Answer:
0.546 [tex]\hat k[/tex]
Explanation:
From the given information:
The force on a given current-carrying conductor is:
[tex]F = I ( \L \limits ^ {\to } \times B ^{\to})\\ \\ dF = I(dL\limits ^ {\to } \times B ^{\to})[/tex]
where the length usually in negative (x) direction can be computed as
[tex]\L ^ {\to } = -x\hat i \\dL\limits ^ {\to }- dx\hat i[/tex]
Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:
[tex]\int dF = \int ^3_1 I ( dL^{\to} \times B ^{\to})[/tex]
[tex]F = I \int^3_1 ( -dx \hat i ) \times ( 4.0 \hat i + 9.0 \ x^2 \hat j)[/tex]
[tex]F = I \int^3_1 - 9.0x^2 \ dx \hat k[/tex]
[tex]F = I (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k[/tex]
[tex]F = I (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ] \hat k[/tex]
where;
current I = 7.0 A
[tex]F = (7.0 \ A) (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ] \hat k[/tex]
[tex]F = (7.0 \ A) (9.0) \bigg [\dfrac{26}{3} \bigg ] \hat k[/tex]
F = 546 × 10⁻³ T/mT [tex]\hat k[/tex]
F = 0.546 [tex]\hat k[/tex]
A radio signal has a frequency of 1.023 x 108 HZ. If the speed of the signal in air is 2.997 x 108m/s, what is the wavelength of the signals? а 7.15 m b 5.23 m C 2.93 m d 0.93 m
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
how does the uneaven heating of earths surface affects earths weather patterns
Answer: it causes some parts of the earth to get more radiation than others.
Explanation: earth rotates around the sun on a tilted axis so the Rays of the sun cause earth to have more radiation than it needs.
a car accelerates at a constant rate from 15 m/s to 25 m/s while it travels a distance of 125 m. How long does it take to achieve this speed?
The time taken by the car to achieve the final speed is 6.25 seconds.
What is the equation of motion?The equations of motion can be defined as the equation that represents the relationship between the time, velocity, acceleration, and displacement of a moving object.
The mathematical expressions for the equations of motions can be written as:
[tex]v= u+at\\S=ut+(1/2)at^2\\v^2-u^2=2aS[/tex]
Given, the initial speed of the car, u = 15 m/s
The final speed of the given car, v = 25m/s
The distance covered by car, S = 125 m
From the third equation of motion: v² = u²+ 2aS
(25)² = (15)² + 2×a× 125
a = 1.6 m/s²
From the first equation of motion we can find the time to achieve the final speed:
v = u+ at
25 = 15 + (1.6) × t
t = 6.25 sec
Therefore, 6.25 seconds will be taken by the car to catch the final speed.
Learn more about the equation of motion, here:
brainly.com/question/16982759
#SPJ5
A child whose weight is 287 N slides down a 7.20 m playground slide that makes an angle of 31.0° with the horizontal. The coefficient of kinetic friction between slide and child is 0.120. (a) How much energy is transferred to thermal energy? (b) If she starts at the top with a speed of 0.559 m/s, what is her speed at the bottom?
Answer:
a
[tex]H =212.6 \ J[/tex]
b
[tex]v = 7.647 \ m/s[/tex]
Explanation:
From the question we are told that
The child's weight is [tex]W_c = 287 \ N[/tex]
The length of the sliding surface of the playground is [tex]L = 7.20 \ m[/tex]
The coefficient of friction is [tex]\mu = 0.120[/tex]
The angle is [tex]\theta = 31.0 ^o[/tex]
The initial speed is [tex]u = 0.559 \ m/s[/tex]
Generally the normal force acting on the child is mathematically represented as
=> [tex]N = mg * cos \theta[/tex]
Note [tex]m * g = W_c[/tex]
Generally the frictional force between the slide and the child is
[tex]F_f = \mu * mg * cos \theta[/tex]
Generally the resultant force acting on the child due to her weight and the frictional force is mathematically represented as
[tex]F =m* g sin(\theta) - F_f[/tex]
Here F is the resultant force and it is represented as [tex]F = ma[/tex]
=> [tex]ma = m* g sin(31.0) - \mu * mg * cos (31.0)[/tex]
=> [tex]a = g sin(31.0)- \mu * g * cos (31.0)[/tex]
=> [tex]a = 9.8 * sin(31.0) - 0.120 * 9.8 * cos (31.0)[/tex]
=>[tex]a = 4.039 \ m/s^2[/tex]
So
[tex]F_f = 0.120 * 287 * cos (31.0)[/tex]
=> [tex]F_f = 29.52 \ N[/tex]
Generally the heat energy generated by the frictional force which equivalent tot the workdone by the frictional force is mathematically represented as
[tex]H = F_f * L[/tex]
=> [tex]H = 29.52 * 7.2[/tex]
=> [tex]H =212.6 \ J[/tex]
Generally from kinematic equation we have that
[tex]v^2 = u^2 + 2as[/tex]
=> [tex]v^2 = 0.559^2 + 2 * 4.039 * 7.2[/tex]
=> [tex]v = \sqrt{0.559^2 + 2 * 4.039 * 7.2}[/tex]
=> [tex]v = 7.647 \ m/s[/tex]
please help i will mark brainliest
what does a speedometer measure?
a. accerlation
b. velocity
c. speed
d. average speed.
Answer:
c. speed
Explanation:
Speedometer is a device used to measure the speed of a vehicle. I am pretty sure this is the correct option.
Which term refers to the ability to do work?
o energy
power
force
motion
PLEAEE HURRY IM DOING MY EXAM PLEASE HELP WILL MARK BRAINLIEST
Answer:
Energy
Explanation:
work is actually a transfer of energy. When work is done to an object , energy is transferred to that object.
The ability to do work is called energy.
What is work ?"Work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement."
What is energy ?"Energy is defined as the “ability to do work, which is the ability to exert a force causing displacement of an object.” energy is just the force that causes things to move. Energy is divided into two types: potential and kinetic."
Know more about energy here
https://brainly.com/question/1932868
#SPJ2
The sound intensity at 4 m from a source is 100 W/me. What is the intensity of the sound at 12 m away from the source ?
Answer:
Intensity at 12 meters will be 11.11 W/m^2
Explanation:
Recall that the intensity of sound is inversely proportional to the square of the distance from the source. Therefore, if at 4 m the intensity is 100 W/m^2
we have: 100 W/m^2 = k/16 and therefore, k = 1600 W
Then the intensity (I) at 12 m will be:
I = k/12^2 = 1600/144 W/m^2 = 11.11 W/m^2
why is The sum of two vectors has the smallest magnitude when the angle between these two vectors is 180t
Answer:
C = A - B
Explanation:
The addition of vectors takes into account the magnitude of each vector and its direction, so when adding two vectors, the result depends on the direction of the vectors.
* If the vectors have the same direction the result is maximum
C = A + A
* if the vectors have 90 between them, the magnitude of the result is given by the Pythagorean Theorem
C = √(A² + B²)
* if the vectors have 180º between them the result is minimal
C = A - B
We can also perform this sum graphically, where the resulting vector goes from the origin of the first vector to the tip of the last one, it can clearly be seen that when the vectors are antiparallel (180º angle) the magnitude is minimal
A car traveling initially at a speed of 20 m/s accelerates to a speed of 31 m/s over a distance of 45 meters.
What is the magnitude of the car's acceleration?
Answer:abc defg hijk lmnop qrs tuv wx y and z
Explanation: now i know my abc's
A medicine ball has a mass of 5kg and is thrown with a speed of 3 m/sec what is it's kinetic energy
Which statement explains how it is possible to carry books to school without changing the kinetic or potential energy of the books or doing any work?
a. by moving the book without acceleration and keeping the height of the book constant
b. by moving the book with acceleration and keeping the height of the book constant
c. by moving the book without acceleration and changing the height of the book
d. by moving the book with acceleration and changing the height of the book
Answer:
a. by moving the book without acceleration and keeping the height of the book constant
Explanation:
FOR CONSTANT KINETIC ENERGY:
The kinetic energy of a body depends upon its speed according to its formula:
ΔK.E = (1/2)mΔv²
So, for Δv = 0 m/s
ΔK.E = 0 J
So, for keeping kinetic energy constant, the books must be moved at constant speed without acceleration.
FOR CONSTANT POTENTIAL ENERGY:
The potential energy of a body depends upon its height according to its formula:
ΔP.E = mgΔh
So, for Δh = 0 m/s
ΔP.E = 0 J
So, for keeping potential energy constant, the books must be moved at constant height.
So, the correct option is:
a. by moving the book without acceleration and keeping the height of the book constant
A 1150 kg car is on a 8.70° hill.
Using X-Y axes tilted down the
plane, what is the y-component
of the weight?
Answer:
Explanation:
y-component = - mgcos(8.7)
= - (1150)(9.81)cos(8.7)
= - 11151.69378
= - 11151.69 N
The weight of the y-component is 11140.33N.
How to find the weight of the y-component?
To find the weight of the y-component:
Given,
Car weight = 1150 kg
Anfle = 8.70 degree
weight = mg = 1150 * 9.8
= 11270 N
Y-component = mg cos∅
= 11270 * cos(8.70)
= 11140.33N
The aspect that pushes proper or left is referred to as the x-factor, and the element that pushes up or down is known as the y-component.
Learn more about y-component here: brainly.com/question/26700114
#SPJ2
Prove that you can do a one foot spin.
A 8.45μC particle with a mass of 6.15 x 10^-5 kg moves perpendicular to a 0.493-T magnetic field in a circular path of radius 34.1 m. How much time will it take for the particle to complete one orbit?
a. 92.7 s
b. 0.0927 s
c. 9.27 s
d. 927 s
This question is incomplete, the complete question is;
A 8.45μC particle with a mass of 6.15 x 10⁻⁵ kg moves perpendicular to a 0.493-T magnetic field in a circular path of radius 34.1 m.
How much time will it take for the particle to complete one orbit?
a. 92.7 s
b. 0.0927 s
c. 9.27 s
d. 927 s
Answer:
it will take 92.7 seconds for the particle to complete one orbit.
Option a) 92.7 s is the correct option
Explanation:
Given that;
mass m = 6.15 x 10⁻⁵ kg
q = 8.45μC = 8.45 × 10⁻⁶ C
B = 0.493
we know that
Time period T = 2πr / V
where r = mv/qB
so T = 2πm/qB
we substitute
T = (2 × 3.14 × 6.15 x 10⁻⁵) / ( 8.45 × 10⁻⁶ × 0.493)
T = 0.0003862 / 0.000004165
T = 92.7 sec
Therefore it will take 92.7 seconds for the particle to complete one orbit.
Option a) 92.7 s is the correct option
is 2/2 1 or 0? please help lol
Answer:
1.
Explanation:
Hello!
In this case, for such mathematical operations, we can wee that the slash represents a fraction or a division, say 8 ÷ 4 = 2, 6 ÷ 3 = 2, 20 ÷ 4 = 5, etc. In such a way, since the operation 2/2, represents 2 ÷ 2, it is clear that two is once in 2, therefore, the result is:
2 ÷ 2 = 1.
Best regards!
that delivers oxygen to your body and In the video your blood is compared to a picks up CO2 to be released out when you breath. PLEASE I NEED A ANSWER
Mr Jones launches an arrow horizontally at a rate of 40m/s off of a 78.4 m cliff towards the south, what direction and value is his acceleration air resistance is negligible.
A. 9.8 m/s/s west
b. 9.8m/s/s east
C. 9.8m/s's down
d 9.8m/s/s south
Answer:
9.8m/s^2 down (option C)
Explanation:
The only acceleration acting on this motion case in the acceleration due to gravity: 9.8 m/s^2 in the downwards direction.
If 500 cal of heat are added to a gas, and the gas expands doing 500 J of work on its surroundings, what is the change in the internal energy of the gas?
Answer:
The change in the internal energy of the gas 1,595 J
Explanation:
The first law of thermodynamics establishes that in an isolated system energy is neither created nor destroyed, but undergoes transformations; If mechanical work is applied to a system, its internal energy varies; If the system is not isolated, part of the energy is transformed into heat that can leave or enter the system; and finally an isolated system is an adiabatic system (heat can neither enter nor exit, so no heat transfer takes place.)
This is summarized in the expression:
ΔU= Q - W
where the heat absorbed and the work done by the system on the environment are considered positive.
Taking these considerations into account, in this case:
Q= 500 cal= 2,092 J (being 1 cal=4.184 J) W=500 JReplacing:
ΔU= 2,092 J - 500 J
ΔU= 1,592 J whose closest answer is 1,595 J
The change in the internal energy of the gas 1,595 J
2. An ambulance traveling at 20 m/s emits a sound at 500 Hz. What frequency does a person standing on the corner of a street detect?
Which interaction contributes to the greenhouse effect?
A (Gases in the atmosphere absorb heat.
B (Dust particles scatter and reflect light from the Sun.
C (Green visible light is trapped in Earth’s atmosphere.
D (Light travels through a thick part of the atmosphere at sunrise and sunset.
Answer:
A
Explanation:
Answer:
A
Explanation:
Gases in the atmosphere absorb heat.
You know when you have a blanket around you and some heat gets trapped in but some still gets out. Thats basically what it is.
Plus I got it right in multiple questions including the test!
I hope that reassured you!
Have a good night!
If a ball rolls down an incline with a starting velocity of 0m/s and a final velocity of 6m/s
and it takes a total of 1.4 seconds, calculate its acceleration.
Answer:
If a ball rolls down an incline with a starting velocity of 0m/s and a final velocity of 6m/s
and it takes a total of 1.4 seconds, calculate its acceleration.
Answer:
Acceleration is 4.28 m/s²
Explanation:
Acceleration is change of speed in time. To solve this, we will assume that the acceleration is constant, meaning that every second the velocity increases for the same constant value.
a = ∆v/t
∆v is the difference between two measured velocities:
a = (v2 - v1) / t
v1 = 0m/s
v2 = 6m/s
t = 1.4 s
Now, we only plug in the given values:
a = (6 - 0) / 1.4
a = 6 m/s / 1.4 s
a = 4.28 m/s²
In the video your blood is compared to a __________________ that delivers oxygen to your body and picks up CO2 to be released out when you breath.
Answer:
Delivery truck
Explanation:
The particle accelerator at CERN can accelerate an electron through a potential
difference of 80 kilovolts. Calculate
(a) The kinetic energy (in keV) of the electron
Answer:
K.E = 1.28 × 10^-17 KeV
Explanation:
Given that a particle accelerator at CERN can accelerate an electron through a potentialdifference of 80 kilovolts.
To Calculate the kinetic energy (in keV) of the electron, let us first find the electron charge which is 1.60 × 10^-19C
The kinetic energy = work done
K.E = e × kV
Substitute e and the voltage into the formula
K.E = 1.60 × 10^-19 × 80
K.E = 1.28 × 10^-17 KeV
Therefore, the kinetic energy is approximately equal to 1.28 × 10^-17 KeV
A film of soapy water on top of a plastic cutting board has a thickness of 255 nm. What wavelength and color is most strongly reflected if it is illuminated perpendicular to its surface?
Answer:
the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color
Explanation:
This is a case of reflection interference, we must be careful
* There is a 180º phase change when light passes from the air to the soap film (n = 1,339), but there is no phase change when passing from the pomp to the plastic (n = 1.3)
* the wavelength within the film is modulated by the refractive index
λₙ = λ₀ / n
if we consider these relationships the condition for constructive interference is
2 t = (m + ½) λₙ
2t = (m + ½) λ₀ / n
λ₀ = 2t n / (m + ½)
we substitute the values
λ₀= 2 255 10⁻⁹ 1,339 / (m + ½)
λ₀ = 6.829 10⁻⁷ (m + ½)
let's calculate the wavelength for various interference orders
m = 0
λ₀ = 6.829 10⁻⁷/ ( 0 + ½ )
λ₀ = 13.6 10⁻⁷
it is not visible
m = 1
λ₀ = 6,829 10⁻⁷/ (1 + ½)
λ₀ = 4.55 10⁻⁷
color blue
m = 2
λ₀ = 6.829 10⁻⁷ / (2 + ½)
λ₀ = 2,7 10⁻⁷
it is not visible
therefore the reflected wavelength is lano = 4.55 10⁻⁷ m which corresponds to the blue color
A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 50 m. If he completes the 200 m dash in 29.6 s and runs at constant speed throughout the race, what is the magnitude of his centripetal acceleration (in m/s2) as he runs the curved portion of the track?
Answer:
The centripetal acceleration of the runner as he runs the curved portion of the track is 0.91 m/s²
Explanation:
Given;
distance traveled in the given time = 200 m
time to cover the distance, t = 29.6 s
speed of the runner, v = d / t
v = 200 / 29.6
v = 6.757 m/s
The centripetal acceleration of the runner is given by;
[tex]a_c = \frac{V^2}{r}[/tex]
where;
r is the radius of the circular arc, given as 50 m
Substitute the givens;
[tex]a_c = \frac{V^2}{r}\\\\a_c = \frac{(6.757)^2}{50}\\\\a_c = 0.91 \ m/s^2[/tex]
Therefore, the centripetal acceleration of the runner as he runs the curved portion of the track is 0.91 m/s².
You want to lean your dad's ladder on a smooth wall. If the mass of ladder is 4.42 kg and coefficient
of friction of the floor is 0.53, what is the minimum angle, theta-min at which the ladder does nofip? What
do you think the maximum angle theta-max could be? Sketch and label your free body diagram.
(5 marks)
Answer:
angle minimum θ = 41.3º
Explanation:
For this exercise let's use Newton's second law in the condition of static equilibrium
N - W = 0
N = W
The rotational equilibrium condition, where we place the axis of rotation on the wall
We assume that counterclockwise rotations are positive
fr (l sin θ) - N (l cos θ) + W (l/2 cos θ) = 0
the friction force formula is
fr = μ N
fr = μ W
we substitute
μ m g l sin θ - m g l cos θ + mg l /2 cos θ = 0
μ sin θ - cos θ + ½ cos θ= 0
μ sin θ - ½ cos θ = 0
sin θ / cos θ = 1/2 μ
tan θ = 1/2 μ
θ = tan⁻¹ (1 / 2μ)
θ = tan⁻¹ (1 (2 0.57))
θ = 41.3º
An inductor is connected to a 26.5 Hz power supply that produces a 41.2 V rms voltage. What minimum inductance is needed to keep the maximum current in the circuit below 126 mA?
Answer:
The minimum inductance needed is 2.78 H
Explanation:
Given;
frequency of the AC, f = 26.5 Hz
the root mean square voltage in the circuit, [tex]V_{rms}[/tex] = 41.2 V
the maximum current in the circuit, I₀ = 126 mA
The root mean square current is given by;
[tex]I_{rms} = \frac{I_o}{\sqrt{2} } \\\\I_{rms} = \frac{126*10^{-3}}{\sqrt{2} }\\\\I_{rms} =0.0891 \ A[/tex]
The inductive reactance is given by;
[tex]X_l = \frac{V_{rms}}{I_{rms}} \\\\X_l= \frac{41.2}{0.0891}\\\\X_l = 462.4 \ ohms[/tex]
The minimum inductance needed is given by;
[tex]X_l = \omega L\\\\X_l = 2\pi fL\\\\L = \frac{X_l}{2\pi f}\\\\L = \frac{462.4}{2\pi *26.5}\\\\L = 2.78 \ H[/tex]
Therefore, the minimum inductance needed is 2.78 H
F = 5 Newtons
W = 75 Joules
d = ?
ANSWER
A car is moving at an average speed of 20 meters per second. This is equivalent to
Answer:
44.73 MP/H or 71.98 KM/H
Explanation:
A hydraulic car jack needs to be designed so it can lift a 2903.57 lb car assuming that a person can exert a force of 24.41 lbs. If the piston the person is pushing on had a radius of 3.26 cm, what should the diameter of the piston be that is used to raise the car?
Answer:
Diameter of the piston would be 0.71 m (71.1 cm)
Explanation:
From the principle of pressure;
[tex]\frac{F_{1} }{A_{1} }[/tex] = [tex]\frac{F_{2} }{A_{2} }[/tex]
Let [tex]F_{1}[/tex] = 2903.57 lb, [tex]F_{2}[/tex] = 24.41 lbs, [tex]r_{2}[/tex] = 3.26 cm = 0.0326 m.
[tex]A_{2}[/tex] = [tex]\pi r^{2}[/tex]
= [tex]\frac{22}{7}[/tex] x [tex](0.0326)^{2}[/tex]
= 0.00334 [tex]m^{2}[/tex]
So that:
[tex]\frac{2903.57}{A_{1} }[/tex] = [tex]\frac{24.41}{0.00334}[/tex]
[tex]A_{1}[/tex] = [tex]\frac{2903.57*0.00334}{24.41}[/tex]
= 0.3973
[tex]A_{1}[/tex] = 0.4 [tex]m^{2}[/tex]
The radius of the piston can be determined by:
[tex]A_{1}[/tex] = [tex]\pi r^{2}[/tex]
0.3973 = [tex]\frac{22}{7}[/tex] x [tex]r^{2}[/tex]
[tex]r^{2}[/tex] = [tex]\frac{0.3973*7}{22}[/tex]
= 0.1264
r = [tex]\sqrt{0.1264}[/tex]
= 0.3555
r = 0.36 m
Diameter of the piston = 2 x r
= 2 x 0.3555
= 0.711
Diameter of the piston would be 0.71 m (71.1 cm).