A sample of 150 CBC students was taken, and each student filled out a
survey. The survey asked students about different aspects of their college
and personal lives. The experimenter taking the survey defined the
following events:
A=The student has children
B = The student is enrolled in at least 12 credits
C = The student works at least 10 hours per week
The student found that 44 students in the sample had children, 73 were
enrolled in at least 12 credits, and 105 were working at least 10 hours per
week. The student also noted that 35 students had children and were
working at least 10 hours per week.
Calculate the probability of the event BC for students in this sample. Round
your answer to four decimal places as necessary.

Answers

Answer 1

Answer:

The probability of the event BC

= the probability of B * C = 48.6667% * 70%

= 34.0667%

Step-by-step explanation:

Probability of A, students with children = 44/150 = 29.3333%

Probability of B, students enrolled in at least 12 credits = 73/150 = 48.6667%

Probability of C, students working at least 10 hours per week = 105/150 = 70%

Therefore, the Probability of BC, students enrolled in 12 credits and working 10 hours per week

= 48.6667% * 70%

= 34.0667%


Related Questions

what is the answer to 100×338 ​

Answers

Answer:

33800

Step-by-step explanation:

100 x 338 = 33800

Answer:

33800

Step-by-step explanation:

338x10=3380 then 3380x10=33800

-------------------------------------------------------

Good luck with your assignment...

Crime and Punishment: In a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.
(A) If one of the study subjects is randomly selected, find the probability of getting someone who was not sent to prison.
(B) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, find the probability that this person was not sent to prison.

Answers

Answer:

(a) The probability of getting someone who was not sent to prison is 0.55.

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is 0.63.

Step-by-step explanation:

We are given that in a study of pleas and prison sentences, it is found that 45% of the subjects studied were sent to prison. Among those sent to prison, 40% chose to plead guilty. Among those not sent to prison, 55% chose to plead guilty.

Let the probability that subjects studied were sent to prison = P(A) = 0.45

Let G = event that subject chose to plead guilty

So, the probability that the subjects chose to plead guilty given that they were sent to prison = P(G/A) = 0.40

and the probability that the subjects chose to plead guilty given that they were not sent to prison = P(G/A') = 0.55

(a) The probability of getting someone who was not sent to prison = 1 - Probability of getting someone who was sent to prison

      P(A') = 1 - P(A)

               = 1 - 0.45 = 0.55

(b) If a study subject is randomly selected and it is then found that the subject entered a guilty plea, the probability that this person was not sent to prison is given by = P(A'/G)

We will use Bayes' Theorem here to calculate the above probability;

    P(A'/G) =  [tex]\frac{P(A') \times P(G/A')}{P(A') \times P(G/A') +P(A) \times P(G/A)}[/tex]      

                 =  [tex]\frac{0.55 \times 0.55}{0.55\times 0.55 +0.45 \times 0.40}[/tex]

                 =  [tex]\frac{0.3025}{0.4825}[/tex]

                 =  0.63

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

8lb of the cheaper Candy

17.5lb of the expensive candy

Step-by-step explanation:

Let the cheaper candy be x

let the costly candy be y

X+y = 25.5....equation one

2.2x +7.3y = 25.5(5.7)

2.2x +7.3y = 145.35.....equation two

X+y = 25.5

2.2x +7.3y = 145.35

Solving simultaneously

X= 25.5-y

Substituting value of X into equation two

2.2(25.5-y) + 7.3y = 145.35

56.1 -2.2y +7.3y = 145.35

5.1y = 145.35-56.1

5.1y = 89.25

Y= 89.25/5.1

Y= 17.5

X= 25.5-y

X= 25.5-17.5

X= 8

A car travels 133 mi averaging a certain speed. If the car had gone 30 mph​ faster, the trip would have taken 1 hr less. Find the​ car's average speed.

Answers

Answer:

49.923 mph

Step-by-step explanation:

we know that the car traveled 133 miles in h hours at an average speed of x mph.

That is, xh = 133.

We can also write this in terms of hours driven: h = 133/x.

 

If x was 30 mph faster, then h would be one hour less.

That is, (x + 30)(h - 1) = 133, or h - 1 = 133/(x + 30).

We can rewrite the latter equation as h = 133/(x + 30) + 1

We can then make a system of equations using the formulas in terms of h to find x:

h = 133/x = 133/(x + 30) + 1

133/x = 133/(x + 30) + (x + 30)/(x + 30)

133/x = (133 + x + 30)/(x + 30)

133 = x*(133 + x + 30)/(x + 30)

133*(x + 30) =  x*(133 + x + 30)

133x + 3990 = 133x + x^2 + 30x

3990 = x^2 + 30x

x^2 + 30x - 3990 = 0

Using the quadratic formula:

x = [-b ± √(b^2 - 4ac)]/2a  

= [-30 ± √(30^2 - 4*1*(-3990))]/2(1)  

= [-30 ± √(900 + 15,960)]/2

= [-30 ± √(16,860)]/2

= [-30 ± 129.846]/2

= 99.846/2  -----------  x is miles per hour, and a negative value of x is neglected, so we'll use the positive value only)

= 49.923

Check if the answer is correct:

h = 133/49.923 = 2.664, so the car took 2.664 hours to drive 133 miles at an average speed of 49.923 mph.

If the car went 30 mph faster on average, then h = 133/(49.923 + 30) = 133/79.923 = 1.664, and 2.664 - 1 = 1.664.

Thus, we have confirmed that a car driving 133 miles at about 49.923 mph would have arrive precisely one hour earlier by going 30 mph faster

let x = the amoun of raw sugar in tons a procesing plant is a sugar refinery process in one day . suppose x can be model as exponetial distribution with mean of 4 ton per day . The amount of raw sugar (x) has

Answers

Answer:

The answer is below

Step-by-step explanation:

A sugar refinery has three processing plants, all receiving raw sugar in bulk. The amount of raw sugar (in tons) that one plant can process in one day can be modelled using an exponential distribution with mean of 4 tons for each of three plants. If each plant operates independently,a.Find the probability that any given plant processes more than 5 tons of raw sugar on a given day.b.Find the probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day.c.How much raw sugar should be stocked for the plant each day so that the chance of running out of the raw sugar is only 0.05?

Answer: The mean (μ) of the plants is 4 tons. The probability density function of an exponential distribution is given by:

[tex]f(x)=\lambda e^{-\lambda x}\\But\ \lambda= 1/\mu=1/4 = 0.25\\Therefore:\\f(x)=0.25e^{-0.25x}\\[/tex]

a) P(x > 5) = [tex]\int\limits^\infty_5 {f(x)} \, dx =\int\limits^\infty_5 {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_5=e^{-1.25}=0.2865[/tex]

b) Probability that exactly two of the three plants process more than 5 tons of raw sugar on a given day can be solved when considered as a binomial.

That is P(2 of the three plant use more than five tons) = C(3,2) × [P(x > 5)]² × (1-P(x > 5)) = 3(0.2865²)(1-0.2865) = 0.1757

c) Let b be the amount of raw sugar should be stocked for the plant each day.

P(x > a) = [tex]\int\limits^\infty_a {f(x)} \, dx =\int\limits^\infty_a {0.25e^{-0.25x}} \, dx =-e^{-0.25x}|^\infty_a=e^{-0.25a}[/tex]

But P(x > a) = 0.05

Therefore:

[tex]e^{-0.25a}=0.05\\ln[e^{-0.25a}]=ln(0.05)\\-0.25a=-2.9957\\a=11.98[/tex]

a  ≅ 12

A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90. its price-earnings ratio equals:

Answers

Answer: Price-earnings ratio= 22.0

Step-by-step explanation:

Given: A company had a market price of $38.50 per share, earnings per share of $1.75, and dividends per share of $0.90

To find: price-earnings ratio

Required formula: [tex]\text{price-earnings ratio }=\dfrac{\text{ Market Price per Share}}{\text{Earnings Per Share}}[/tex]

Then, Price-earnings ratio = [tex]\dfrac{\$38.50}{\$1.75}[/tex]

⇒Price-earnings ratio = [tex]\dfrac{22}{1}[/tex]

Hence, the price-earnings ratio= 22.0

Assume that there is a 6% rate of disk drive failure in a year. a. If all your computer data is stored on a hard disk drive with a copy stored on a second hard disk drive, what is the probability that during a year, you can avoid catastrophe with at least one working drive? b. If copies of all your computer data are stored on independent hard disk drives, what is the probability that during a year, you can avoid catastrophe with at least one working drive? four a. With two hard disk drives, the probability that catastrophe can be avoided is . (Round to four decimal places as needed.) b. With four hard disk drives, the probability that catastrophe can be avoided is . (Round to six decimal places as needed.)

Answers

Answer: 0.9964

Step-by-step explanation:

Consider,

P (disk failure) = 0.06

q = 0.06

p = 1- q

p = 1- 0.06,

p = 0.94

Step 2

Whereas p represents the probability that a disk does not fail. (i.e. working entire year).

a)

Step 3

a)

n = 2,

let x be a random variable for number...

Continuation in the attached document

the value of 4^-1+8^-1÷1/2/3^3​

Answers

Answer:

1.9375.

Step-by-step explanation:

To solve this, we must use PEMDAS.

The first things we take care of are parentheses and exponents.

Since there are no parentheses, we do exponents.

4^-1+8^-1÷1/2/3^3​

= [tex]\frac{1}{4} +\frac{1}{8} / 1/ 2/ 27[/tex]

= 1/4 + (1/8) / 1 * (27 / 2)

= 1/4 + (27 / 8) / 2

= 1/4 + (27 / 8) * (1 / 2)

= 1/4 + (27 / 16)

= 4 / 16 + 27 / 16

= 31 / 16

= 1.9375.

Hope this helps!

What is the slope of the line shown below (3,9) (1,1)

Answers

Answer:

slope m = 4

Step-by-step explanation:

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have the points

[tex](3;\ 9)\to x_1=3;\ y_1=9\\(1;\ 1)\to x_2=1;\ y_2=1[/tex]

Substitute:

[tex]m=\dfrac{1-9}{1-3}=\dfrac{-8}{-2}=4[/tex]

Answer:

m=4

Step-by-step explanation:

Slope can be found using the following formula:

[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

where [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] are points on the line.

We are given the points (3,9) and (1,1). Therefore,

[tex]x_{1}=3\\y_{1}=9 \\x_{2}=1\\y_{2}=1[/tex]

Substitute each value into the formula.

[tex]m=\frac{1-9}{1-3}[/tex]

Subtract in the numerator first.

[tex]m=\frac{-8}{1-3}[/tex]

Subtract in the denominator.

[tex]m=\frac{-8}{-2}[/tex]

Divide.

[tex]m=4[/tex]

The slope of the line is 4.

A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?

Answers

Answer:

The probability that no more than 70% would prefer to start their own business is 0.1423.

Step-by-step explanation:

We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.

Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business

The z-score probability distribution for the sample proportion is given by;

                               Z  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, p = population proportion who would prefer to start their own business = 72%

            n = sample of 18-29 year-olds = 600

Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)

       P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)

                                                                       = 1 - 0.8577 = 0.1423

The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.

Historically, the proportion of students entering a university who finished in 4 years or less was 63%. To test whether this proportion has decreased, 114 students were examined and 51% had finished in 4 years or less. To determine whether the proportion of students who finish in 4 year or less has statistically significantly decreased (at the 5% level of signficance), what is the critical value

Answers

Answer:

z(c)  = - 1,64

We reject the null hypothesis

Step-by-step explanation:

We need to solve a proportion test ( one tail-test ) left test

Normal distribution

p₀ = 63 %

proportion size  p = 51 %

sample size  n = 114

At 5% level of significance   α = 0,05, and with this value we find in z- table z score of z(c) = 1,64  ( critical value )

Test of proportion:

H₀     Null Hypothesis                        p = p₀

Hₐ    Alternate Hypothesis                p < p₀

We now compute z(s) as:

z(s) =  ( p - p₀ ) / √ p₀q₀/n

z(s) =( 0,51 - 0,63) / √0,63*0,37/114

z(s) =  - 0,12 / 0,045

z(s) = - 2,66

We compare z(s) and z(c)

z(s) < z(c)      - 2,66 < -1,64

Therefore as z(s) < z(c)  z(s) is in the rejection zone we reject the null hypothesis


An experiment involves 17 participants. From these, a group of 3 participants is to be tested under a special condition. How many groups of 3 participants can
be chosen, assuming that the order in which the participants are chosen is irrelevant?

Answers

Answer: 680

Step-by-step explanation:

When order doesn't matter,then the number of combinations of choosing r things out of n = [tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Given: Total participants = 17

From these, a group of 3 participants is to be tested under a special condition.

Number of groups of 3 participants chosen = [tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\[/tex]

[tex]^{17}C_3=\dfrac{17!}{3!(17-3)!}\\\\=\dfrac{17\times16\times15\times14!}{3\times2\times14!}\\\\=680[/tex]

Hence, there are 680 groups of 3 participants can  be chosen,.

a 12- inch ruler is duvided into 3 parts. the large part is 3 times longer than the small. the meddium part is times longer than then small, the medium part is 2 times long as the smallest .how long is the smallest part?

Answers

Answer:

2 inches

Step-by-step explanation:

x= smallest

3x=largest

2x=medium

x+3x+2x=12

6x=12

x=2

so smallest is 2

largest is 6 (3x)

medium is 4 (2x)

2+6+4=12

WILL GIVE BRAINLIEST IF CORRECT!! Please help ! -50 POINTS -

Answers

Answer:

i think (d) one i think it will help you

The correct answer is c. 180 , 202

All the step by step is below

Hopefully this help you :)

A subcommittee is randomly selected from a committee of eight men and seven women. What is the probability that all three people on the subcommittee are men

Answers

Answer:

The probability that all three people on the subcommittee are men

= 20%

Step-by-step explanation:

Number of members in the committee = 15

= 8 men + 7 women

The probability of selecting a man in the committee

= 8/15

= 53%

The probability of selecting three men from eight men

= 3/8

= 37.5%

The probability that all three people on the subcommittee are men

= probability of selecting a man multiplied by the probability of selecting three men from eight men

= 53% x 37.5%

= 19.875%

= 20% approx.

This is the same as:

The probability of selecting 3 men from the 15 member-committee

= 3/15

= 20%

PLEASE HELP I DO NOT UNDERSTAND AT ALL ITS PRECALC PLEASE SERIOUS ANSWERS

Answers

You want to end up with [tex]A\sin(\omega t+\phi)[/tex]. Expand this using the angle sum identity for sine:

[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]

We want this to line up with [tex]2\sin(4\pi t)+5\cos(4\pi t)[/tex]. Right away, we know [tex]\omega=4\pi[/tex].

We also need to have

[tex]\begin{cases}A\cos\phi=2\\A\sin\phi=5\end{cases}[/tex]

Recall that [tex]\sin^2x+\cos^2x=1[/tex] for all [tex]x[/tex]; this means

[tex](A\cos\phi)^2+(A\sin\phi)^2=2^2+5^2\implies A^2=29\implies A=\sqrt{29}[/tex]

Then

[tex]\begin{cases}\cos\phi=\frac2{\sqrt{29}}\\\sin\phi=\frac5{\sqrt{29}}\end{cases}\implies\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)[/tex]

So we end up with

[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]

Answer:

y(t) = √29·sin(4πt +1.1903)amplitude: √29angular frequency: 4πphase shift: 1.1903 radians

Step-by-step explanation:

In the form ...

  y(t) = Asin(ωt +φ)

you have ...

Amplitude = Aangular frequency = ωphase shift = φ

The translation from ...

  y(t) = 2sin(4πt) +5cos(4πt)

is ...

  A = √(2² +5²) = √29 . . . . the amplitude

  ω = 4π . . . . the angular frequency in radians per second

  φ = arctan(5/2) ≈ 1.1903 . . . . radians phase shift

Then, ...

  y(t) = √29·sin(4πt +1.1903)

_____

Comment on the conversion

You will notice we used "2" and "5" to find the amplitude and phase shift. In the generic case, these are "coefficient of sin( )" and "coefficient of cos( )". When determining phase shift, pay attention to whether your calculator is giving you degrees or radians. (Set the mode to what you want.)

If you have a negative coefficient for sin( ), you will need to add 180° (π radians) to the phase shift value given by the arctan( ) function.

A coin is thrown at random into the rectangle below.

A rectangle is about 90 percent white and 10 percent green.

What is the likelihood that the coin will land in the green region?
It is certain.
It is impossible.
It is likely.
It is unlikely.

Answers

Answer:

It is unlikely.

Step-by-step explanation:

Certain = 100%

Impossible = 0%

Likely = more than 50%

Unlikely = less than 50%

It is less than 50%, so it is unlikely.

Answer:

(A) it is likely

Step-by-step explanation:

i took the test on edge

A regression model between sales (y in $1000), unit price (x1 in dollars), and television advertisement (x2 in dollars) resulted in the following function: Ŷ = 7 - 3x1 + 5x2 For this model, SSR = 3500, SSE = 1500, and the sample size is 18. If we want to test for the significance of the regression model, the critical value of F at the 5% level of significance is a. 3.29. b. 3.24. c. 3.68. d. 4.54.

Answers

Answer: C. 3.68

Step-by-step explanation:

Given that;

Sample size n = 18

degree of freedom for numerator k = 2

degree of freedom for denominator = n - k - 1 = (18-2-1) = 15

level of significance = 5% = 5/100 = 0.05

From the table values,

the critical value of F at 0.05 significance level with (2, 18) degrees of freedom is 3.68

Therefore option C. 3.68 is the correct answer

Which of the following situations may be modeled by the equation y = 2x +20
A. Carlos has written 18 pages of his article. He plans to write an
additional 2 pages per day.
B. Don has already sold 22 vehicles. He plans to sell 2 vehicles per
week.
C. Martin has saved $2. He plans to save $20 per month.
D. Eleanor has collected 20 action figures. She plans to collect 2
additional figures per month

Answers

Answer:

D.

m = 2 = figures/month

b = 20 = # of action figures

1000 randomly selected Americans were asked if they believed the minimum wage should be raised. 600 said yes. Construct a 95% confidence interval for the proportion of Americans who believe that the minimum wage should be raised.
a. Write down the formula you intend to use with variable notation).
b. Write down the above formula with numeric values replacing the symbols.
c. Write down the confidence interval in interval notation.

Answers

Answer:

a. p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]  

b.0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. { -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

Step-by-step explanation:

Here the total number of trials is n= 1000

The number of successes is p` = 600/1000 = 0.6. The q` is 1 - p`= 1- 0.6 = 0.4

The degree of confidence is 95 %  therefore z₀.₀₂₅ = 1.96 ( α/2 = 0.025)

a.  The formula used will be

p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]       ( z with the base alpha by 2 (α/2 = 0.025))

b. Putting the values

0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. Confidence Interval in Interval Notation.

{ -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

{ -z( base alpha by 2) ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ z( base alpha by 2)  } = 1- α

HELPNEEDED.Two boys and three girls are auditioning to play the piano for a school production. Two students will be chosen, one as the pianist, the other as the alternate.


What is the probability that the pianist will be a boy and the alternate will be a girl?


30%

40%

50%

60%

Answers

I’m pretty sure it’s 30%

If w'(t) is the rate of growth of a child in pounds per year, what does 7 w'(t)dt 4 represent? The change in the child's weight (in pounds) between the ages of 4 and 7. The change in the child's age (in years) between the ages of 4 and 7. The child's weight at age 7. The child's weight at age 4. The child's initial weight at birth.

Answers

Complete Question

If w'(t) is the rate of growth of a child in pounds per year, what does

[tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  represent?

a) The change in the child's weight (in pounds) between the ages of 4 and 7.

b) The change in the child's age (in years) between the ages of 4 and 7.

c) The child's weight at age 7.

d) The child's weight at age 4. The child's initial weight at birth.

Answer:

The correct option is  option a

Step-by-step explanation:

From the question we are told that

       [tex]w'(t)[/tex] represents the rate of growth of a child in   [tex]\frac{pounds}{year}[/tex]

So      [tex]{w'(t)} \, dt[/tex]  will be in  [tex]pounds[/tex]

Which then mean that this  [tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  the change in the weight of the child between the ages of  [tex]4 \to 7[/tex] years

   

Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?

Answers

Answer:

0.0668 or 6.68%

Step-by-step explanation:

Variance (V) = 10,000

Standard deviation (σ) = √V= 100

Mean score (μ) = 500

The z-score for any test score X is:

[tex]z=\frac{X-\mu}{\sigma}[/tex]

For X = 650:

[tex]z=\frac{650-500}{100}\\z=1.5[/tex]

A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]

The probability is 0.0668 or 6.68%

The probability that he or she will make a score of 650 or more is 0.0668.

Let X = Scores made on a certain aptitude test by nursing students

X follows normal distribution with mean = 500 and variance of 10,000.

So, standard deviation = [tex]\sqrt{10000}=100[/tex].

z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].

The probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]

Learn more: https://brainly.com/question/14109853

TRIANGLE ABC IS DILATED BY A SCALE FACTOR OF 0.5 WITH THE ORIGIN AS THE CENTER OF DILATION, RESULTING IN THE IMAGE TRIANGLE A'B'C. IF A=(2,2). IF A (2,2), B= (4,3) AND C=(6,3), WHAT IS THE LENGTH OF LINE B'C'?

Answers

Answer: The length of the line B'C" is 1 unit.

Step-by-step explanation:

Given: Triangle ABC is dilated by a scale factor of 0.5 with the origin as the center of dilation , resulting in the image Triangle A'B'C'.

If A (2,2), B= (4,3) and C=(6,3).

Distance between (a,b) and (c,d): [tex]D=\sqrt{(d-b)^2+(c-b)^2}[/tex]

Then, BC [tex]=\sqrt{(3-3)^2+(6-4)^2}[/tex]

[tex]\\\\=\sqrt{0+2^2}\\\\=\sqrt{4}\\\\=2\text{ units}[/tex]

Length of image = scale factor x length in original figure

B'C' = 0.5 × BC

= 0.5 × 2

= 1 unit

Hence, the length of the line B'C" is 1 unit.

Please help asap.
A pizza is cut into six unequal slices (each cut starts at the center). The largest slice measures $90$ degrees If Larry eats the slices in order from the largest to the smallest, then the number of degrees spanned by a slice decreases at a constant rate. (So the second slice is smaller than the first by a certain number of degrees, then the third slice is smaller than the second slice by that same number of degrees, and so on.) What is the degree measure of the fifth slice Larry eats?

Answers

Answer:

The answer is 5th angle = [tex]\bold{42^\circ}[/tex]

Step-by-step explanation:

Given that pizza is divided into six unequal slices.

Largest slice has an angle of [tex]90^\circ[/tex].

He eats the pizza from largest to smallest.

Let the difference in angles in each slice = [tex]d^\circ[/tex]

1st angle = [tex]90^\circ[/tex]

2nd angle = 90-d

3rd angle = 90-d-d = 90 - 2d

4th angle = 90-2d-d = 90 - 3d

5th angle = 90-3d-d = 90 - 4d

6th angle = 90-4d -d = 90 - 5d

We know that the sum of all the angles will be equal to [tex]360^\circ[/tex] (The sum of all the angles subtended at the center).

i.e.

[tex]90+90-d+90-2d+90-3d+90-4d+90-5d=360\\\Rightarrow 540 - 15d = 360\\\Rightarrow 15d = 540 -360\\\Rightarrow 15d = 180\\\Rightarrow d = 12^\circ[/tex]

So, the angles will be:

1st angle = [tex]90^\circ[/tex]

2nd angle = 90- 12 = 78

3rd angle = 78-12 = 66

4th angle = 66-12 = 54

5th angle = 54-12 = 42

6th angle = 42 -12 = 30

So, the answer is 5th angle = [tex]\bold{42^\circ}[/tex]

A company has five employees on its health insurance plan. Each year, each employee independently has an 80% probability of no hospital admissions. If an employee requires one or more hospital admissions, the number of admissions is modeled by a geometric distribution with a mean of 1.50. The numbers of hospital admissions of different employees are mutually independent. Each hospital admission costs 20,000.
Calculate the probability that the company's total hospital costs in a year are less than 50,000.

Answers

Answer:

the probability that the company's total hospital costs in a year are less than 50,000  = 0.7828

Step-by-step explanation:

From the given information:

the probability that the company's total hospital costs in a year are less than 50,000 will be the sum of the probability of the employees admitted.

If anyone is admitted to the hospital, they have [tex]\dfrac{1}{3}[/tex] probability of making at least one more visit, and a [tex]\dfrac{2}{3}[/tex]  probability  that this is their last visit.

If zero employee was admitted ;

Then:

Probability = (0.80)⁵

Probability = 0.3277

If one employee is admitted once;

Probability = [tex](0.80)^4 \times (0.20)^1 \times (^5_1) \times (\dfrac{2}{3})[/tex]

Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{2}{3})[/tex]

Probability = 0.2731

If one employee is admitted twice

Probability = [tex](0.80)^3 \times (0.20)^2 \times (^5_2) \times (\dfrac{2}{3})^2[/tex]

Probability = [tex](0.80)^3 \times (0.20)^2 \times (\dfrac{5!}{(5-2)!}) \times (\dfrac{2}{3})^2[/tex]

Probability = 0.1820

If two employees are admitted once

Probability = [tex](0.80)^4\times (0.20)^1 \times (^5_1) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]

Probability = [tex](0.80)^4 \times (0.20)^1 \times (\dfrac{5!}{(5-1)!}) \times (\dfrac{1}{3}) \times (\dfrac{2}{3})[/tex]

Probability = 0.0910

the probability that the company's total hospital costs in a year are less than 50,000  = 0.3277 + 0.2731 + 0.1820

the probability that the company's total hospital costs in a year are less than 50,000  = 0.7828

Which correlation coefficient could represent the relationship in the scatterpot. Beach visitors

Answers

Answer:

A. 0.89.

Step-by-step explanation:

The value of correlation coefficient ranges from -1 to 1. Any value outside this range cannot possibly be correlation coefficient of a scatter plot representing relationship between two variables.

The scatter plot given shows a positive correlation between average daily temperatures and number of visitors, as the trend shows the two variables are moving in the same direction. As daily temperature increases, visitors also increases.

From the options given, the only plausible correlation that can represent this positive relationship is A. 0.89.

g The average salary in this city is $45,600. Is the average different for single people? 53 randomly selected single people who were surveyed had an average salary of $46,356 and a standard deviation of $15,930. What can be concluded at the α α = 0.05 level of significance?

Answers

Answer:

Step-by-step explanation:

The average salary in this city is $45,600.

Using the formula

z score = x - u /(sd/√n)

Where x is 46,356, u is 45,600 sd is 15,930 and n is 53.

z = 46,356 - 45600 / (15930/√53)

z = 756/(15930/7.2801)

z = 756/(2188.1568)

z = 0.3455

To draw a conclusion, we have to determine the p value, at 0.05 level of significance for a two tailed test, the p value is 0.7297. The p value is higher than the significance level, thus we will fail to reject the null and can conclude that there is not enough statistical evidence to prove that the average is any different for single people.

In which table does y vary inversely with x? A. x y 1 3 2 9 3 27 B. x y 1 -5 2 5 3 15 C. x y 1 18 2 9 3 6 D. x y 1 4 2 8 3 12

Answers

Answer:

In Table C, y vary inversely with x.

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Step-by-step explanation:

We are given four tables and asked to find out in which table y vary inversely with x.

We know that an inverse relation has a form given by

y = k/x

xy = k

where k must be a constant

Table A:

x     |      y

1     |      3

2     |     9

3     |    27

1×3 = 3

2×9 = 18

3×27 = 81

3 ≠ 18 ≠ 81

Hence y does not vary inversely with x.

Table B:

x     |      y

1     |     -5

2     |     5

3     |    15

1×-5 = -5

2×5 = 10

3×15 = 45

-5 ≠ 10 ≠ 45

Hence y does not vary inversely with x.

Table C:

x     |      y

1     |      18

2     |     9

3     |     6

1×18 = 18

2×9 = 18

3×6 = 18

18 = 18 = 18

Hence y vary inversely with x.

Table D:

x     |      y

1     |      4

2     |     8

3     |    12

1×4 = 4

2×8 = 16

3×12 = 36

4 ≠ 16 ≠ 36

Hence y does not vary inversely with x.

ASAP PLEASE HELP!!!!!! Find the y-intercept of the rational function. A rational function is graphed in the first quadrant, and in the second, third and fourth quadrants are other pieces of the graph. The graph crosses the x axis at negative 10 and crosses the y axis at negative 2.

Answers

Answer:

(0,-2)

Step-by-step explanation:

The y-intercept is simply when the function touches or crosses the y-axis.

We're told that the graph crosses the y-axis at -2. In other words, the y-intercept is at -2.

The ordered pair would be (0,-2)

Other Questions
can u solve these asap pls NEED HELP ON THIS ASAP WEE WOO WEE WOO The following cost behavior patterns describe anticipated manufacturing costs for 2013: raw material, $8.20/unit; direct labor, $11.20/unit; and manufacturing overhead, $386,400 + $9.20/unit. Required: If anticipated production for 2013 is 42,000 units, calculate the u A forensic scientist is trying to find out the number of adenine bases in the DNA sample that he obtained from a crime scene. What can he assume about the number of adenine? The number of adenine bases will be equal to the number of guanine bases. The number of adenine bases will be equal to the total of all the other bases. The number of adenine bases will be equal to the number of thymine bases. The number of adenine bases will be half of the number of cytosine bases. Diners frequently add a 15% tip when charging a meal to a credit card. What is the price of the meal without the tip if the amount charged is $ A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed. We have seen that starlight passing through the interstellar medium is dimmed and reddened. Look at the photo of a sunset on Earth. The Suns light also appears reddish at sunset. Given your understanding of the reddening of starlight, why do you think sunsets appear red? Find the surface area of the regular pyramid shown in the accompanying diagram. If necessary, express your answer in simplest radical form. PLEASE ANSWER THIS ASPA Which of the following choices is equivalent to -6x > -42? x > 7 x -7 x < -7 please help- my final is timed! xx Identify the graph of the triangle with vertices P(1,4), Q(1,1), R(3,1). Then identify the image that represents PQR rotated 90 counterclockwise around vertex Q and the resulting image reflected across the x-axis. An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct? a) The capacitor charges to its maximum value in one time constant and the current is zero at that time. b) The potential difference across the resistor and the potential difference across the capacitor are always equal. c) The potential difference across the resistor is always greater than the potential difference across the capacitor. d) The potential difference across the capacitor is always greater than the potential difference across the resistor e) Once the capacitor is essentially fully charged, There is no appreciable current in the circuit. A sheep breeding farm counted a total of 40 sheep on their grounds. After one year, the number of sheep doubled. Then in the next year, the number of sheep doubled again. If this trend continues, which of the following options represents the number of sheep on the farm by the end of each year? Find the coordinates for the equation.{y=-x^2+5{-x+y=3 Heather and Jeff live on a farm in Iowa with their three children. They are concerned about the environment because of the high cost of heating their home in winter. Which environmental activism segment best describes Heather and her family A sample of O2 gas is collected over water at 25oC at a barometric pressure of 751 torr. The vapor pressure of water at 25oC is 23.8 torr. What is the partial pressure of the O2 gas in the sample The length of the room is 2 times the breadth. The perimeter of the room is 70 m. What are the length and breadth of the room? Choose three distinct but related business functions (e.g., inventory control, purchasing, payroll, accounting, etc.). Write a short paper describing how interfacing the information systems of these three functions can improve an organizations performance. There are 4 pieces of paper, numbered 10 to 13, in a hat. After another numbered piece of paper is added, the probability of picking a number between 10 and 13 inclusive is 4/5. Which of the following numbers could No more quiet than strong, certainly no more strong thanquiet.- Jennifer Granholm, "Remembering Rosa Parks"Why does Granholm play with language in this excerpt from "RememberingRosa Parks"?A. To establish her credibility as Rosa Parks's friendB. To encourage the audience to fight Rosa Parks's warC. To help the audience to create a mental imageD. To make her speech more interesting to listen to As Sally repeatedly suffers from poor treatment at the hands of her father, readers are able to understand __________. A.the reason that Sally decides to marry someone who is nothing like her fatherB.that female beauty can be a curse rather than a blessing on Mango StreetC.that male insecurity can be overcome if a person is willing to be honest and fairD.the joy that comes with working through problems and reaching a resolution