A jar of tea is placed in sunlight until it reaches an equilibrium temperature of 30.7 ◦C.
In an attempt to cool the liquid, which has a mass of 188 g , 129 g of ice at 0.0 ◦C is added. At the time at which the temperature of the tea is 26.6 ◦C , find the mass of the remaining ice in the jar. The specific heat of water is 4186 J/kg◦ C . Assume the specific heat capacity of the tea to be that of pure liquid water. Answer in units of g.

Answers

Answer 1

The mass of the remaining ice in the jar is 188 g.

What is Equilibrium?

Equilibrium refers to a state of balance or stability where opposing forces or factors are balanced, resulting in a state of overall stability and no net change. In various contexts, equilibrium can have different meanings and applications.

We can rearrange the equations to solve for the mass of ice remaining (mice):

Qtea = Qice

mtea * ctea * ΔT = mice * cice * ΔT

mice = (mtea * ctea * ΔT) / (cice * ΔT)

Plugging in the given values:

mtea = 188 g

ctea = 4186 J/kg◦ C (specific heat capacity of water)

ΔT = 30.7 - 26.6 = 4.1 ◦C (change in temperature of the tea)

cice = 4186 J/kg◦ C (specific heat capacity of ice)

mice = (188 * 4186 * 4.1) / (4186 * 4.1)

mice = 188 g

Learn more about Equilibrium from the given link

https://brainly.com/question/517289

#SPJ1


Related Questions

When you boil water, it cannot be kept hot
indefinitely without a heat source. explain why

Answers

when you remove the source of heat, the water will quickly drop below the threshold. You're right on the knife edge of temperature

Answer:

Explanation:

Water is like an enormous heat sponge. It can soak up a huge amount of energy without changing its temperature very much. This is the reason why after reaching 100° centigrade, water stays at that temperature for a long time, and a lot of energy is required to boil the water and turn it into steam.

A model rocket blast off and moves upward with an acceleration of 12m/s2 until it reaches a height of 26m, at which point its engine shuts off and it continues its flight in free fall.
a) What is the maximum height attained by the rocket?
b) What is the speed of the rocket just before it hits the ground?
c) What is the total duration of the rocket's flight?

Answers

To solve this problem, we can use the kinematic equations of motion.

a) To find the maximum height attained by the rocket, we need to find the time it takes to reach that height. We can use the equation:

h = vi*t + (1/2)*a*t^2

where h is the maximum height attained, vi is the initial velocity (which is zero), a is the acceleration, and t is the time taken to reach the maximum height.

Plugging in the values given, we get:

26m = 0*t + (1/2)*12m/s^2*t^2

Simplifying the equation, we get:

t^2 = (2*26m) / 12m/s^2
t^2 = 3.5s^2
t = 1.87s

Now that we know the time taken to reach the maximum height, we can use another kinematic equation to find the maximum height:

v = vi + a*t

where v is the final velocity at the maximum height.

Plugging in the values given, we get:

v = 0 + 12m/s^2*1.87s
v ≈ 22.44m/s

Now we can find the maximum height using the equation:

h = vi*t + (1/2)*a*t^2

Plugging in the values given, we get:

h = 0*1.87s + (1/2)*12m/s^2*(1.87s)^2
h ≈ 26.2m

Therefore, the maximum height attained by the rocket is approximately 26.2 meters.

b) To find the speed of the rocket just before it hits the ground, we can use the equation:

v^2 = vi^2 + 2*a*h

where h is the maximum height attained, vi is the initial velocity (which is zero), a is the acceleration, and v is the final velocity just before hitting the ground.

Plugging in the values given, we get:

v^2 = 0 + 2*12m/s^2*26m
v^2 = 624m^2/s^2
v ≈ 25m/s

Therefore, the speed of the rocket just before it hits the ground is approximately 25 meters per second.

c) The total duration of the rocket's flight is the time taken to reach the maximum height plus the time taken to fall back

On the water surface, there are two sources of oscillating waves of the same phase located at A and B, emitting two coherent waves of wavelength λ. Let Δ be the line perpendicular to AB at B. On Δ there are 16 interference maxima, the distance between the two closest and farthest interference maxima is 2.71 cm and 229.55 cm, respectively. . Which of the following is the length of line segment AB closest to?

Answers

Two or greater sources are said to be coherent if they emit waves that have the identical wavelength (or frequency) and amplitude and which maintain a steady phase difference.

Do two coherent sources have equal wavelength?

If two sources have the identical wavelength, frequency, and segment difference, they are said to be coherent. Therefore, we can conclude that coherent sources have the identical wavelength.

Two microwave coherent factor sources emitting waves of wavelenths λare positioned at 5λdistance apart. The interference is being observed on a flat non-reflecting surface alongside a line passing through on sources ,in a course perpendicular to the line joining the two sources

Learn more about coherent waves here:

https://brainly.com/question/12495315#SPJ1

80 POINTS!!! GIVING BRAINLIEST PLEASE ANSWER ASAP

Answers

Answer:

it's b or the second one

Explanation:

The magnitude of the magnetic field after the change can be found using the formula:

B2 = B1 * (I2 / I1)

Where B1 is the initial magnetic field (4.0 x 10^-3 T), I1 is the initial current (3.20 A), I2 is the final current (6.40 A), and B2 is the final magnetic field (what we're trying to find).

Plugging in the values:

B2 = (4.0 x 10^-3 T) * (6.40 A / 3.20 A)

B2 = 8.0 x 10^-3 T

So the magnitude of the magnetic field after the change is 8.0 x 10^-3 T.

If the sun were more massive, what would happen to Earth’s gravity with the sun?
A. decrease
B. would be infinite
C. would be 0
D. increase

Answers

Answer: d. increase

Explanation:

If the sun were more massive, the gravitational force between the sun and Earth would increase. This means that Earth's gravity with the sun would also increase. Therefore, the correct answer is (D) increase.

The gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. So, if the mass of one of the objects increases, the gravitational force between them will also increase. In this case, if the mass of the sun were to increase, the gravitational force between the sun and Earth would become stronger, and hence, Earth's gravity with the sun would also increase.

explain HOW heat conduction works if you pour a hot cup of hot chocolate into a cold cup. What happens to the cup and HOW does it happen?

Answers

With time, the hot chocolate's thermal energy will permeate into the atmosphere, causing the cup to chill.

How does the heat energy from a cup of hot chocolate get to you?

Conduction, which transfers heat through direct touch, transports heat from the hot chocolate to the mug. As the molecules of the hot chocolate clash with those of the mug, energy is transferred to both of them as well as to the surrounding air.

How is the spoon made heated by the heat from a cup of hot chocolate?

Conduction into the metal spoon will speed up the transfer of heat from the cocoa. The heat will be dispersed throughout the spoon's body because it is a thermal conductor.

To know more about energy visit:-

https://brainly.com/question/1932868

#SPJ1

A rock climber stands on top of a 59 m -high cliff overhanging a pool of water. He throws two stones vertically downward 1.0 s apart and observes that they cause a single splash. The initial speed of the first stone was 1.7 m/s . Include value and units.
a) How long after the release of the first stone does the second stone hit the water?
b) What was the initial speed of the second stone?
c) What is the speed of the first stone as it hits the water?
d) What is the speed of the second stone as it hits the water?

Answers

a) The time after the release of the first stone that the second stone hits the water is 2.0 s.

b) 15.7 m/s is the initial speed of the second stone.

c)  The speed of the first stone as it hits the water is 15.7 m/s.

d) The speed of the second stone as it hits the water is 28.2 m/s.

What is velocity?

Velocity is a vector quantity that measures both the speed and direction of an object's motion. It is equal to the rate of change of an object's position with respect to time. Velocity is usually represented by the symbol v and is measured in meters per second (m/s).

a) The time between first and second stone's release is 1.0 s. Since the time of release of first stone and the time of splash of both stones are same, the time between the release of second stone and the splash of both stones is 1.0 s.

Thus, the time after the release of the first stone that the second stone hits the water is 2.0 s.

b) The initial speed of the second stone can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (1.7)² + 2(9.8) * 59

v = 15.7 m/s

c) The speed of the first stone as it hits the water can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (1.7)² + 2(9.8) * 59

v = 15.7 m/s

d) The speed of the second stone as it hits the water can be calculated using the equation of motion,

v² = u² + 2as

where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s²), and s is the displacement.

Substituting the values,

v² = (15.7)² + 2(9.8) * 59

v = 28.2 m/s

For more questions related to initial speed

https://brainly.com/question/24493758

#SPJ1

A 0.80kg block of carbon (solid) is dropped into 1.4kg of water. If the carbon starts at -20C, the water starts at 92C, and they have equal final temperatures, what is the final temperature of the system?

Answers

The system's final temperature is roughly 16.7°C.

What is a system's final temperature?

You may determine your substance's final heat by multiplying the temperature change by the initial temperature. Your water's final temperature would be 24 + 6, or 30 degrees Celsius, for instance, if it started off at 24 degrees Celsius.

The following is the formula for energy conservation:

Q1 + Q2 = 0

Q = mcΔT

Q1 + Q2 = 0

568.8

Simplifying and solving for

6394.4 - 106768 = 0

= 16.7°C

To know more about temperature visit:-

https://brainly.com/question/4160783

#SPJ1

A Carnot Engine operates between two heat reservoirs. The cold reservoir is maintained at 20.0 °C. What temperature must the hot reservoir be at in order for the efficiency of the engine to be 20.0 %?

Answers

A heat engine with a 65.0% Carnot efficiency is currently being developed. Between a reservoir that is 25.00C and one that is 3750C, a heat engine is operational.

What is the formula for Carnot efficiency ?

The equation is: Carnot efficiency is equal to 1 - Tc/Th, wherein Tc is the cycle's cold end temperature and Th is its hot end temperature. In other words, efficiency is equal to one minus the difference between the hot and cold temperatures.

Explanation: The cold reservoir's temperature is TL=20C=20+273=293K. T L = 20 ∘ C = 20 + 273 = 293 K .

A Carnot cycle running between both of these two reservoirs has a thermal efficiency of = 1 TC/TH. This value exceeds the value of the Otto cycle, which is operating between similar reservoirs by a large margin.

Two know more about efficiency visit:

https://brainly.com/question/13021831

#SPJ1

an election of mass 9.1 × 10^31kg moves with a velocity of 4.2 × 10^7mJs between the cathode and anode of an X-ray tube. Calculate the wavelength.( take Planck's constant, h= 6.6 × 10^ 34 J's)​

Answers

The wavelength of the electron is 1.724 × 10^-12 m.

How do we calculate?

The wavelength of the electron is found  using the de Broglie wavelength formula:

λ = h / p

where λ = wavelength,

h= Planck's constant, a

p =  momentum of the electron.

we find  the momentum of the electron,

p = m * v

p = (9.1 × 10^-31 kg) * (4.2 × 10^7 m/s)

p = 3.822 × 10^-22 kg m/s

Therefore, wavelength ;

λ = h / p

λ = (6.6 × 10^-34 J s) / (3.822 × 10^-22 kg m/s)

λ = 1.724 × 10^-12 m

Learn more about wavelength at: https://brainly.com/question/10728818

#SPJ1

A 25 kg child plays on a swing having support ropes that are 2.20 m long. A friend pulls her back until the ropes are ăÿÿfrom the vertical and releases her from rest. (a) What is the potential energy for the child just as she is released compared with the potential energy at the bottom of the swing? (b) How fast will she be moving at the bottom of the swing? (c) How much work does the tension in the ropes do as the child swings from the initial position to the bottom?

Answers

a) At the highest point, all the potential energy is in the form of gravitational potential energy, which is given by:

U = mgh

where m is the mass of the child, g is the acceleration due to gravity, and h is the height above the lowest point (i.e., the bottom of the swing). At the highest point, h = 2.20 m, so:

U_top = mgh = (25 kg)(9.81 m/s^2)(2.20 m) = 544.5 J

At the bottom of the swing, all the potential energy has been converted to kinetic energy, which is given by:

K = (1/2)mv^2

where v is the velocity of the child at the bottom of the swing. Since the swing is released from rest, the initial velocity is zero. Therefore, the kinetic energy at the bottom of the swing is equal to the potential energy at the top of the swing:

K_bottom = U_top = 544.5 J

b) Setting the potential energy at the top of the swing equal to the kinetic energy at the bottom of the swing, we can solve for the velocity:

K_bottom = (1/2)mv^2

544.5 J = (1/2)(25 kg)v^2

v = sqrt(2*544.5 J / 25 kg) = 9.89 m/s

Therefore, the child will be moving at a speed of approximately 9.89 m/s at the bottom of the swing.

c) The work done by the tension in the ropes is equal to the change in kinetic energy of the child as she swings from the initial position to the bottom. Since the child starts from rest, the initial kinetic energy is zero. Therefore, the work done by the tension is equal to the final kinetic energy at the bottom of the swing:

W = K_bottom = (1/2)mv^2 = (1/2)(25 kg)(9.89 m/s)^2 = 1228.3 J

Therefore, the tension in the ropes does 1228.3 J of work as the child swings from the initial position to the bottom.

Before you begin your lab, write a hypothesis that reflects how you think temperature of the water will affect the
reaction rates. Record your hypothesis as an "if, then" statement.

Answers

If the thermal parameters of the reacting chemical milieu are progressively enhanced to values approaching the uppermost feasible threshold limits, then the kinetic molecular energies of the constituent particles subsisting within that milieu will inevitably become extraordinarily amplified to magnitudes of near infinite proportions. This will ineluctably engender an unimaginably magnified probability of ultra-successful reactive collisions and bonding formations between reactants, thereby precipitously accelerating reaction progression and product synthesis at an utterly bewildering, dizzyingly exponential rate with concomitant incalculably diminished activation energy requirements for said reactions to proceed at light speed.

Reaction rates will be catapulted to vertiginous extremes, minimum activation energies will plummet to subatomic zero-point energy values and reaction times will approach Planck timescales as a result of the incomprehensibly intense intensification of molecular motion within the system due to red-hot proximate approach of the temperature parameter to unimaginably maximally feasible values on the order of the Planck temperature. At such energetic scales, the very concepts of chemical reactions and activation energies themselves would become somewhat facetious and inapposite. Atomic and subatomic forces would so predominate as to render chemical bonds utterly trivial and transient. The system would essentially comprise frenetic elementary particles reacting within an amalgam of radiation and plasma.

How loud in Decibels would a sound be with an intensity of 7.8x10^-4 W/m2? (write your answer to one decimal space)

Answers

A sound that is 7.8x10-4 W/m2 in intensity is equal to (10 dB)log3.2106 W/m21012 W/m2=185 dB.

How can you determine the relative volume of a sound?

The decibel, often known as the db or 0.1 bel, is the standard measurement unit. Hence, b = 10 log10 (I/I0) can be used to express the relationship between relative intensities, or b, in decibels. This equation can be used to determine that one decibel equals a 26 percent intensity variations.

What does physics mean by relative intensity?

The "decibel level" of a sound is a less formal term for relative intensity level. It is not the same as energy; relative intensity level reflects loudness more faithfully by using a logarithmic scale.

To know more about sound visit :

https://brainly.com/question/29707602

#SPJ1

Suppose you constructed a machine that would let you release helium molecules with only a single speed. You use your machine to select 1000 helium molecules with a speed of 20.0 m/s and another 1000 helium molecules with a speed of 90.0 m/s. You mix these 2000 molecules in one rigid container.

(a) (2 pts) What is the average speed of these 2000 molecules before they undergo any collisions? (When they collide, they will exchange energy and momentum and their speeds will change.)

(b) (2 pts) What is the rms speed of these 2000 molecules before they undergo any collisions?

(c) (6 pts) After many collisions, what will be the average speed and the rms speed of the 2000 helium molecules? Assume all of the collisions are elastic.

Input only your answer to part (b) below, leaving off the unit.

Answers

(a) The average speed of the 2000 molecules is given by the weighted average of the two speeds, i.e., 55.0 m/s. (b) 56.9 m/s (c) the average speed of the molecules is 1240 m/s.

Describe Avogadro Number?

Avogadro's number is a fundamental constant in chemistry and physics that relates the number of atoms, molecules, or particles in a given sample to its mass. It is defined as the number of particles (atoms, molecules, ions, electrons, etc.) present in one mole of a substance, which is approximately 6.022 x 10²³ particles per mole.

(a) The average speed of the 2000 molecules is given by the weighted average of the two speeds, i.e.,

average speed = [(1000 molecules) (20.0 m/s) + (1000 molecules) (90.0 m/s)] / (1000 molecules + 1000 molecules) = 55.0 m/s.

(b) The rms speed of the 2000 molecules is given by the root-mean-square of the two speeds, i.e.,

rms speed = √ [((1000 molecules) (20.0 m/s) ² + (1000 molecules) (90.0 m/s) ²) / (1000 molecules + 1000 molecules)] = 56.9 m/s.

(c) After many collisions, the distribution of speeds among the 2000 molecules will approach a Maxwell-Boltzmann distribution, which is given by

f(v) = (m / [tex](2pikT)^{\frac{3}{2} }[/tex]) * 4piv² * exp (-mv² / (2kT))

where m is the mass of a helium molecule, k is Boltzmann's constant, and T is the temperature of the gas. The average speed of the molecules is given by

< v > = √((8kT) / (pi*m))

and the rms speed is given by

v_rms = √((3kT) / m)

where < v > and v_rms are the mean and rms speeds, respectively. Since the gas is ideal, we can use the ideal gas law to relate the temperature to the pressure and volume. Specifically,

P V = n R T

where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature. Since the container is rigid, the volume is constant, and we can write.

P = n R T / V

Since we have a total of 2000 helium molecules, which corresponds to n = 2000 / N_A moles, where N_A is Avogadro's number, we can solve for the temperature to find

T = P V / (n R) = P V N_A / (2000 R)

where we have used the fact that n = 2000 / N_A. Substituting the given values, we find

T = (4.00e5 Pa)(2.00 L)(6.02e23 / 2000 molecules/mol) / (2000 J/mol/K) = 1600 K

Therefore, the average speed of the molecules is.

< v > = √((8kT) / (pim)) = √ ((81.38e-23 J/K)(1600 K) / (pi*4.00e-3 kg/mol)) = 1360 m/s

and the rms speed is

v_rms = √((3kT) / m) = √((3*1.38e-23 J/K)(1600 K) / (4.00e-3 kg/mol)) = 1240 m/s.

To know more about molecules, visit:

https://brainly.com/question/29964498

#SPJ1

franchising why is it the best option for you as an entrepreneur​

Answers

Answer:

ttrockstars

Explanation:

it's math you to be an expert at math thank you

A ball thrown straight upward returns to its original level in 2.75 seconds. A second ball is thrown at an angle of 40 degrees above the horizontal. What is the initial speed ball if it also returns to its original level in 2.75 seconds?

Answers

The initial speed (magnitude of velocity) of the second ball thrown at an angle of 40 degrees above the horizontal is approximately 12.93 m/s.

What is the initial speed ball?

Let's consider the motion of the second ball thrown at an angle of 40 degrees above the horizontal. We can break down its motion into horizontal and vertical components.

Given:

Time taken for the ball to return to its original level (time of flight): t = 2.75 seconds

Angle of projection (above the horizontal): θ = 40 degrees

We can use the following equations of motion to find the initial speed (magnitude of velocity) of the ball:

Horizontal motion:

The horizontal velocity of the ball remains constant throughout the motion, and can be given as:

vx = v0 * cos(θ), where v0 is the initial speed.

Vertical motion:

The vertical velocity of the ball changes due to the force of gravity. We can use the following equation:

vy = v0 * sin(θ) - g * t,

where;

g is the acceleration due to gravity

Since the ball returns to its original level, the vertical displacement (change in height) is zero:

Δy = 0

We can use the following equation to relate the initial speed, time of flight, and angle of projection:

Δy = v0 * sin(θ) * t - (1/2) * g * t^2 = 0

Plugging in the values and solving for v0:

0 = v0 * sin(40) * 2.75 - (1/2) * 9.8 * (2.75)^2

v0 * sin(40) * 2.75 = (1/2) * 9.8 * (2.75)^2

v0 = (1/2) * 9.8 * (2.75)^2 / (sin(40) * 2.75)

v0 = 12.93 m/s (rounded to two decimal places)

Learn more about initial velocity here: https://brainly.com/question/19365526

#SPJ1

According to this graph, the acceleration
is approximately:
A. 12 m/s²
C. 4 m/s²
Velocity (m/s)
14
12
10
12 2 3 4
Time t (s)
B. 1.5 m/s2
D. 3 m/s2

Help please

Answers

Answer:

Explanation:

Because you have velocity along the y axis and time along the x axis, this is a velocity v time graph which is an acceleration graph. The slope of the line in this graph IS the acceleration. We can use 2 points and the slope formula to solve for the acceleration:

(0, 0) and (1, 3):

[tex]m=\frac{3-0}{1-0}=3[/tex] m/s squared, choice D.

How long does it take for radiation from a cesuim-133 atom to complete 1.5 million cycles

Answers

A cesium-133 atom's radiation goes through 1.5 million cycles in around 0.1633 microseconds (or 163.3 nanoseconds).

What frequency does one kind of radiation that cesium-133 emits have?

9,192,631,770 hertz (cycles per second) is the frequency of the microwave spectral line that the isotope cesium-133 emits. The basic unit of time is provided by this. Cesium clocks have an accuracy and stability of 1 second in 1.4 million years.

The radiation emitted by cesium-133 has a frequency of 9,192,631,770 cycles per second, or 9.192631770 109 Hz.

The following formula may be used to determine how long 1.5 million radiation cycles take to complete:

Time is equal to the frequency of cycles.

Plugging in the numbers, we get:

time = 1.5 million / 9.192631770 × 10^9 Hz

time = 1.632995101 × 10^-7 seconds

So it takes approximately 0.1633 microseconds (or 163.3 nanoseconds) for radiation from a cesium-133 atom to complete 1.5 million cycles.

To know more about cesium-133 visit:-

https://brainly.com/question/4830355

#SPJ1

As a 5.00-kg sample of liquid mercury is cooled into a solid, it liberates 157 kJ of energy. What is the original temperature of the mercury? For mercury, the melting point is 234 K, the heat of fusion is 11.3 kJ/kg,
and the specific heat is 140 J/kg . K.

378 K
690 K
157 K
410 K

Answers

The original temperature of the mercury is 260.6K

Here is how to arrive at temperature of the mercury

To solve this problem, we can use the formula for the heat released during the solidification of a substance:

Q = m * Lf

where Q is the heat released, m is the mass of the substance, and Lf is the heat of fusion of the substance.

In this case, Q = 157 kJ, m = 5.00 kg, and Lf = 11.3 kJ/kg.

We also need to use the formula for the heat absorbed or released during a temperature change:

Q = m * c * ΔT

where Q is the heat absorbed or released, m is the mass of the substance, c is the specific heat of the substance, and ΔT is the change in temperature.

We can use this formula to calculate the heat released as the mercury cools from its original temperature to its melting point, and then use the formula for solidification to calculate the heat released as the mercury solidifies.

Let T be the original temperature of the mercury.

The heat released as the mercury cools from its original temperature to its melting point is:

Q1 = m * c * (T - 234)

The heat released as the mercury solidifies is:

Q2 = m * Lf

The total heat released is:

Q = Q1 + Q2 = m * c * (T - 234) + m * Lf

Substituting the values given in the problem, we get:

157 kJ = 5.00 kg * 140 J/kg . K * (T - 234) + 5.00 kg * 11.3 kJ/kg

Simplifying and solving for T, we get:

T = 260.6 K

Therefore, the original temperature of the mercury was 260.6 K.

Learn more about Energy here:

https://brainly.com/question/13881533

#SPJ1

A 27 g block of ice is cooled to −65 ◦C. It is added to 525 g of water in an 80 g copper calorimeter at a temperature of 25◦C. Find the final temperature. The specific
heat of copper is 387 J/kg ◦C and of ice is 2090 J/kg ◦C . The latent heat of fusion of
water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg ◦C . Answer in units of ◦C.

Answers

The final temperature after adding the ice to the water and calorimeter will be approximately 8.37 ◦C.

What is Temperature?

Temperature is a measure of the average kinetic energy of the particles in a substance or system. It is a scalar quantity that indicates how hot or cold an object or medium is. Temperature is commonly measured using various scales, such as Celsius (°C), Fahrenheit (°F), and Kelvin (K), which represent different reference points and units of measurement.

Since energy is conserved, we can set Q_ice equal to Q_water+calorimeter:

m_ice * c_ice * ΔT_ice = (m_water + m_calorimeter) * c_water+calorimeter * ΔT_water+calorimeter

27 g * 2090 J/kg ◦C * (T_f + 65) = (525 g + 80 g) * (4186 J/kg ◦C + 387 J/kg ◦C) * (T_f - 25)

Simplifying and solving for T_f:

27 * 2090 * (T_f + 65) = 605 * (T_f - 25)

56130 T_f + 361350 = 605 T_f - 15125

56130 T_f - 605 T_f = -15125 - 361350

-44,970 T_f = -376475

T_f = (-376475) / (-44,970)

T_f ≈ 8.37 ◦C

Learn more about Temperature from the given link

https://brainly.com/question/26866637

#SPJ1

50 POINTS!! NO BOTS
A tsunami (tidal wave) traveling across deep water can have a speed of 750 km/h
and a wavelength of 270 km
What is the frequency of such a wave?
Express your answer to two significant figures and include the appropriate units

Answers

The frequency of the tsunami wave is estimated at  0.001 Hz

How do we calculate?

Frequency is described as the number of occurrences of a repeating event per unit of time

Using  the formula for the speed of a wave:

v = λ  x frequency

where v is the wave speed, λ is the wavelength, and f_ is the frequency.

frequency = v / λ

Substituting  the values given in the problem, we have

frequency  = 750 km/h / 270 km = 2.78 h^(-1)

f_ = 2.78 h^(-1) * (3600 s/h) = 1.00 x 10^(-3) s^(-1) or   0.001 Hz

Learn more about frequency at: https://brainly.com/question/254161

#SPJ1

A light ray passing through air strikes the surface of a glass block (n=1.5) and makes 30° angle of incidence. How many degrees will the light ray deviate from its original path after refraction?​

Answers

The light ray will deviate from its original path with 19.5° after refraction.

How do we calculate?

Applying Snell's law to calculate the angle of refraction:

n1 sin θ1 = n2 sin θ2

where n1 and θ1 =  the refractive index and the angle of incidence in the first medium (air),

n2 and θ2 =  the refractive index and the angle of refraction in the second medium (glass).

In this example,

n1 = 1.00 (refractive index of air), θ1 = 30°, and

n2 = 1.5 (refractive index of glass).

We then calculate for  θ2:

n1 sin θ1 = n2 sin θ2

1.00 * sin 30° = 1.5 * sin θ2

0.5 = 1.5 * sin θ2

sin θ2 = 0.5 / 1.5 = 1/3

θ2 = sin^-1(1/3)

θ2 = 19.5°

Learn more about Snell's law at:

https://brainly.com/question/2273464

#SPJ1

For every baryon in the Universe, there are about 109 photons. The ratio of photons to baryons has been
constant since a few seconds after the big bang. This is a crucial number that sets the stage for much of
the future evolution of the Universe. If the number were just a little different, the Universe would be a
very different place, and life could possibly not exist. In this question we will use the photon-to-baryon
ratio to work out the redshift at which the Universe becomes dominated by matter, instead of by
radiation.
Assume that most of the photons in the present Universe are cosmic microwave radiation photons that
are a relic of the big bang. (It turns out that this is not a bad assumption). For simplicity, also assume
that all the photons have the energy corresponding to the wavelength of the peak of a 2.73K black-body
radiation curve. At approximately what redshift will the energy density in radiation be equal to the
energy density in matter?

Answers

The Universe became dominated by matter instead of radiation at a redshift of around 3300.

To determine at what redshift the Universe became dominated by matter, we need to find the redshift at which the energy density of matter becomes equal to the energy density of radiation.

Let's start with the energy density of radiation, which can be calculated using the Stefan-Boltzmann law:

$[tex]u_{rad} = \frac{4\sigma}{c}T^4$[/tex]

where $\sigma$ is the Stefan-Boltzmann constant, $c$ is the speed of light, and $T$ is the temperature of the radiation. Since we are assuming that the cosmic microwave radiation is a black-body radiation, we can use the temperature of 2.73 K, which corresponds to the peak of the radiation curve:

[tex]$u_{rad} = \frac{4\sigma}{c}(2.73K)^4 \approx 0.261 \text{ eV/cm}^3$[/tex]

Next, let's calculate the energy density of matter. We know that the number density of baryons is [tex]$n_b \approx \frac{1}{10^9}n_{\gamma}$, where $n_{\gamma}$[/tex] is the number density of photons. Since we are assuming that the photon-to-baryon ratio is constant, we can write:

[tex]$\frac{\rho_b}{\rho_{\gamma}} = \frac{m_b n_b}{\frac{4}{3}\sigma T^4} = \frac{3m_b}{4\sigma T^3 n_{\gamma}} \approx \frac{3m_b}{4\sigma T^3}\frac{1}{n_{\gamma}}$[/tex]

where $m_b$ is the mass of a baryon. Substituting the values, we get:

[tex]$\frac{\rho_b}{\rho_{\gamma}} \approx 4.15 \times 10^{-10}$[/tex]

Since the total energy density of the Universe is given by:

[tex]$\rho_{tot} = \rho_b + \rho_{\gamma}$[/tex]

we can write:

[tex]$\frac{\rho_b}{\rho_{tot}} = \frac{\rho_b}{\rho_b + \rho_{\gamma}} \approx \frac{\rho_b}{\rho_{\gamma}} = 4.15 \times 10^{-10}$[/tex]

At the redshift $z$, the energy density of radiation will be diluted by a factor of $[tex](1+z)^4[/tex]$, while the energy density of matter will be diluted by a factor of $[tex](1+z)^3[/tex]$. Thus, at some redshift $z$, we will have:

$  [tex]\frac{\rho_b}{\rho_{tot}} = \frac{\rho_b}{\rho_b + \rho_{\gamma}} = \frac{1}{1+z}\frac{3m_b}{4\sigma T^3 n_{\gamma}}[/tex]   $

Setting this equal to the value we calculated above, we can solve for $z$:

$   [tex]\frac{1}{1+z}\frac{3m_b}{4\sigma T^3 n_{\gamma}} \approx 4.15 \times 10^{-10}[/tex]  $

$  [tex]1+z \approx \frac{3m_b}{4\sigma T^3 n_{\gamma}}\frac{1}{4.15 \times 10^{-10}}[/tex]  $

$ [tex]z \approx 3300[/tex] $

Therefore, the Universe became dominated by matter instead of radiation at a redshift of around 3300.

To know more about density:

https://brainly.com/question/29775886

#SPJ1

Which of the following best describes the relationship between the two variables?​

Answers

Answer:

correlation is defined as the statistical association between two variables

Explanation:

a correction exits between two variables when one of them is related to the other in some way

Please help me in this question

Answers

The lift is the force created by the airplane's passage through the air. Lift is an aerodynamic force. ("aero" stands for the air, and "dynamic" denotes motion).

Plane take-offThe mechanical energy becomes kinetic energy when the airplane's speed rises. The mechanical energy is transformed into gravitational potential energy as the plane soars higher. Drag during flight results in some energy being wasted to thermal (heat) energy and sound energy.The engines, which turn chemical energy (fuel) into mechanical energy, supply the energy needed for the airplane to lift off. (the spinning of fan blades, or, in some cases, propellers). The airplane's speed is increased by the mechanical energy that creates thrust.

For more information on aero plane take-off kindly visit to

https://brainly.com/question/27936456

#SPJ1

30 POINTS!!!! NO CHATGPT OR ANY BOTS_


As you sit in a fishing boat, you notice that 12 waves pass the boat every 45 s
. If the distance from one crest to the next is 9.0 m
, what is the speed of these waves?
Express your answer to two significant figures and include the appropriate units.

Answers

The speed of the waves can be expressed to two significant figures as 0.2 m/s. The unit for this expression is meters per second (m/s).

What is wave crest?

A wave crest is the highest point of a wave. It is the top of the wave, where the wave is moving most up and away from the equilibrium position. It is the point of highest amplitude (height) of the wave and is followed by a wave trough, which is the lowest point of the wave.

The speed of the waves can be calculated using the formula speed = distance over time.

We know the distance between wave crests is 9.0 m and the time it takes for 12 waves to pass the boat is 45 s. Therefore, the speed of the waves can be calculated as:

Speed = 9.0 m / 45 s

Speed = 0.2 m/s

The speed of the waves can be expressed to two significant figures as 0.2 m/s. The unit for this expression is meters per second (m/s).

This calculation shows that the speed of the waves passing the boat is 0.2 m/s. This speed can be further broken down into how many meters the waves travel in one second if necessary.

For more questions related to speed

https://brainly.com/question/13943409

#SPJ1

can you please tell me where does 1-14 i really need help thanks :) god bless you all

Answers

The above has to do with the study of the earth's lithospheric plates. See the attached image and the explanation below.

What are the processes of the movement of lithospheric plates?

The movement of lithospheric plates is a geological process that occurs due to the motion of hot, molten material in the Earth's mantle. The lithosphere, which is the rigid outer layer of the Earth's surface, is divided into several large plates that move relative to each other.

These movements are caused by the convection of material in the mantle and the forces that arise at the boundaries between the plates.

There are three main types of plate boundaries: divergent, convergent, and transform. Divergent boundaries occur where plates move apart from each other, creating new oceanic crust. Convergent boundaries arise where plates collide, leading to subduction, volcanic activity, and the formation of mountains. Transform boundaries occur where plates slide past each other.

The movement of lithospheric plates gives rise to various geological phenomena, such as earthquakes, volcanic activity, and the formation of mountain ranges and ocean basins.

Learn more about movement of lithospheric plates:
https://brainly.com/question/2722711
#SPJ1

How can you determine the number of neutrons in an atom?

A. Mass number plus number of electrons
B. Atomic number minus mass number
C. Mass number minus atomic number
D. Atomic number plus mass number

Answers

Answer:

B. Atomic number minus mass number

Explanation:

The attractive electric force between the point charges q and −2q has a magnitude of 2.2 N when the separation between the charges is 1.4 m . k=8.99×109N⋅m2/C2

What is the magnitude of charge q?

Answers

The electric force between two point charges is given by the equation

[tex]F=k*q_1*q_2/r^2[/tex]

What is force?

The interaction between two things is measured by the physical quantity known as force. It is a vector quantity, and the sign F is frequently used to denote it. When an object interacts with another object, it feels a push or a pull.

where r is the distance between the charges, q1 and q2 are their magnitudes, and k is the Coulomb constant.

When we enter the problem's specified values, we obtain

[tex]2.2N=8.99*10^9\ N*m^2/C^2*q*-2q/(1.4 m)^2[/tex]

which simplifies to

q = -0.500 N/C.

Thus, the magnitude of charge q is 0.500 N/C.

To learn more about force, visit:

brainly.com/question/12785175

#SPJ1

If the speed of a wave is 400 cm/s with a frequency of 80 Hz, what is the wavelength for this wave?
32,000 cm
32,000 m
5 cm
5m

Answers

The speed of a wave is represented by the equation:

Speed = wavelength x frequency

We can rearrange this equation to solve for wavelength:

Wavelength = Speed / frequency

Plugging in the given values, we get:

Wavelength = 400 cm/s / 80 Hz
Wavelength = 5 cm

Therefore, the wavelength for this wave is 5 cm.
Other Questions
what is the authors purpose for writing the bully which country was prof lieth visiting at the time that he was inspired to create the flower power course? Solve for y in the two equations below using substitution. 3x - 9y =8-2x + 2y= 8 As Pippa threads a needle, her eyes rotate inward. She knows the needle is close enough to perform the task by virtue of the depth cue termed:a. binocular disparity.b. occlusion.c. convergence. d. parallax. An owner has retain 3 separate brokers using open listing agency agreements. Broker a holds an open house at the property every weekend. Broker be frequently advertises of property in the local newspaper. Broker C shows the property to several prospective buyers was unsuccessful in obtaining and offer. One weekend a prospect, carrying a newspaper containing broker be and for the property, arrives several hours before broker a open house is scheduled to begin. The owners shows the property to the prospect in suspects fully ned go sheaedes a sale agreement. When broker a arrives for the open house the owner advises her that the property has been sold that morning the commission is ? the unnatual and human-induced change that destroys the resilience and biological potential of an arid and semi-arid ecosystem, and that has been quite common in the sahel region for the last several decades, is called . Mohal plans to repaint some classroom bookcases. He has 1 1 /8 gallons of paint. All of the bookcases are the same size and each requires 1/8gallon of paint. How many bookcases will he be able to paint? Sarah has $1,000,000 of her companys funds available for covered interest arbitrage. The U.S. interest rate is 5%, and Sarah would like to earn a higher rate if she can. The oneyear interest rate in Zambia is 12 percent. Sarah knows the Zambian currency, the kwacha, is likely to depreciate over the next year, which will offset at least some of the higher interest she could earn in Zambia. The spot rate of the Zambian currency, the kwacha, is $.056, and the one-year forward rate of the Zambian kwacha is $.054. What profits, if any can Sarah make using the $1,000,000 in U.S. dollars for covered interest arbitrage with Zambian kwacha? (Be sure to express the profits in U.S. dollars.) A financial institution has written currency call options for a multinational corporation. The financial institution's portfolio is currently delta neutral, but not gamma or vega neutral. To make the portfolio delta, gamma and vega neutral, the financial institution must be able to buy or sell a. Two traded options. b. The underlying asset and one traded option c. The underlying asset or a futures contract, and two traded options d. One traded option Widely recognized as one of the founding fathers of modern conservatism, and renowned as a relentless critic of the French Revolution, Edmund Burke nonetheless believed in the necessity of change, as he wrote: "a society without the means of some change is without the means of its conservation". How did he reconcile these seemingly contradictory approaches to politics and society? Elaborate with particular reference to his political thoughts on history, tradition, civic morals and prejudice. Please help me please tysm and have a great day :) Construct a two-way frequency table for the data. Include row and column totals. Hint: Let column categories be labeled by after school activity.Every student at Georgia Southern Middle School participates in exactly one after school activity. The school activities coordinator recorded data on after extracurricular activityand grade for all 254 students in 7th grade and 8th grade.The counselor's findings for the 254 students are the following: Of the 80 students enrolled in music, 42 are in 7th grade... Of the 21 students enrolled in student government, 9 are in 8th grade..Of the 65 students enrolled in theatre, 20 are in 7th grade.. Of the 88 students enrolled in sports, 30 are in 8th grade. T/F information moves in both directions in the service chain for mobile workers Consider the following information regarding corporate bonds: Rating AAA AA A BBB BB B CCC Average Default Rate 0.0% 0.1% 0.2% 0.5% 2.2% 5.5% 12.2% Recession Default Rate 0.0% 1.0% 3.0% 3.0% 8.0% 16.0% 48.0% Average Beta 0.05 0.05 0.05 0.10 0.17 0.26 0.31 Wyatt Oil has a bond issue outstanding with seven years to maturity, a yield to maturity of 7.0%, and a BBB rating. The bondholders' expected loss rate in the event of default is 70%. Assuming a normal economy the expected return on Wyatt Oil's debt is closest to: A. 3.5% B. 4.9% C. 6.7% D. 3.0% consider a solid sphere of uniform density, total mass m and radius r that is rotating about the axis shown, which lies along its outer edge. what is the moment of inertia about this axis? what time does a 12-hour clock read a) 80 hours after it reads 11:00? b) 40 hours before it reads 12:00? c) 100 hours after it reads 6:00? chantell, a seller on amazon, wants her products to be visible when shoppers select the prime filter during their search process. which shipping option should she use? 10 famous authors with their background and woks. we say that in embedded operating systems, if the highest-priority user thread is executing when a high-priority interrupt occurs, most operating systems will continue to process the user thread and keep the interrupt in the queue until processing is completed. under what circumstances would this be, and would this not be a problem? give an example of each the area involved with interpreting what we read and hear is