Answer:
N=3176.5rulling
Explanation:
We were told that the source containing a mixture of hydrogen and deuterium atoms emits light with
wavelengths whose mean is 540 nm
Then λ= 540 nm, but we need to convert to metre which = (540× 10⁻⁹m)
Also whose separation is 0.170 nm, which mean the difference between the wavelength is 0.170 nm then
Δ λ = 0.170 nm the we convert to metre we have. Δλ= 0.170 nm= (0.170×10⁻⁹m)
the formular below can be used to can be used to calculate our minimum number of lines
N= λ /(m Δλ)
Where N is number of fillings i.e number of lines
λ= wavelength
Δλ= difference in wavelength
m=1
Then if we substitute the values we have
,N= (540× 10⁻⁹ m)/[(1)*(0.170× 10⁻⁹m)]
N =3176.5rulling
Therefore, minimum number of lines = =3176.5rulling
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s2 until it runs out of fuel at an altitude of 850 m . After this point, its acceleration is that of gravity, downward.
Answer:
v = 73.75 m/s
Explanation:
It is given that,
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s² until it runs out of fuel at an altitude of 850 m.
Let us assume we need to find the velocity of the rocket when it runs out of fuel.
Let v is the final speed. Using the third equation of kinematics as :
[tex]v^2-u^2=2as[/tex]
u = 0
[tex]v=\sqrt{2as} \\\\v=\sqrt{2\times 3.2\times 850}\\\\v=73.75\ m/s[/tex]
So, the velocity of the rocket when it runs out of the fuel is 73.75 m/s
A commercial aircraft is flying westbound east of the Sierra Nevada Mountains in California. The pilot observes billow clouds near the same altitude as the aircraft to the south, and immediately turns on the "fasten seat belt" sign. Explain why the aircraft experiences an abrupt loss of 500 meters of altitude a short time later.
Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Isaac drop ball from height og 2.0 m, and it bounces to a height of 1.5 m what is the speed before and after the ball bounce?
Explanation:
It is given that, Isaac drop ball from height of 2.0 m, and it bounces to a height of 1.5 m.
We need to find the speed before and after the ball bounce.
Let u is the initial speed of the ball when he dropped from height of 2 m. The conservation of energy holds here. So,
[tex]\dfrac{1}{2}mu^2=mgh\\\\u=\sqrt{2gh} \\\\u=\sqrt{2\times 9.8\times 2} \\\\u=6.26\ m/s[/tex]
Let v is the final speed when it bounces to a height of 1.5 m. So,
[tex]\dfrac{1}{2}mv^2=mgh\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 1.5} \\\\v=5.42\ m/s[/tex]
So, the speed before and after the ball bounce is 6.26 m/s and 5.42 m/s respectively.
The cart now moves toward the right with an acceleration toward the right of 2.50 m/s2. What does spring scale Fz read? Show your calculations, and explain.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The spring scale [tex]F_2[/tex] reads [tex]F_2 = 2.4225 \ N[/tex]
Explanation:
From the question we are told that
The first force is [tex]F_1 = 10.5 \ N[/tex]
The acceleration by which the cart moves to the right is [tex]a = 2.50 \ m/s^2[/tex]
The mass of the cart is m = 3.231 kg
Generally the net force on the cart is
[tex]F_{net} = F_1 - F_2[/tex]
This net force is mathematically represented as
[tex]F_{net} = m * a[/tex]
So
[tex]m* a = 10 - F_2[/tex]
[tex]F_2 = 10.5 - 2.5 (3.231)[/tex]
[tex]F_2 = 2.4225 \ N[/tex]
A satellite orbits a planet of unknown mass in a circular orbit of radius 2.3 x 104 km. The gravitational force on the satellite from the planet is 6600 N. What is the kinetic energy of the satellite
Answer:
The kinetic energy is [tex]KE = 7.59 *10^{10} \ J[/tex]
Explanation:
From the question we are told that
The radius of the orbit is [tex]r = 2.3 *10^{4} \ km = 2.3 *10^{7} \ m[/tex]
The gravitational force is [tex]F_g = 6600 \ N[/tex]
The kinetic energy of the satellite is mathematically represented as
[tex]KE = \frac{1}{2} * mv^2[/tex]
where v is the speed of the satellite which is mathematically represented as
[tex]v = \sqrt{\frac{G M}{r^2} }[/tex]
=> [tex]v^2 = \frac{GM }{r}[/tex]
substituting this into the equation
[tex]KE = \frac{ 1}{2} *\frac{GMm}{r}[/tex]
Now the gravitational force of the planet is mathematically represented as
[tex]F_g = \frac{GMm}{r^2}[/tex]
Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
[tex]KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r[/tex]
=> [tex]KE = \frac{ 1}{2} *F_g * r[/tex]
substituting values
[tex]KE = \frac{ 1}{2} *6600 * 2.3*10^{7}[/tex]
[tex]KE = 7.59 *10^{10} \ J[/tex]
Resistance and Resistivity: The length of a certain wire is doubled while its radius is kept constant. What is the new resistance of this wire?
Answer:
Explanation:
The formula for calculating the resistance of a material in terms of its resistivity is expressed as [tex]R = \rho L/A[/tex] where;
R is the resistance of the material
[tex]\rho[/tex] is the resistivity of the material
L is the length of the wire
A is the area = πr² with r being the radius
[tex]R = \rho L/\pi r^{2}[/tex]
If the length of a certain wire is doubled while its radius is kept constant, then the new length of the wire L₁ = 2L
The new resistance of the wire R₁ will be expressed as [tex]R_1 = \frac{\rho L_1}{A_1}[/tex]
since the radius is constant, the area will also be the same i.e A = A₁ and the resistivity also will be constant. The new resistance will become
[tex]R_1 = \frac{\rho(2L)}{A}[/tex]
[tex]R_1 = \frac{2\rho L}{\pi r^2}[/tex]
Taking the ratio of both resistances, we will have;
[tex]\frac{R_1}{R} = \frac{2\rho L/\pi r^2}{\rho L/ \pi r^2} \\\\\frac{R_1}{R} = \frac{2\rho L}{\pi r^2} * \frac{\pi r^2}{ \rho L} \\\\\frac{R_1}{R} = \frac{2}{1}\\\\R_1 = 2R[/tex]
This shoes that the new resistance of the wire will be twice that of the original wire
Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?
Answer:
The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
Explanation:
We are told that the particle moves back and forth along a straight line with velocity v(t).
Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.
Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
Which has more mass electron or ion?
Calculate the maximum kinetic energy of electrons ejected from this surface by electromagnetic radiation of wavelength 236 nm.
Answer:
Explanation:
Using E= hc/wavelength
6.63 x10^-34 x3x10^8/ 236nm
19.86*10^-26/236*10^-9
=0.08*10^-35Joules
What do Equations 1 and 2 predict will happen to the single-slit diffraction pattern (intensity, fringe width, and fringe spacing) as the slit width is increased.
Equation 1:
Sinθ = mλ/ω
Equaiton 2:
I= Io [Sinθ (πωλ/πωλ/Rλ)
Answer:
the firtz agrees with the expression for the shape of the curve of diracion of a slit
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
where a is the width of the slit, t is the angle from the center of the slit, l is the wavelength and m is an integer that corresponds to the maximum diffraction.
the previous equation qualitatively describes the curve of the diffraction phenomenon the equation takes the form
I = I₀ [(sin ππ a y / R λ) / π a y / Rλ]²
I = I₀ ’[sin π a y /Rλ]²
I₀ ’= I₀ / (π a y /Rλ)²
By reviewing the two expressions given
equation 1
w sin θ = m λ
where w =a w is the slit width
we see that the firtz agrees with the expression for the shape of the curve of diracion of a slit
Equation 2
the squares are missing
A proton is accelerated from rest through a potential difference V0 and gains a speed v0. If it were accelerated instead through a potential difference of 2V0, what speed would it gain
Answer:
Explanation:
Let the charge on proton be q .
energy gain by proton in a field having potential difference of V₀
= V₀ q
Due to gain of energy , its kinetic energy becomes 1/2 m v₀²
where m is mass and v₀ is velocity of proton
V₀ q = 1/2 m v₀²
In the second case , gain of energy in electrical field
= 2 V₀q , if v be the velocity gained in the second case
2 V₀q = 1/2 m v²
1/2 m v² = 2 V₀q = 2 x 1/2 m v₀²
mv² = 2 m v₀²
v = √2 v₀
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
A hot air balloon competition requires a balloonist to drop a ribbon onto a target on the ground. Initially the hot air balloon is 50 meters above the ground and 100 meters from the target. The wind is blowing the balloon at v= 15 meters/sec on a course to travel directly over the target. The ribbon is heavy enough that any effects of the air slowing the vertical velocity of the ribbon are negligible. How long should the balloonist wait to drop the ribbon so that it will hit the target?
Answer:
The wait time is [tex]t_w = 3.4723 \ s[/tex]
Explanation:
From the question we are told that
The distance of the hot air balloon above the ground is [tex]z = 50 \ m[/tex]
The distance of the hot air balloon from the target is [tex]k = 100 \ m[/tex]
The speed of the wind is [tex]v = 15 \ m/s[/tex]
Generally the time it will take the balloon to hit the ground is
[tex]t = \sqrt{ \frac{2 * z }{g} }[/tex]
where g is acceleration due to gravity with value [tex]g = 9.8 m/s^2[/tex]
substituting values
[tex]t = \sqrt{ \frac{2 * 50 }{9.8} }[/tex]
[tex]t = 3.194 \ s[/tex]
Now at the velocity the distance it will travel before it hit the ground is mathematically represented as
[tex]d = v * t[/tex]
substituting values
[tex]d = 15 * 3.194[/tex]
[tex]d = 47.916 \ m[/tex]
Now in order for the balloon to hit the target on the ground it will need to travel b distance on air before the balloonist drops it and this b distance can be evaluated as
[tex]b = k - d[/tex]
substituting values
[tex]b =100 -47.916[/tex]
[tex]b = 52.084 \ m[/tex]
Hence the time which the balloonist need to wait before dropping the balloon is mathematically evaluated as
[tex]t_w = \frac{b}{v}[/tex]
substituting values
[tex]t_w = \frac{52.084}{15}[/tex]
[tex]t_w = 3.4723 \ s[/tex]
Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the following function.
h=1/2t2+1/2t
(a) What is the height of the balloon at the end of 40 sec?
(b) What is the average velocity of the balloon between t = 0 and t = 30?
ft/sec
(c) What is the velocity of the balloon at the end of 30 sec?
ft/sec
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
A) The height of the balloon at the end of 40 sec is 820 feet.
B) The average velocity of the balloon is 30 ft/sec.
C) The velocity of the balloon at the end of 30 sec is
VelocityGiven :
h=1/2t²+1/2tPart A)
The height of the balloon after 40 secs is :
h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
Part B)
The average velocity of the balloon is :
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0 sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
When at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon = 30 ft/sec
The average velocity of the balloon is 30 ft/sec.
Part C)
The velocity of the balloon at the end of 30 sec is :
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec.
Learn more about "Velocity":
https://brainly.com/question/862972?referrer=searchResults
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the switch is open and the capacitor is uncharged. What is the voltage across the resistor and the capacitor at the moment the switch is closed
Answer:
The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.
Explanation:
This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery
A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is
Answer:
0.0081T
Explanation:
The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e
B ∝ I [tex]\frac{N}{L}[/tex]
B = μ₀ I [tex]\frac{N}{L}[/tex] ----------------(i)
Where;
μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²
Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by
L = 2π r
L = 2π (0.042)
L = 0.084π
The number of turns N = 1000
The current in the toroid = 1.7A
Substitute these values into equation (i) to get the magnetic field as follows;
B = 4π x 10⁻⁷ x 1.7 x [tex]\frac{1000}{0.084\pi }[/tex] [cancel out the πs and solve]
B = 0.0081T
The magnetic field along the central radius is 0.0081T
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?
Answer:
F= 175.5N
Explanation:
Given:
Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance
torque of 38N⋅m
angle of 120∘
Torque(τ): 38Nm
position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m
Angle: 120°
To find the Force, the torque equation will be required which is expressed below
τ = Frsinθ
We need to solve for F, if we rearrange the equation, we have the expression below
F= τ/rsinθ
Note: the torque is maximum when the angle is 90 degrees
But θ= 180-120=60
F= 38/0.25( sin(60) )
F= 175.5N
A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time
Answer:
The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
Explanation:
The magnetic field at the center of the solenoid is given by;
B = μ(N/L)I
Where;
μ is permeability of free space
N is the number of turn
L is the length of the solenoid
I is the current in the solenoid
The rate of change of the field is given by;
[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]
The induced emf in the shorter coil is calculated as;
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
where;
N is the number of turns in the shorter coil
A is the area of the shorter coil
Area of the shorter coil = πr²
The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m
Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
E = 14 x 0.000491 x 0.02514
E = 1.728 x 10⁻⁴ V
Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]
Induced EMF:The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:
[tex]E=-\frac{\delta\phi}{\delta t}[/tex]
where E is the induced emf,
[tex]\phi[/tex] is the magnetic flux through the coil.
The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:
[tex]\phi = \frac{\mu_oNIA}{L}[/tex]
so;
[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]
where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.
[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]
The emf produced in the coil at the center of the solenoid which has 14 turns will be:
[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]
Learn more about induced emf:
https://brainly.com/question/16765199?referrer=searchResults
A spaceship is moving past Earth at 0.99c. The spaceship fires two lasers. Laser A is in the same direction it is traveling, and Laser B is in the opposite direction. How fast will the light from each laser be traveling according to an observer on Earth?
Answer:
Vx' = (Vx - u) / (1 - Vx *u / c^2) velocity transformation formula
In both cases we wish to measure the velocity in the frame of the earth which is moving at speed u = -.99 c relative to the spaceship
VA' = (c + .99c) / (1 - (-.99 c * c) / c^2) = 1.99c / 1.99 = c
VB' = (-c + .99c) / (1 - (-c * -.99c) / c^2) = .01 c / .01 = c
In both cases an observer on earth will observe the light traveling at speed c.
A sound wave of frequency 162 Hz has an intensity of 3.41 μW/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)
Answer:
I believe it is 91
Explanation:
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m
Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the strength of the electric field between the plates
Answer:
The electric field strength between the plates can be increased by decreasing the length of each side of the plates.
Explanation:
The electric field strength is given by;
[tex]E = \frac{V}{d}[/tex]
where;
V is the electric potential of the two opposite charges
d is the distance between the two parallel plates
[tex]E =\frac{V}{d} = \frac{\sigma}{\epsilon _o} \\\\(\sigma = \frac{Q}{A} )\\\\E = \frac{Q}{A\epsilon_o} \\\\E = \frac{Q}{L^2\epsilon_o}[/tex]
Where;
ε₀ is permittivity of free space
L is the length of each side of the plates
From the equation above, the electric field strength can be increased by decreasing the length of each side of the plates.
Therefore, decreasing the length of each side of the plates, could be made to increase the strength of the electric field between the plates
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
Consider a single turn of a coil of wire that has radius 6.00 cm and carries the current I = 1.50 A . Estimate the magnetic flux through this coil as the product of the magnetic field at the center of the coil and the area of the coil. Use this magnetic flux to estimate the self-inductance L of the coil.
Answer:
a
[tex]\phi = 1.78 *10^{-7} \ Weber[/tex]
b
[tex]L = 1.183 *10^{-7} \ H[/tex]
Explanation:
From the question we are told that
The radius is [tex]r = 6 \ cm = \frac{6}{100} = 0.06 \ m[/tex]
The current it carries is [tex]I = 1.50 \ A[/tex]
The magnetic flux of the coil is mathematically represented as
[tex]\phi = B * A[/tex]
Where B is the magnetic field which is mathematically represented as
[tex]B = \frac{\mu_o * I}{2 * r}[/tex]
Where [tex]\mu_o[/tex] is the magnetic field with a constant value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]
substituting value
[tex]B = \frac{4\pi * 10^{-7} * 1.50 }{2 * 0.06}[/tex]
[tex]B = 1.571 *10^{-5} \ T[/tex]
The area A is mathematically evaluated as
[tex]A = \pi r ^2[/tex]
substituting values
[tex]A = 3.142 * (0.06)^2[/tex]
[tex]A = 0.0113 m^2[/tex]
the magnetic flux is mathematically evaluated as
[tex]\phi = 1.571 *10^{-5} * 0.0113[/tex]
[tex]\phi = 1.78 *10^{-7} \ Weber[/tex]
The self-inductance is evaluated as
[tex]L = \frac{\phi }{I}[/tex]
substituting values
[tex]L = \frac{1.78 *10^{-7} }{1.50 }[/tex]
[tex]L = 1.183 *10^{-7} \ H[/tex]
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
A room with 3.1-m-high ceilings has a metal plate on the floor with V = 0V and a separate metal plate on the ceiling. A 1.1g glass ball charged to 4.7 nC is shot straight up at 4.8 m/s from the floor level. How high does the ball go if the ceiling voltage is +3.0x10^6V?
Answer:
The ball traveled 0.827 m
Explanation:
Given;
distance between the metal plates of the room, d = 3.1 m
mass of the glass, m = 1.1g
charge on the glass, q = 4.7 nC
speed of the glass ball, v = 4.8 m/s
voltage of the ceiling, V = +3.0 x 10⁶ V
The repulsive force experienced by the ball when shot to the ceiling with positive voltage, can be calculated using Coulomb's law;
F = qV/d
|F| = (4.7 x 10⁻⁹ x 3 x 10⁶) / (3.1)
|F| = 4.548 x 10⁻³ N
F = - 4.548 x 10⁻³ N
The net horizontal force experienced by this ball is;
[tex]F_{net} = F_c - mg\\\\F_{net} = -4.548 *10^{-3} - (1.1*10^{-3} * 9.8)\\\\F_{net} = -15.328*10^{-3} \ N[/tex]
The work done between the ends of the plate is equal to product of the magnitude of net force on the ball and the distance traveled by the ball.
[tex]W = F_{net} *h\\\\W = 15.328 *10^{-3} * h[/tex]
W = K.E
[tex]15.328*10^{-3} *h = \frac{1}{2}mv^2\\\\ 15.328*10^{-3} *h = \frac{1}{2}(1.1*10^{-3})(4.8)^2\\\\ 15.328*10^{-3} *h =0.0127\\\\h = \frac{0.0127}{15.328*10^{-3}}\\\\ h = 0.827 \ m[/tex]
Therefore, the ball traveled 0.827 m
The height at which the ball goes for the given parameters is; 0.827 m
What is the height of the ball?We are given;
distance between the metal plates; d = 3.1 m
mass of glass; m = 1.1g = 0.0011 kg
charge on the glass; q = 4.7 nC = 4.7 × 10⁻⁹ C
speed of the glass ball; v = 4.8 m/s
voltage of the ceiling; V = +3.0 × 10⁶ V
The repulsive force experienced by the ball is gotten from the formula;
F = qV/d
|F| = (4.7 × 10⁻⁹ × 3 × 10⁶)/3.1
|F| = 4.548 × 10⁻³ N
F = -4.548 × 10⁻³ N (negative because it is repulsive force)
The net horizontal force experienced by the ball is;
F_net = F - mg
F_net = (-4.548 × 10⁻³) - (0.0011 × 9.8)
F_net = -15.328 × 10⁻³ N
To get the height of the ball, we will use the formula;
F_net * h = ¹/₂mv²
h = (¹/₂ * 0.0011 * 4.8²)/(15.328 × 10⁻³)
We took the absolute value of F_net, hence it is not negative
h = 0.827 m
Read more about height of ball at; https://brainly.com/question/12446886
The temperature coefficient of resistivity for copper is 0.0068 (C°)-1. If a copper wire has a resistance of 104 Ω at 20°C, what is its resistance 80°C?
Answer:
R₈₀ = 146.43 Ω
Explanation:
The resistance of a resistor depends upon many factors. One of the main factors of the change in resistance of a resistor is the change in temperature. The formula for the resistance at a temperature other than 20°C is given as follows:
R₈₀ = R₀(1 + αΔT)
where,
R₈₀ = Resistance of wire at 80°C = ?
R₀ = Resistance of wire at 20° C = 104 Ω
α = Temperature coefficient of resistance for copper = 0.0068 °C⁻¹
ΔT = T₂ - T₁ = 80°C - 20°C = 60°C
Therefore,
R₈₀ = (104 Ω)[1 + (0.0068°C⁻¹)(60°C)]
R₈₀ = 146.43 Ω