Answer:
34 adults and 11 children
Step-by-step explanation:
15 times 11 is 165dollars for kids
25 times 34 adults equals 850 dollars
add it and its 1015
Answer:
34 and 11
Step-by-step explanation:
3. In the diagram, PQTU is a parallelogram with a
perimeter of 24 cm and an area of 28 cm². Given that
UTS and PQR are straight lines, find the area of the
whole diagram
Answer:
48cm²
Step-by-step explanation:
PQ=(24-5-5)/2=7
This means PR is 14 and US is 10.
The height of the parallelogram is base times height, so 28/7=4
Now we just look at it as one big parallelogram.
4(14+10)/2=48 cm²
What is the solution set of |–x| = 3.5? {–3.5, 3.5} {–3.5} {3.5} {7}
Answer:
{-3.5, 3.5}
Step-by-step explanation:
Interpreting
|-x| = 3.5
gives
3.5 = +(-x) or 3.5 = -(-x)
or
x = + / - 3.5
so the answer is
{-3.5, 3.5}
Answer:
A
Step-by-step explanation:
How would 7/2 be written as a complex number
Answer:
We could rewrite 7/2 as 7a + 2
Step-by-step explanation:
Complex numbers is when real numbers [i.e: 1, 1/2, 200, 5/7, etc..) and an imaginary numbers [numbers that give a negative result when squared] are combine together.
This is really confusing I need help with this.
Answer:
Step-by-step explanation:
can you at least telllus what is in the drop box
C equal 3x - 2 of x=5 than what does c equal
Answer:
i need help this too
Step-by-step explanation:
Answer:
13Step-by-step explanation:
Given,
x = 5
Now, let's find the value of C
[tex]c = 3x - 2[/tex]
plug the value of x
[tex] = 3 \times 5 - 2[/tex]
Multiply the numbers
[tex] = 15 - 2[/tex]
Calculate the difference
[tex] = 13[/tex]
Hope this helps..
Best regards!!
if you drop a tennis ball from the height of 100in and the rebound is 58in what is the height on the 10th bounce?
Answer:
0.431 inches
Step-by-step explanation:
We were given the following values:
Height the tennis ball was dropped = 100in
Rebound height = 58in
We have to find the rebound ratio
= 58in/100in = 0.58
The formula to be used
Height on nth bounce = Initial height × (Rebound ratio)ⁿ
Where n = number of bounce
Height on the 10th bounce = 100 × (0.58)^10
Height on the 10th bounce = 0.4308042069inches
Approximately, the height on the 10th bounce = 0.431 inches.
Lucy is going to invest in an account paying an interest rate of 7% compounded daily. How much would Lucy need to invest, to the nearest dollar, for the value of the account to reach $84,000 in 6 years?
Answer:
Lucy needs to invest $55,194.16
Step-by-step explanation:
The given information are;
The interest rate of the account = 7% compounded daily
The amount at the end of 6 years = $84,000
The time duration = 6 years
The amount Lucy
The formula for compound interest is
[tex]A(t) = P \times \left ( 1 + \dfrac{r}{n} \right )^{n \times t}[/tex]
Where;
r = The interest rate = 7% = 0.07
n = The number of times a year = 365
t = The number years = 6 years
A(t) = The amount after 6 years = $84,000
P = The initial amount invested
Therefore, we have;
[tex]\$ 84,000 = P \times \left ( 1 + \dfrac{0.07}{365} \right )^{365 \times 6}[/tex]
[tex]P = \dfrac{\$84,000}{\left ( 1 + \dfrac{0.07}{365} \right )^{365 \times 6}} =\dfrac{\$84,000}{1.522} = \$55,194.16[/tex]
Therefore, Lucy needs to invest $55,194.16.
[tex]4^{3/4} * 2^{x} =16^{2/5}[/tex]
Answer:
[tex]\sf x=\frac{1}{10}[/tex]
Step-by-step explanation:
Rewrite expression with bases of 4.
[tex]\sf{4^{\frac{3}{4} }} \times \sf({4^\frac{1}{2} )^x =(4^2)^{\frac{2}{5} }[/tex]
Apply law of exponents, when bases are same for exponents in multiplication, add the exponents. When a base with an exponent has a whole exponent, then multiply the two exponents.
[tex]\sf{4^{\frac{3}{4} }} \times \sf{4^{\frac{1}{2} x}=4^{\frac{4}{5} }[/tex]
[tex]\sf{4^{\frac{3}{4} +\frac{1}{2} x}=4^{\frac{4}{5} }[/tex]
Cancel same bases.
[tex]\sf \frac{3}{4} +\frac{1}{2} x=\frac{4}{5}[/tex]
Subtract 3/4 from both sides.
[tex]\sf \frac{1}{2} x=\frac{1}{20}[/tex]
Multiply both sides by 2.
[tex]\sf x=\frac{1}{10}[/tex]
Step-by-step explanation:
2^{2*3/4} × 2^{x}=2^{4×2/5}
2^{3/2} × 2^{x}= 2^{8/5}
2^{3/2+x}=2^{8/5}
equate powers
{3+2x}/2= 2^2
5{3+2x}= 2{8}
15+10x=16
collect like terms
10x=16-15
10x=1
divide both sides by 10
x=1/10
x=0.1
evaluate:
(5-6)^2 x (4+3)
Answer:
7
Step-by-step explanation:
( -1 ) ^ 2 = 1 * ( 4 + 3 ) 1 * ( 4 + 3 ) = 71 * 7 = 7i Hope this helps
Answer:
7Step-by-step explanation:
[tex] {(5 - 6)}^{2} \times (4 + 3)[/tex]
Calculate the difference
[tex] = {( - 1)}^{2} \times (4 + 3)[/tex]
Add the numbers
[tex] = {( - 1)}^{2} \times 7[/tex]
Evaluate the power
[tex] = 1 \times 7[/tex]
Any expression multiplied by 1 remains the same
[tex] = 7[/tex]
Hope this helps...
Best regards!!
do these problems and get 100 points 1. Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. c 22 and 15 2 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. d 13.2 and 6.7 3 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. e 34 and 12 4 Given the lengths of two sides of a triangle, find the range for the length of the third side. (Range means find between which two numbers the length of the third side must fall.) Write an inequality. f 23 and 44
Answer:
[tex]7 < x < 37[/tex] -- Triangle 1
[tex]6.5 < x < 19.9[/tex] -- Triangle 2
[tex]22 < x < 46[/tex] -- Triangle 3
[tex]21 < x < 67[/tex] -- Triangle 4
Step-by-Step Explanation:
Given
2 sides of a triangle
1. 22 and 15
2. 13.2 and 6.7
3. 34 and 12
4. 23 and 44
Required
Determine the range of the third side in the above triangles
Triangle 1: 22 and 15
Represent the third side with x
We'll make use of the following conditions to calculate the range of the third side;
[tex]22 + x > 15[/tex]
[tex]22 + 15 > x[/tex]
[tex]15 + x > 22[/tex]
Solving
[tex]22 + x > 15[/tex]
Make x the subject of formula
[tex]x > 15 - 22[/tex]
[tex]x > -7[/tex]
Solving
[tex]22 + 15 > x[/tex]
[tex]37 > x[/tex]
Solving
[tex]15 + x > 22[/tex]
Make x the subject of formula
[tex]x > 22 - 15[/tex]
[tex]x > 7[/tex]
The next step is to dismiss the inequality with negative digit; So, we're left with
[tex]37 > x[/tex] and [tex]x > 7[/tex]
Rewrite both inequalities
[tex]x < 37[/tex] and [tex]7 < x[/tex]
Combine the two inequalities
[tex]7 < x < 37[/tex]
Triangle 2: 13.2 and 6.7
Represent the third side with x
We'll make use of the following conditions to calculate the range of the third side;
[tex]13.2 + x > 6.7[/tex]
[tex]13.2 + 6.7 > x[/tex]
[tex]6.7 + x > 13.2[/tex]
Solving
[tex]13.2 + x > 6.7[/tex]
Make x the subject of formula
[tex]x > 6.7 - 13.2[/tex]
[tex]x > -6.5[/tex]
Solving
[tex]13.2 + 6.7 > x[/tex]
[tex]19.9 > x[/tex]
Solving
[tex]6.7 + x > 13.2[/tex]
Make x the subject of formula
[tex]x > 13.2 - 6.7[/tex]
[tex]x > 6.5[/tex]
The next step is to dismiss the inequality with negative digit; So, we're left with
[tex]19.9 > x[/tex] and [tex]x > 6.5[/tex]
Rewrite both inequalities
[tex]x < 19.9[/tex] and [tex]6.5 < x[/tex]
Combine the two inequalities
[tex]6.5 < x < 19.9[/tex]
Triangle 3: 34 and 12
Represent the third side with x
We'll make use of the following conditions to calculate the range of the third side;
[tex]34 + x > 12[/tex]
[tex]34 + 12 > x[/tex]
[tex]12 + x > 34[/tex]
Solving
[tex]34 + x > 12[/tex]
Make x the subject of formula
[tex]x > 12 - 34[/tex]
[tex]x > -22[/tex]
Solving
[tex]34 + 12 > x[/tex]
[tex]46 > x[/tex]
Solving
[tex]12 + x > 34[/tex]
Make x the subject of formula
[tex]x > 34 - 12[/tex]
[tex]x > 22[/tex]
The next step is to dismiss the inequality with negative digit; So, we're left with
[tex]46 > x[/tex] and [tex]x > 22[/tex]
Rewrite both inequalities
[tex]x < 46[/tex] and [tex]22 < x[/tex]
Combine the two inequalities
[tex]22 < x < 46[/tex]
Triangle 4: 23 and 44
Represent the third side with x
We'll make use of the following conditions to calculate the range of the third side;
[tex]23 + x > 44[/tex]
[tex]23 + 44 > x[/tex]
[tex]23 + x > 44[/tex]
Solving
[tex]23 + x > 44[/tex]
Make x the subject of formula
[tex]x > 23 - 44[/tex]
[tex]x > -21[/tex]
Solving
[tex]23 + 44 > x[/tex]
[tex]67 > x[/tex]
Solving
[tex]23 + x > 44[/tex]
Make x the subject of formula
[tex]x > 44 - 23[/tex]
[tex]x > 21[/tex]
The next step is to dismiss the inequality with negative digit; So, we're left with
[tex]67 > x[/tex] and [tex]x > 21[/tex]
Rewrite both inequalities
[tex]x < 67[/tex] and [tex]21 < x[/tex]
Combine the two inequalities
[tex]21 < x < 67[/tex]
If a line is perpendicular to each of two intersecting lines at their point of intersection, then the line:
A. not enough information
B. is parallel to the plane determined by the two lines
C. coincides with the plane determined by the two lines
D. is perpendicular to the plane determined by the two lines
D. The line is perpendicular to the plane determined by the two lines.
Remember how you get to 3D space?
You take one axis called x and perpendicularly intersect it with y axis and you get a 2D plane. Now take a 2D plane and perpendicularly intersect it with an axis z and you get 3D euclidean space.
Hope this helps.
Solve –|2x+3|=1 for x it might have more than one answer
What is 1x1+5 hehe lol
Find volume of cylinder if its
radius
height
5.5m and
height 9 m?
Answer:
855.298 m^3
Step-by-step explanation:
The volume of a cylinder equation is piR^2H.
So pi5.5^2×9
855.298 m^3
PLSSS HELP
Kenny and Michael have scored points during a basketball game. Kenny has scored 131313 points, and Michael has scored ppp points. Together they have scored a total of 272727 points. Select the equation that matches this situation. Choose 1 answer:
Choose 1 answer:
(Choice A)
A
13 + p = 2713+p=2713, plus, p, equals, 27
(Choice B)
B
13 = p + 2713=p+2713, equals, p, plus, 27
(Choice C)
C
13 - p = 2713−p=2713, minus, p, equals, 27
Answer:
A
Step-by-step explanation:
Kenny scored 13 points, and Micheal scored p points. They scored a total of 27 points. This means that 27 is the sum of their scores. The answer is A.
13 + p = 27
Answer:
It’s b or it’s 13+p=27
Step-by-step explanation:
What the answer question
Answer:
[tex]\bold{A_{_{\Delta XYZ}}=927.5\ cm^2}[/tex]
Step-by-step explanation:
m∠Z = 180° - 118° - 28° = 34°
[tex]\sin(28^o)\approx0.4695\\\\\sin(118^o)=\sin(180^o-62^o)=\sin62^o\approx0.8829 \\\\\sin(34^o)\approx0.5592\\\\[/tex]
[tex]\dfrac{\overline{XY}}{\sin Z}=\dfrac{\overline{YZ}}{\sin X}\\\\\\\overline{XY}=\dfrac{\overline{YZ}}{\sin X}\cdot\sin Z\\\\\\\overline{XY}=\dfrac{42}{0.4695}\cdot0.5592\\\\\overline{XZ}=50.024281...\\\\\\A_{_{\Delta XYZ}}=\frac12\cdot\overline{XY}\cdot\overline{YZ}\cdot\sin(\angle Z)\\\\\\A_{_{\Delta XYZ}}\approx\frac12\cdot50.0243\cdot42\cdot0.8829=927.4955...\approx927.5[/tex]
1. The total area within any continuous probability distribution is equal to 1.00.
A. True
B. False
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed.
A. True
B. False
Answer:
1. True
2. False.
3. True.
Step-by-step explanation:
1. The total area within any continuous probability distribution is equal to 1.00: it is true because the maximum probability (value) is one (1), therefore, the total (maximum) area is also one (1).
Hence, for continuous probability distribution: probability = area.
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: False because it has an infinite number of possible values, which can not be counted or uncountable.
Hence, it cannot be computed.
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: True because it has a finite number of possible values, which are countable or can be counted.
Hence, it can be computed.
What is the real interest rate if the nominal interest rate is 1 when the rate of inflation is 2
Answer:
Real interest rate = -1%
Step-by-step explanation:
Real interest rate=Nominal interest rate - inflation rate
From the above,
Nominal interest rate=1%
Inflation rate=2%
Real interest rate=Nominal interest rate - inflation rate
=1% - 2%
= -1%
Real interest rate = -1%
Real interest rate shows you what it really costs borrowers to pay back their loans.
if the real interest rate is greater than zero, the amount you pay back is worth more in real terms than the money you borrowed.
if the real interest rate is below zero as in the above case, the amount you will pay back is less worth in real terms than the money you borrowed.
El equipo de béisbol de los Gatos Salvajes de Ludlow, un equipo de las ligas menores de la organización de los Indios de Cleveland, juega 70% de sus partidos por la noche y 30% de día. El equipo gana 50% de los juegos nocturnos y 90% de los diurnos. De acuerdo con el periódico de hoy, ganaron el día de ayer. ¿Cuál es la probabilidad de que el partido se haya jugado de noche?
Answer:
0.5645
Step-by-step explanation:
De la pregunta anterior, se nos dan los siguientes valores para el equipo de Ludlow
Probabilidad de jugar de noche = 70% = 0.7
Probabilidad de ganar en la noche = 50% = 0.5
Probabilidad de jugar durante el día = 30% = 0.3
Probabilidad de ganar durante el día = 90% = 0.9
Probabilidad de que cuando ganaron ayer, el juego se jugó por la noche =
(Probabilidad de jugar de noche × Probabilidad de ganar de noche) ÷ [(Probabilidad de jugar de noche × Probabilidad de ganar de noche) + (Probabilidad de jugar de día × Probabilidad de ganar de día)]
Probabilidad de que cuando ganaron ayer, el juego se jugó de noche = (0.5 × 0.7) ÷ (0.5 × 0.7) + (0.9 × 0.3)
= 0.35 ÷ 0.35 + 0.27
= 0.35 ÷ 0.62
= 0.5645
La probabilidad de que el partido se haya jugado de noche = 0.5645
Your brother has a bag of marbles. He has 8 green marbles, 3 blue marbles, 7 red marbles, and 2 yellow marbles. What is the ratio of blue marbles to green and red marbles? Choose the answer that is a simplified unit rate. a 1 : 5 b 3 : 15 c 5 : 1 d 15 : 3
Answer:
a 1 : 5
Step-by-step explanation:
Blue mables: 3
green and red marbles: 8 + 7 = 15
then, the radio blue:(green+red) is:
3 : 15
simplified unit rate is:
3/3 = 1
15/3 = 5
then:
3:15
is equal to:
1:5
Answer:
a 1 : 5
help please .........
Answer:
30.045
Step-by-step explanation:
the length of rectangle=140 which is also the diameter of circle
R=d/2=140/2=70 ( which is the width of rectangle)
perimeter of rectangle=2l+2w=140+280=420
perimeter of semicircle=πr+d=70π+140=359.911
the difference between two perimeter
(perimeter of rectangle- perimeter of semi circle) =
420-359.911=60.089
since only one shaded area :
60.089/2=30.0445 close to 30.045
If the blue radius below is perpendicular to the green chord and the segment
AB is 8.5 units long, what is the length of the chord?
A
A. 8.5 units
8.5
B
O B. 17 units
O C. 34 units
O D. 4.25 units
Answer:
O B. 17 units
Step-by-step explanation:
The chord is AC and the radius of the circle is perpendicular to the chord at B. AB = 8.5 units. According to the perpendicular bisector theorem, if the radius of a circle is perpendicular to a chord then the radius bisects the chord. This means that chord AC is bisected by the radius of the circle at point B. The length of the circle is calculated using:
[tex]AB=\frac{AC}{2}\\ AC=2*AB\\cross multiplying:\\AC = 2*8.5\ units\\AC = 17 \ units[/tex]
The length of the chord is 17 units.
Answer:
The answer is 17 units :D
Step-by-step explanation:
Determine how many litres of water will fit inside the following container. Round answer and all calculations to the nearest whole number.
Answer:
[tex]\approx[/tex] 11 litres of water will fit inside the container.
Step-by-step explanation:
As per the given figure, we have a container formed with combination of a right angled cone placed at the top of a right cylinder.
Given:
Height of cylinder, [tex]h_1[/tex] = 15 cm
Diameter of cylinder/ cone, D = 26 cm
Slant height of cone, l = 20 cm
Here, we need to find the volume of container.[tex]\\Volume_{Container} = Volume_{Cylinder}+Volume_{Cone}\\\Rightarrow Volume_{Container} = \pi r_1^2 h_1+\dfrac{1}{3}\pi r_2^2 h_2[/tex]
Here,
[tex]r_1=r_2 = \dfrac{Diameter}{2} = \dfrac{26}{2} =13\ cm[/tex]
To find the Height of Cylinder, we can use the following formula:
[tex]l^2 = r_2^2+h_2^2\\\Rightarrow h_2^2 = 20^2-13^2\\\Rightarrow h_2^2 = 400-169\\\Rightarrow h_2^2 = 231\\\Rightarrow h_2=15.2\ cm \approx 15\ cm[/tex]
Now, putting the values to find the volume of container:
[tex]Volume_{Container} = \pi \times 13^2 \times 15+\dfrac{1}{3}\pi \times 13^2 \times 15\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 15+\pi \times 13^2 \times 5\\\Rightarrow Volume_{Container} = \pi \times 13^2 \times 20\\\Rightarrow Volume_{Container} = 10613.2 \approx 10613\ cm^3[/tex]
Converting [tex]cm^{3 }[/tex] to litres:
[tex]10613 cm^3 = 10.613\ litres \approx 11\ litres[/tex]
[tex]\approx[/tex] 11 litres of water will fit inside the container.
-4______1 what symbol makes this sentence true
Answer:
<
Step-by-step explanation:
n Fill in the blank. The _______ for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further. The (1) for a procedure consists of all possible simple events or all outcomes that cannot be broken down any further.
Answer: sample space
Step-by-step explanation: In determining the probability of a certain event occurring or obtaining a particular outcome from a set of different possible outcomes, such as in the toss of coin(s), rolling of fair die(s), the sample space comes in very handy as it provides a simple breakdown and segmentation of all possible events or outcomes such that in Calculating the probability of occurrence of a certain event, the event(s) is/are located in the sample space and the ratio taken over the total number of events.
The number of representatives of a multi-level marketing company as a function of the number of days that have passed can be modelled by the exponential function R(d). About how many representatives does the company have after 75 days have passed if R(d) =150(1.03)^d
Answer:
About 1377 representatives.Step-by-step explanation:
If the number of representatives of a multi-level marketing company as a function of the number of days that have passed can be modeled by the exponential function R(d) = 150(1.03)^d, to calculate the number of representatives that the company have after 75 days, we will substitute d = 75 into the modeled equation.
R(75) = 150(1.03)^75
R(75) = 150*9.1789
R(75) = 1,376.835
Hence, the company have about 1377 representatives after 75 days.
what is the explicit formula for this sequence ?
Answer:
B
Step-by-step explanation:
common difference is 3
explicit formula is
first term + ( n-1 ) * common difference
= -7 + ( n-1) * 3
Cece works at a dress shop and needs to calculate the discounts for dresses on sale using the formula d=(p−c)÷2, where d is the discount, p is the original price, and c is the store's cost for the dress. If the store's cost for a dress is $50 and the original price of the dress is $120, what is the discount on the dress?
Answer:
$35
Step-by-step explanation:
Using the formula provided, d=(p−c)÷2 (where d is the discount, p is the original price, and c is the store's cost for the dress.) we can determine the discount.
The original price is 120,
d=(120−c)÷2
The store's cost is 50,
d=(120−50)÷2
So we subtract 120 and 50 to get
d=(70)÷2
70 divide by two is
d= 35
The discount is $35
Ten turns of a wire are helically wrapped around a cylindrical tube with outside circumference 4 inches and length 9 inches. The ends of the wire coincide with ends of the same cylindrical element. Find the length of the wire. (a) 41 inches (b)36 inches (c) 40 inches (d) 90 inches
Answer:
b) 36 inches
Step-by-step explanation:
Length of the wire = Outside circumference of the cylindrical tube * length of the cylinder
= 4 * 9
= 36 inches
Length of the wire will be same to the surface area of the cylinder
Surface area of cylinder = circumference * length
PLEASE help me with this question! No nonsense answers and answer with full solutions please!
Answer: b) {-3, 0.5}
Step-by-step explanation:
The new equation is the original equation plus 6. Move the original graph UP 6 units. The solutions are where it crosses the x-axis.
[tex]\text{Original equation:}\quad f(x)=\dfrac{15}{x}-\dfrac{9}{x^2}\\\\\\\text{New equation:}\quad\dfrac{15}{x}+6=\dfrac{9}{x^2}\\\\\\.\qquad \qquad f(x)= \dfrac{15}{x}-\dfrac{9}{x^2}+6[/tex]
+6 means it is a transformation UP 6 units.
Solutions are where it crosses the x-axis.
The curve now crosses the x-axis at x = -3 and x = 0.5.