
b
Explanation:
A body moves due north with velocity 40 m/s. A force is applied
on it and the body continues to move due north with velocity 35 m/s. W. .What is the direction of rate of change of momentum,if it takes
some time for that change and what is the direction of applied
external force?
Answer:
the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
Explanation:
The change in the momentum of a body, if the mass of the body is constant, is given by the following formula:
[tex]\Delta p=\Delta (mv)\\\\\Delta p=m\Delta v[/tex]
p: momentum
m: mass
[tex]\Delta v[/tex]: change in the velocity
The sign of the change in the velocity determines the direction of rate of change. Then you have:
[tex]\Delta v=v_2-v_1[/tex]
v2: final velocity = 35m/s
v1: initial velocity = 40m/s
[tex]\Delta v =35m/s-40m/s=-5m/s[/tex]
Hence, the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
A 60-kg skier is stationary at the top of a hill. She then pushes off and heads down the hill with an initial speed of 4.0 m/s. Air resistance and the friction between the skis and the snow are both negligible. How fast will she be moving after she is at the bottom of the hill, which is 10 m in elevation lower than the hilltop
Answer:
The velocity is [tex]v = 8.85 m/s[/tex]
Explanation:
From the question we are told that
The mass of the skier is [tex]m_s = 60 \ kg[/tex]
The initial speed is [tex]u = 4.0 \ m/s[/tex]
The height is [tex]h = 10 \ m[/tex]
According to the law of energy conservation
[tex]PE_t + KE_t = KE_b + PE_b[/tex]
Where [tex]PE_t[/tex] is the potential energy at the top which is mathematically evaluated as
[tex]PE_t = mg h[/tex]
substituting values
[tex]PE_t = 60 * 4*9.8[/tex]
[tex]PE_t = 2352 \ J[/tex]
And [tex]KE_t[/tex] is the kinetic energy at the top which equal to zero due to the fact that velocity is zero at the top of the hill
And [tex]KE_b[/tex] is the kinetic energy at the bottom of the hill which is mathematically represented as
[tex]KE_b = 0.5 * m * v^2[/tex]
substituting values
[tex]KE_b = 0.5 * 60 * v^2[/tex]
=> [tex]KE_b = 30 v^2[/tex]
Where v is the velocity at the bottom
And [tex]PE_b[/tex] is the potential energy at the bottom which equal to zero due to the fact that height is zero at the bottom of the hill
So
[tex]30 v^2 = 2352[/tex]
=> [tex]v^2 = \frac{2352}{30}[/tex]
=> [tex]v = \sqrt{ \frac{2352}{30}}[/tex]
[tex]v = 8.85 m/s[/tex]
Answer:
The Skier's velocity at the bottom of the hill will be 18m/s
Explanation:
This is simply the case of energy conversion between potential and kinetic energy. Her potential energy at the top of the hill gets converted to the kinetic energy she experiences at the bottom.
That is
[tex]mgh = 0.5 mv^{2}[/tex]
solving for velocity, we will have
[tex]v= \sqrt{2gh}[/tex]
hence her velocity will be
[tex]v=\sqrt{2 \times 9.81 \times 10}=14.00m/s[/tex]
This is the velocity she gains from the slope.
Recall that she already has an initial velocity of 4m/s. It is important to note that since velocities are vector quantities, they can easily be added algebraically. Hence, her velocity at the bottom of the hill is 4 + 14 = 18m/s
The Skier's velocity at the bottom of the hill will be 18m/s