Correct question:
A motorcycle stunt rider jumped across the Snake River. The path of his motorcycle was given
approximately by the function H(t) = - 0.0004.x2 + 2.582 + 700, where H is measured in
feet above the river and is the horizontal distance from his launch ramp.
How high above the river was the launch ramp?
What was the rider's maximum height above the river, and how far was the ramp when he reached maximum height?
Answer:
A) 700 feet ; 4866.7025 feet above the river
3227.5 Feets from the ramp
Step-by-step explanation:
Given the Height function:
H(t) = 0.0004x^2 + 2.582x + 700
H = height in feet above the river
x = horizontal distance from launch ramp.
How high above the river was the launch ramp?
H(t) = - 0.0004x^2 + 2.582x + 700
To find height of launch ramp above the river, we set the horizontal distance to 0, because at this point, the motorcycle stunt rider is on the launch ramp and thus the value of H when x = 0 should give the height of the launch ramp above the river.
At x = 0
Height (H) =
- 0.0004(0)^2 + 2.582(0)+ 700
0 + 0 + 700 = 700 Feets
B) Maximum height abive the river and how far the rider is from the ramp when maximum height is reached :
Taking the derivative of H with respect to x
dH'/dx = 2*-(0.0004)x^(2-1) + 2.582x^(1-1) + 0
dH'/dx = 2*-(0.0004)x^(1) + 2.582x^(0) + 0
dH'/dx = - 0.0008x + 2.582
Set dH'/dx = 0 and find x:
0 = - 0.0008x + 2.582
-2.582 = - 0.0008x
x = 2.582 / 0.0008
x = 3227.5 feets
To get vertical position at x = 0
Height (H) =
- 0.0004(3227.5)^2 + 2.582(3227.5)+ 700
- 4166.7025 + 8333.405 + 700
= 4866.7025 feet
4866.7025 feet above the river
3227.5 Feets from the ramp
Using quadratic function concepts, it is found that:
The launch ramp was 700 feet above the river.The maximum height is of 4866.7 feet.The ramp was 3227.5 feet along when he reached maximum height.The height after x seconds is given by the following equation:
[tex]H(x) = -0.0004x^2 + 2.582x + 700[/tex]
Which is a quadratic equation with coefficients [tex]a = -0.0004, b = 2.582, c = 700[/tex]
The height of the ramp is the initial height, which is:
[tex]H(0) = -0.0004(0)^2 + 2.582(0) + 700 = 700[/tex]
Thus, the launch ramp was 700 feet above the river.
The maximum height is the h-value of the vertex, given by:
[tex]h_{MAX} = -\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a}[/tex]
Then, substituting the coefficients:
[tex]h_{MAX} = -\frac{(2.582)^2 - 4(-0.0004)(700)}{4(-0.0004)} = 4866.7[/tex]
The maximum height is of 4866.7 feet.
The horizontal distance is the x-value of the vertex, given by:
[tex]x_V = -\frac{b}{2a} = -\frac{2.582}{2(-0.0004)} = 3227.5[/tex]
The ramp was 3227.5 feet along when he reached maximum height.
A similar problem is given at https://brainly.com/question/24705734
Does anyone know the answers to these?
Step-by-step explanation:
a. The point estimate is the mean, 47 days.
b. The margin of error is the critical value times the standard error.
At 31 degrees of freedom and 98% confidence, t = 2.453.
The margin of error is therefore:
MoE = 2.453 × 10.2 / √32
MoE = 4.42
c. The confidence interval is:
CI = 47 ± 4.42
CI = (42.58, 51.42)
d. We can conclude with 98% confidence that the true mean is between 42.58 days and 51.42 days.
e. We can reduce the margin of error by either increasing the sample size, or using a lower confidence level.
An exterior angle of a triangle is 120° and one of the interior opposite angle is 50°. Find the other two angles of the triangle.
Answer:
interior angle (2)= 70
interior angle (3)= 60
Step-by-step explanation:
Given:
exterior angle=120°
interior angle (1)=50°
Required:
interior angle (2)=?
interior angle (3)=?
Formula:
exterior angle=interior angle (1) + interior angle (2)
Solution:
exterior angle=interior angle (1)+ interior angle (2)
120°=50°+interior angle (2)
120°+50°=interior angle (2)
70°=interior angle (2)
interior angle (3)= 180°-interior angle (1)- interior angle (2)
interior angle (3)=180°-50°+70°
interior angle (3)=180°-120°
interior angle (3)= 60°
Theorem:
Theorem 1.16
The measure of an exterior angle of a triangle is greater than either of the measures of the remote interior angles.
Hope this helps ;) ❤❤❤
A necklace was on sale for 20% discount off the original price of
$1250.00. What was the final sale price if 12.5% VAT has to be
paid?
Answer:
= $ [tex] \mathsf{1125}[/tex]Step-by-step explanation:
[tex] \mathrm{Given}[/tex],
[tex] \mathrm{Discount\% = 20\%}[/tex]
[tex] \mathrm{Marked \: price = 1250}[/tex]
[tex] \mathrm{Now \: let's \: find \: the \: discount \: amount}[/tex]
[tex] \mathrm{discount \: amount = dis\% \: of \: MP}[/tex]
[tex] \mathrm { = 20\% \: of \: 1250}[/tex]
[tex] \mathrm{ = 250}[/tex]
[tex] \mathrm{let's \: find \: the \: selling \: price}[/tex]
[tex] \mathrm{ = MP \: - \: discount \: amount}[/tex]
[tex] \mathrm{ = 1250 - 250}[/tex]
= $ [tex] \mathrm{1000}[/tex]
[tex] \mathrm{lets \: find \: the \: Vat \: amount}[/tex]
[tex] \mathrm{vat \: amount = vat\% \: of \: sp}[/tex]
[tex] \mathrm{ = 12.5\% \: of \: 1000}[/tex]
= $ [tex] \mathrm{ 125}[/tex]
[tex] \mathrm{Now \: finally \: let's \: find \: the \: selling \: price \: with \: vat}[/tex]
[tex] \mathrm{selling \: price \: + \: vat \: amount}[/tex]
[tex] \mathrm{ = 1000 + 125}[/tex]
= $ [tex] \mathrm{1125}[/tex]
Therefore, The final sale of the necklace is $ 1125
Hope I helped
Best regards!
Which number line represents the solution set for the inequality 3(8 - 4x) < 6(x - 5)?
Answer:
x>3
Step-by-step explanation:
Graph y less than or equal to 3x
Answer:
See Image Below.
Step-by-step explanation:
The Shaded region is the area of numbers that this equation satisfies.
Answer:
Please see attached image
Step-by-step explanation:
In order to graph the inequality, start from plotting the boundary line defined by the equality;
y = 3 x
You just need two points to accomplish such. so let's use two simple values for x and find what the y-values are:
for x = 0 then y = 3 (0) = 0
for x = 1 then y = 3 (1) = 3
Then use the points (0, 0) and (1, 3) to plot the boundary line.
After this, grab any point on the plane either clearly above the boundary line, or clearly below it and check if the inequality satisfies. For example, you can pick the point (3, 0) which is on the x line, 3 units to the right of the origin, and clearly below the boundary line we just plot.
When you use it in the inequality, you get:
(0) [tex]\leq[/tex] 3 (3)
0 [tex]\leq[/tex] 9
which is a true statement, therefore, the points below the boundary lie are also solutions of the inequality.
Then the solution consists of all the points in the boundary line we just plotted (and indicated by drawing a solid line), plus all the points below the line, as depicted in the attached image.
The length of a rectangle is four times its width. If the perimeter of the rectangle is 50 yd, find its area
Answer:
100yd²
Step-by-step explanation:
length=4x
width=x
perimeter=2(l+w)
50=2(4x+x)
50=2(5x)=10x
50=10x
x=5yd
width=5yd
length=20yd
area=length×width
=20×5
=100yd²
Answer:
[tex]\boxed{\red{100 \: \: {yd} ^{2}}} [/tex]
Step-by-step explanation:
width = x
length = 4x
so,
perimeter of a rectangle
[tex] p= 2(l + w) \\ 50yd = 2(4x + x) \\ 50yd= 2(5x) \\ 50yd= 10x \\ \frac{50yd}{10} = \frac{10x}{10} \\ x = 5 \: \: yd[/tex]
So, in this rectangle,
width = 5 yd
length = 4x
= 4*5
= 20yd
Now, let's find the area of this rectangle
[tex]area = l \times w \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 20 \times 5 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 100 {yd}^{2} [/tex]
Louden County Wildlife Conservancy counts butterflies each year. Data over the last three years regarding four types
of butterflies are shown below. What is the average number of Variegated Fritillaries for all three samples?
A. 55 B.83 C.106 D.165
Answer:
A). 55
Step-by-step explanation:
Number of Variegated Fritillaries for each year is
2009 = 7
2010= 95
2011= 63
The sum total of the samples= 7+95+63
The sum total of the samples= 165
Number of years= 3
The average= total/number of years
The average= 165/3
The average= 55
Answer: A
Step-by-step explanation: I have a massive brain (•-*•)
the product of two consequtive integers is 72 the equation x(x+1)=72 represents the situation, where x represents the smaller integer, which equation can be factor and solve for the smaller integer?
Answer:
x² + x - 72 = 0 can be factored into (x - 8)(x + 9) = 0 to find your answer.
Step-by-step explanation:
Step 1: Distribute x
x² + x = 72
Step 2: Move 72 over
x² + x - 72 = 0
Step 3: Factor
(x - 8)(x + 9) = 0
Step 4: Find roots
x - 8 = 0
x = 8
x + 9 = 0
x = -9
Answer:
x² + x - 72 = 0 ⇒ (x - 8)(x + 9) = 0
Step-by-step explanation:
Let the first consecutive integer be x.
Let the second consecutive integer be x+1.
The product of the two consecutive integers is 72.
x(x + 1) = 72
x² + x = 72
Subtracting 72 from both sides.
x² + x - 72 = 0
Factor left side of the equation.
(x - 8)(x + 9) = 0
Set factors equal to 0.
x - 8 = 0
x = 8
x + 9 = 0
x = -9
8 and -9 are not consecutive integers.
Try 8 and 9 to check.
x = 8
x + 1 = 9
x(x+1) = 72
8(9) = 72
72 = 72
True!
The two consecutive integers are 8 and 9.
The board of directors of Midwest Foods has declared a dividend of $3,500,000. The company has 300,000 shares of preferred stock that pay $2.85 per share and 2,500,000 shares of common stock. After finding the amount of dividends due the preferred shareholders, calculate the dividend per share of common stock.
Answer:
$855,000Dividend per share of common stock = $1.06Step-by-step explanation:
1. Preferred Share dividends.
There are 300,000 preference shares and each of them got $2.85. Total dividends are;
= 300,000 * 2.85
= $855,000
2. Total dividends = $3,500,000
Dividends left for Common Shareholders (preference gets paid first)
= 3,500,000 - 855,000
= $2,645,000
Common shares number 2,500,000
Dividend per share of common stock = [tex]\frac{2,645,000}{2,500,000}[/tex]
= $1.06
If the 2nd and 5th terms of a
G.P are 6 and 48 respectively,
find the sum of the first four
terms
Answer:
45
Step-by-step explanation:
The n th term of a GP is
[tex]a_{n}[/tex] = a[tex]r^{n-1}[/tex]
where a is the first term and r the common ratio
Given a₂ = 6 and a₅ = 48, then
ar = 6 → (1)
a[tex]r^{4}[/tex] = 48 → (2)
Divide (2) by (1)
[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{48}{6}[/tex] , that is
r³ = 8 ( take the cube root of both sides )
r = [tex]\sqrt[3]{8}[/tex] = 2
Substitute r = 2 into (1)
2a = 6 ( divide both sides by 2 )
a = 3
Thus
3, 6, 12, 24 ← are the first 4 terms
3 + 6 + 12 + 24 = 45 ← sum of first 4 terms
3.01)Which statement best describes the area of the triangle shown below?
9
It is one-half the area of a rectangle of length 4 units and width 2 units.
It is twice the area of a rectangle of length 4 units and width 2 units.
O It is one-half the area of a square of side length 4 units.
Ont is twice the area of a square of side length 4 units.
Answer:
C. It is one-half the area of a square of side length 4 units.
Step-by-step explanation:
Hey there!
Well if a square has side lengths of 4 units,
the area would be 16 because of l*w.
Now the formula for the area of a triangle is,
b*h/2
b = 4
h = 4
4*4=16
16 ÷ 2 = 8
So the area of a square is 16 units^2 whereas the area of a triangle with the same dimensions is 8 units^2,
meaning the area of a triangle is one-half the area of a square.
Hope this helps :)
Arrange the cards below to show the solution to 40.091 x 10³
Answer:
40091.
Step-by-step explanation:
Multiply 40.091 by 10 three times to get the answer.
40.091 * 10 = 400.91
400.91 * 10 = 4009.1
4009.1 * 10 = 40091.
The expression 40.091 x 10³ can be represented as 40091.
What are exponents?The term xⁿ, read as x to the power n, shows an exponent n, which implies x is multiplied by itself n times.
How to solve the given question?In the question, we are asked to arrange the cards showing '.', '0', '0', '1', '4', and '9', to show the solution to the expression 40.091 x 10³.
Now, 10³ is 10 to the power 3, where 3 is the exponent, so 10 is multiplied by itself 3 times = 10*10*10 = 1000.
Now, the expression 40.091 x 10³ = 40.091 * 1000 = 40091.
∴ The expression 40.091 x 10³ can be represented as 40091.
Learn more about exponents at
https://brainly.com/question/11975096
#SPJ2
omplete)
HWS
X 3.3.13-BE
The manufacturer's suggested retail price (MSRP) for a particular car is $25,495, and it is expected to be worth $20,081 in 2 years.
(a) Find a linear depreciation function for this car.
(b) Estimate the value of the car 4 years from now.
(c) At what rate is the car depreciating?
(a) What is the linear depreciation function for this car?
f(x) =
(Simplify your answer. Do not include the $ symbol in your answer.)
Answer:
a) y = 25495 - 2707x
b) y = 25495 - 2707(4) = 14,667
c) $2,707 per year
Step-by-step explanation:
Value now: $25,495
Value in 2 years: $20,081
Loss of value in 2 years: $25,495 - $20,081 = $5,414
Loss of value per year: $5,414/2 = $2,707
a) y = 25495 - 2707x
b) y = 25495 - 2707(4) = 14,667
c) $2,707 per year
WILL GIVE YOU BRAINLIEST
Answer:
AB = 20 tan55°
Step-by-step explanation:
Using the tangent ratio in the right triangle
tan55° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{AB}{20}[/tex] ( multiply both sides by 20 )
20 tan55° = AB
Which phrase best describes the graph of a proportional relationship?
A) a straight line passing
B) a straight line
C) a curve
D) not a straight line
Answer:
A. a straight line passing
Step-by-step explanation:
Answer:
a straight line passing
Step-by-step explanation:
Determine which of the sets of vectors is linearly independent. A: The set where p1(t) = 1, p2(t) = t2, p3(t) = 3 + 3t B: The set where p1(t) = t, p2(t) = t2, p3(t) = 2t + 3t2 C: The set where p1(t) = 1, p2(t) = t2, p3(t) = 3 + 3t + t2
Answer:
The set of vectors A and C are linearly independent.
Step-by-step explanation:
A set of vector is linearly independent if and only if the linear combination of these vector can only be equalised to zero only if all coefficients are zeroes. Let is evaluate each set algraically:
[tex]p_{1}(t) = 1[/tex], [tex]p_{2}(t)= t^{2}[/tex] and [tex]p_{3}(t) = 3 + 3\cdot t[/tex]:
[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]
[tex]\alpha_{1}\cdot 1 + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot (3 +3\cdot t) = 0[/tex]
[tex](\alpha_{1}+3\cdot \alpha_{3})\cdot 1 + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot t = 0[/tex]
The following system of linear equations is obtained:
[tex]\alpha_{1} + 3\cdot \alpha_{3} = 0[/tex]
[tex]\alpha_{2} = 0[/tex]
[tex]\alpha_{3} = 0[/tex]
Whose solution is [tex]\alpha_{1} = \alpha_{2} = \alpha_{3} = 0[/tex], which means that the set of vectors is linearly independent.
[tex]p_{1}(t) = t[/tex], [tex]p_{2}(t) = t^{2}[/tex] and [tex]p_{3}(t) = 2\cdot t + 3\cdot t^{2}[/tex]
[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]
[tex]\alpha_{1}\cdot t + \alpha_{2}\cdot t^{2} + \alpha_{3}\cdot (2\cdot t + 3\cdot t^{2})=0[/tex]
[tex](\alpha_{1}+2\cdot \alpha_{3})\cdot t + (\alpha_{2}+3\cdot \alpha_{3})\cdot t^{2} = 0[/tex]
The following system of linear equations is obtained:
[tex]\alpha_{1}+2\cdot \alpha_{3} = 0[/tex]
[tex]\alpha_{2}+3\cdot \alpha_{3} = 0[/tex]
Since the number of variables is greater than the number of equations, let suppose that [tex]\alpha_{3} = k[/tex], where [tex]k\in\mathbb{R}[/tex]. Then, the following relationships are consequently found:
[tex]\alpha_{1} = -2\cdot \alpha_{3}[/tex]
[tex]\alpha_{1} = -2\cdot k[/tex]
[tex]\alpha_{2}= -2\cdot \alpha_{3}[/tex]
[tex]\alpha_{2} = -3\cdot k[/tex]
It is evident that [tex]\alpha_{1}[/tex] and [tex]\alpha_{2}[/tex] are multiples of [tex]\alpha_{3}[/tex], which means that the set of vector are linearly dependent.
[tex]p_{1}(t) = 1[/tex], [tex]p_{2}(t)=t^{2}[/tex] and [tex]p_{3}(t) = 3+3\cdot t +t^{2}[/tex]
[tex]\alpha_{1}\cdot p_{1}(t) + \alpha_{2}\cdot p_{2}(t) + \alpha_{3}\cdot p_{3}(t) = 0[/tex]
[tex]\alpha_{1}\cdot 1 + \alpha_{2}\cdot t^{2}+ \alpha_{3}\cdot (3+3\cdot t+t^{2}) = 0[/tex]
[tex](\alpha_{1}+3\cdot \alpha_{3})\cdot 1+(\alpha_{2}+\alpha_{3})\cdot t^{2}+3\cdot \alpha_{3}\cdot t = 0[/tex]
The following system of linear equations is obtained:
[tex]\alpha_{1}+3\cdot \alpha_{3} = 0[/tex]
[tex]\alpha_{2} + \alpha_{3} = 0[/tex]
[tex]3\cdot \alpha_{3} = 0[/tex]
Whose solution is [tex]\alpha_{1} = \alpha_{2} = \alpha_{3} = 0[/tex], which means that the set of vectors is linearly independent.
The set of vectors A and C are linearly independent.
The product of 6 and a number (n) is 48 . Which equation shows this relationship? ANSWER CHOICES: 6n=48 n+6=48 48n=6 n-6=48
Answer:
6n=48
Step-by-step explanation:
product means multiplication
6×n=48
6n=48
An equation that shows this relationship is: A. 6n = 48.
How to determine the equation representing the product?In order to solve this word problem, we would assign a variable to the unknown number, and then translate the word problem into an algebraic equation as follows:
Let the variable n represent the unknown number.
Based on the statement "The product of 6 and a number is 48," we can logically deduce the following algebraic equation;
6 × n = 48
6n = 48
n = 48/6
n = 8.
Read more on equation here: brainly.com/question/18912929
#SPJ6
Efficiency is the ratio of output work to input work, expressed as a percentage. Light bulbs put out less light energy than the amount of electrical energy that is put into the bulb. An illustration of a wide arrow with a light bulb at the tail of it labeled electrical energy 100 J, breaks into a small arrow going forward labeled light 10 J and a larger curling away labeled heat 90 J. The goal of the bulb is to produce light. What is the efficiency of this bulb as it works to put out light? 10% 80% 90% 100%
Answer:
10%
Step-by-step explanation:
Using the given formula with the given data, we have ...
efficiency = output work / input work
= (10 J)/(100 J) = 0.10 = 10%
Answer:
A) 10%
Step-by-step explanation:
10/100=10
In a random sample of 400 residents of Boston, 320 residents indicated that they voted for Obama in the last presidential election. Develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.
Answer:
C.I = 0.7608 ≤ p ≤ 0.8392
Step-by-step explanation:
Given that:
Let consider a random sample n = 400 candidates where 320 residents indicated that they voted for Obama
probability [tex]\hat p = \dfrac{320}{400}[/tex]
= 0.8
Level of significance ∝ = 100 -95%
= 5%
= 0.05
The objective is to develop a 95% confidence interval estimate for the proportion of all Boston residents who voted for Obama.
The confidence internal can be computed as:
[tex]=\hat p \pm Z_{\alpha/2} \sqrt{\dfrac{ p(1-p)}{n } }[/tex]
where;
[tex]Z_{0.05/2}[/tex] = [tex]Z_{0.025}[/tex] = 1.960
SO;
[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(1-0.8)}{400 } }[/tex]
[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.8(0.2)}{400 } }[/tex]
[tex]=0.8 \pm 1.960 \sqrt{\dfrac{ 0.16}{400 } }[/tex]
[tex]=0.8 \pm 1.960 \sqrt{4 \times 10^{-4}}[/tex]
[tex]=0.8 \pm 1.960 \times 0.02}[/tex]
[tex]=0.8 \pm 0.0392[/tex]
= 0.8 - 0.0392 OR 0.8 + 0.0392
= 0.7608 OR 0.8392
Thus; C.I = 0.7608 ≤ p ≤ 0.8392
what is 1.8÷0.004? using long division
Answer:
Hi! Answer will be below.
Step-by-step explanation:
The answer is 450.
If you divide 1.8 and 0.004 the answer you should get is 450.
Below I attached a picture of how to do long division...the picture is an example.
Hope this helps!:)
⭐️Have a wonderful day!⭐️
We draw a random sample of size 25 from a normal population with variance 2.4. If the sample mean is 12.5, what is a 99% confidence interval for the population mean?
Answer:
11.2≤[tex]\mu[/tex]12.8Step-by-step explanation:
Confidence interval for the population mean is expressed by the formula;
CI = xbar ± Z(S/√n) where;
xbar is the sample mean = 12.5
Z is the z score at 99% confidence = 2.576
S is the standard deviation = √variance
S = √2.4 = 1.5492
n is the sample size = 25
Substituting the given values into the formula given above,
CI = 12.5 ± 2.576(1.5492/√25)
CI = 12.5 ± 2.576(0.30984)
CI = 12.5 ± 0.7981
CI = (12.5-0.7981, 12.5+0.7981)
CI = (11.2019, 12.7981)
Hence the 99% confidence interval for the population mean is 11.2≤[tex]\mu[/tex]12.8 (to 1 decimal place)
A 99% confidence interval for the population mean will be "11.2 [tex]\leq[/tex] 12.8".
StatisticsAccording to the question,
Sample mean, [tex]\bar x[/tex] = 12.5
Z score at 99%, Z = 2.576
Standard deviation, S = √Variance
= √2.4
= 1.5492
Sample size, n = 25
We know the formula,
Confidence interval, CI = [tex]\bar x \ \pm[/tex] Z ([tex]\frac{S}{\sqrt{n} }[/tex])
By substituting the given values, we get
= 12.5 [tex]\pm[/tex] 2.576 ([tex]\frac{1.5492}{\sqrt{25} }[/tex])
= 12.5 [tex]\pm[/tex] 2.576 (0.30984)
= 12.5 [tex]\pm[/tex] 0.7981
Now,
Cl = (12.5 - 0.7981, 12.5 + 0.7981)
= (11.2019, 12.7981) or,
= (11.2, 12.8)
Thus the above answer is appropriate.
Find out more information about mean here:
https://brainly.com/question/7597734
From a population that is not normally distributed and whose standard deviation is not known, a sample of 6 items is selected to develop an interval estimate for the mean of the population (μ).
a. The normal distribution can be used.
b. The t distribution with 6 degrees of freedom must be used.
c. The sample size must be increased.
d. The t distribution with 5 degrees of freedom must be used.
Answer:
d) The t-distribution with 5 degrees of freedom must be used
Step-by-step explanation:
For cases of Normal Distribution where the variance is unknown and the sample size n is smaller than 30, we must use the t-student distribution.
The shape of the curve for t-student is bell-shape (flatter and with wider tails than the bell shape of normal distribution.
Actually, when we deal with t-student distribution we are dealing with a family of curves that will become closer and closer to the bell shape of the normal distribution as the degree of freedom increases. From values of n =30( and bigger), we can assume that the curve of t-student is the same as for normal distribution
Please answer this correctly without making mistakes
Answer:
41.1 miles
Step-by-step explanation:
84 - 42.9 = 41.1
determining the probability of events. please help :)
Answer:
C. 1/8
Step-by-step explanation:
Probability of shooting a goal on a throw is 2/4 = 1/2.
Probability of 3 in a row is (1/2)³ = 1/8.
Find the exact values of sin 2θ and cos 2θ for cos θ = 6/13
Answer:
Step-by-step explanation:
cos^-1(6/13)=62.5136°
sin(2*62.5136°)=0.8189
cos(2*62.5136°)=-0.5740
A survey of 700 non-fatal car accidents showed that 183 involved faulty equipment. Find a point estimate for the population proportion of non-fatal car accidents that involved faulty equipment.
Answer:
Point of faulty equipment car = 0.2614 (Approx)
Step-by-step explanation:
Given:
Total number of car = 700
Faulty equipment car = 183
Find:
Point of faulty equipment car
Computation:
Point of faulty equipment car = Faulty equipment car / Total number of car
Point of faulty equipment car = 183 / 700
Point of faulty equipment car = 0.261428571
Point of faulty equipment car = 0.2614 (Approx)
You want to obtain a sample to estimate a population proportion. Based on previous evidence, you believe the population proportion is approximately 60%. You would like to be 98% confident that your estimate is within 2.5% of the true population proportion. How large of a sample size is required?
Answer:
A sample size of 2080 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
Based on previous evidence, you believe the population proportion is approximately 60%.
This means that [tex]\pi = 0.6[/tex]
How large of a sample size is required?
We need a sample of n.
n is found when [tex]M = 0.025[/tex]. So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.025 = 2.327\sqrt{\frac{0.6*0.4}{n}}[/tex]
[tex]0.025\sqrt{n} = 2.327\sqrt{0.6*0.4}[/tex]
[tex]\sqrt{n} = \frac{2.327\sqrt{0.6*0.4}}{0.025}[/tex]
[tex](\sqrt{n})^{2} = (\frac{2.327\sqrt{0.6*0.4}}{0.025})^{2}[/tex]
[tex]n = 2079.3[/tex]
Rounding up
A sample size of 2080 is needed.
how many pairs of matching surfaces does a cereal box have
Answer:
3 pairs
Step-by-step explanation:
Top and Bottom
Front and Back
Side and Side.
Cereal Boxes have 6 sides
Which of the following points is a solution of y > Ixl + 5?
A. (0, 5)
B. (1, 7)
C. (7, 1)
Answer:
B. (1,7)
Step-by-step explanation:
We can substitute the x and y values of each coordinate into the inequality and test if they work.
Let's start with A, 5 being y and 0 being x .
[tex]5 > |0|+5\\5> 0+5\\5 > 5[/tex]
5 IS NOT greater than 5, they are the exact same, so A is out.
Let's try B, 1 being x and 7 being y.
[tex]7 > |1| + 5\\7 > 1 + 5\\7 > 6[/tex]
7 IS greater than 6, so B. (1,7) does work for this inequality!
Let's do C for fun, when 7 is x and 1 is y.
[tex]1 > |7| + 5\\1>7+5\\1>12[/tex]
1 IS NOT greater than 12, it is quite less than 12, so C doesn't work.
Therefore B. (1,7) works for the inequality of [tex]y > |x|+5[/tex].
Hope this helped!
A simple random sample of 20 third-grade children from a certain school district is selected, and each is given a test to measure his/her reading ability. You are interested in calculating a 95% confidence interval for the population mean score. In the sample, the mean score is 64 points, and the standard deviation is 12 points. What is the margin of error associated with the confidence interval
Answer:
Margin of Error = ME =± 5.2592
Step-by-step explanation:
In the given question n= 20 < 30
Then according to the central limit theorem z test will be applied in which the standard error will be σ/√n.
Sample Mean = μ = 64
Standard Deviation= S= σ = 12
Confidence Interval = 95 %
α= 0.05
Critical Value for two tailed test for ∝= 0.05 = ±1.96
Margin of Error = ME = Standard Error *Critical Value
ME = 12/√20( ±1.96)=
ME = 2.6833*( ±1.96)= ± 5.2592
The standard error for this test is σ/√n
=12/√20
=2.6833