Answer:
[tex]1x=\frac{1\sqrt{129} }{8}[/tex]
Step-by-step explanation:
In between the 1 and the [tex]\sqrt{129}[/tex] goes this symbol: ±
hope this helps!
find the exact value of sin 0
Answer:
12/13
Step-by-step explanation:
First we must calculate the hypotenus using the pythagoran theorem
5²+12² = (MO)² MO = [tex]\sqrt{5^{2}+12^{2} }[/tex] MO = 13Now let's calculate sin0
sin O = 12/13So the exact value is 12/13
Answer:
C.) 12/13
Step-by-step explanation:
In a right angle triangle MN = 12, ON = 5 and; angle N = 90°
Now,
For hypotenuse we will use Pythagorean Theorem
(MO)² = (MN)² + (ON)²
(MO)² = (12)² + (5)²
(MO)² = 144 + 25
(MO)² = 169
MO = √169
MO = 13
now,
Sin O = opp÷hyp = 12÷13
expand (x+2y)^2 plzzzzzzzz
convert the equation y= -4x + 2/3 into general form equation and find t the values of A,B and C.
Answer:
Standard form: [tex]12x+3y-2=0[/tex]
A = 12, B = 3 and C = -2
Step-by-step explanation:
Given:
The equation:
[tex]y= -4x + \dfrac{2}3[/tex]
To find:
The standard form of given equation and find A, B and C.
Solution:
First of all, let us write the standard form of an equation.
Standard form of an equation is represented as:
[tex]Ax+By+C=0[/tex]
A is the coefficient of x and can be positive or negative.
B is the coefficient of y and can be positive or negative.
C can also be positive or negative.
Now, let us consider the given equation:
[tex]y= -4x + \dfrac{2}3[/tex]
Multiplying the whole equation with 3 first:
[tex]3 \times y= 3 \times -4x + 3 \times \dfrac{2}3\\\Rightarrow 3y=-12x+2[/tex]
Now, let us take all the terms on one side:
[tex]\Rightarrow 3y+12x-2=0\\\Rightarrow 12x+3y-2=0[/tex]
Now, let us compare with [tex]Ax+By+C=0[/tex].
So, A = 12, B = 3 and C = -2
linear regression model describing the relationship between the carat weight and price of very high quality diamonds is summarized below.
A diamond seller lists a very high quality diamond weighing 0.8 carats at a price of $10,999. Does this model over- or under-predict the price of this diamond? Select the option below that best summarizes the answer.
A. The model under-predicts the price of this diamond because the residual is positive.
B. The model over-predicts the price of this diamond because the residual is positive.
C. The model over-predicts the price of this diamond because the residual is negative.
D. We do not have enough information to answer this question.
E. The model under-predicts the price of this diamond because the residual is negative.
Answer:
A. The model under-predicts the price of this diamond because the residual is positive.
Step-by-step explanation:
The diamond seller has listed its 0.8 weighting diamonds at a price of $10,999. The price of the diamond is set as the market maker. The model is used to predict the price of the diamonds. This model has under predicted the value of diamonds and actual price of diamonds must be higher.
A poll reported that 66 percent of adults were satisfied woth the job the major airlines were doing. Suppose 25 adults are selected at random and the number who are satisfied is recorded.
1. Explain why this is a binomial experiment.
A. This is a binomial experiment because there are three mutually exclusive outcomes for each trial, there is a fixed number of trials, the outcome of one trial does not affect the outcome of another, and the probability of success is the same for each trial.
B. This is a binomial experiment because there are two mutually exclusive outcomes for each trial, there is a random number of trials, the outcome of one trial does not affect the outcome of another, and the probability of success is the same for each trial.
C. This is a binomial experiment because there are two mutually exclusive outcomes for each trial, there is a fixed number of trials, the outcome of one trial does not affect the outcome of another, and the probability of success changes in each trial.
D. This is a binomial experiment because there are two mutually exclusive outcomes for each trial, there is a fixed number of trials, the outcome of one trial does not affect the outcome of another, and the probability of success is the same for each trial.
2) Find and interpret the probability that exactly 15 of them are satisfied with the airlines.
Answer:
A)Option D
B)P(X = 15) = 0.1325
Step-by-step explanation:
A) From the question, the information given follows binomial distribution because there are two mutually exclusive outcomes for each trial, there is a fixed number of trials. The outcome of one trial does not affect the outcome of another, and the probability of success is the same for each trial.
So option D is correct.
B) From the question, we are told that the poll reported that 66 percent of adults were satisfied with the job. Thus, probability is; p = 0.66
Let X be the number of adults satisfied with the job. Since 25 are selected,
Thus;
P(X = 15) = C(25, 15) * (0.66)^(15) * (1 - 0.66)^(25 - 15)
P(X = 15) = 3268760 × 0.00196407937 × 0.00002064378
P(X = 15) = 0.1325
The vector x is in a subspace H with a basis Bequals{Bold b 1,Bold b 2}. Find the B-coordinate vector of x. Bold b 1equals[Start 3 By 1 Matrix 1st Row 1st Column 1 2nd Row 1st Column 2 3rd Row 1st Column negative 3 EndMatrix ], Bold b 2equals[Start 3 By 1 Matrix 1st Row 1st Column negative 4 2nd Row 1st Column negative 7 3rd Row 1st Column 11 EndMatrix ], xequals[Start 3 By 1 Matrix 1st Row 1st Column negative 10 2nd Row 1st Column negative 17 3rd Row 1st Column 27 EndMatrix ]
Answer and Step-by-step explanation: To find the B-coordinate vector of x:
[tex]b_{1} = \left[\begin{array}{ccc}1\\2\\-3\end{array}\right][/tex] , [tex]b_{2} = \left[\begin{array}{ccc}-4\\-7\\11\end{array}\right][/tex], x = [tex]\left[\begin{array}{ccc}-10\\-17\\27\end{array}\right][/tex]
The augmented matrix will be:
[tex]\left[\begin{array}{ccc}1&-4&-10\\2&-7&-17\\-3&11&27\end{array}\right][/tex]
Transforming into reduced row-echelon form:
= [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&-1&-3\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}1&-4&-10\\0&1&3\\0&0&0\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}1&0&2\\0&1&3\\0&0&0\end{array}\right][/tex]
The values for the vector will be:
x = 2
y = 3
The B-coordinate vector is of the form:
V = [tex]\left[\begin{array}{ccc}x\\y\end{array}\right][/tex]
V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]
The B-coordinate vector of x is V = [tex]\left[\begin{array}{ccc}2\\3\end{array}\right][/tex]
A study was conducted to measure the effectiveness of hypnotism in reducing pain. The measurements are centimeters on a pain scale before and after hypnosis. Assume that the paired sample data are simple random samples and that the differences have a distribution that is approximately normal. Does hypnotism appear to be effective in reducing pain? In this example, μd is the mean value of the differences d for the population of all pairs of data, where each individual difference d is defined as the difference in the measurements on a pain scale before and after hypnosis. What is the test statistic for this hypothesis test?
Answer:
Step-by-step explanation:
Hello!
This is an example of a pared sample test, the experiment is based on two dependent variables:
X₁: centimeters on a pain scale before hypnosis
X₂: centimeters on a pain scale after hypnosis
Out of these two variables a new variable is determined Xd= X₁-X₂
If the variables have an approximate normal distribution then the variable resulting from their difference will also have an approximate normal distribution.
The claim is that "hypnosis reduced the pain" if so you'd expect the population mean of the difference to be less than zero, symbolically: μd<0
The statistic for this test is a paired sample t test:
[tex]t= \frac{\frac{}{X_d} - Mu_d}{Sd} ~t_{n-1}[/tex]
To calculate the sample mean and variance you have to calculate the difference between the pairs first.
[tex]\frac{}{Xd}[/tex]= ∑Dif/n
[tex]S_d^2= \frac{1}{n-1} [sumDif^2- \frac{(sumDif)^2}{n} ][/tex]
∑Dif= 6.4
∑Dif²= 12.64
[tex]\frac{}{Xd}[/tex]= 6.4/5= 1.28
[tex]S_d^2= \frac{1}{4} [12.64- \frac{(6.4)^2}{5} ]= 1.112[/tex]
Sd= 1.05
[tex]t_{H_0}= \frac{\frac{}{Xd}-Mu_d }{Sd} = \frac{1.28-0}{1.05} = 1.219= 1.22[/tex]
I hope this helps!
Use the functions m(x) = 4x + 5 and n(x) = 8x − 5 to complete the function operations listed below. Part A: Find (m + n)(x). Show your work. (3 points) Part B: Find (m ⋅ n)(x). Show your work. (3 points) Part C: Find m[n(x)]. Show your work. (4 points)
Answer:
Step-by-step explanation:
Part A
(m + n)x = 4x + 5 + 8x - 5
(m + n)x = 12x The fives cancel
Part B
(m - n)x = 4x + 5 - 8x + 5
(m - n)x = -4x + 10
Part C
The trick here is to put n(x) into m(x) wherever m(x) has an x.
m[n(x)] = 5(n(x)) + 5
m[n(x)] = 5(8x - 5) + 5
m[n(x)] = 40x - 20 + 5
m[n(x)] = 40x - 15
please need help with this math question
Answer:
third option
Step-by-step explanation:
We just have to calculate 2x² - 4x - (x² + 6x). 2x² - x² = x² and -4x - 6x = -10x so the answer is x² - 10x.
Answer:
x^2-10x
Step-by-step explanation:
f(x)-g(x)
(2x^2-4x)-(x^2+6x)
carry through the negative
2x^2-4x-x^2-6x
x^2-10x
Write the first 4 terms of the sequence defined by the given rule f(n)=n2 -1
Answer:
0, 3, 8, 15Step-by-step explanation:
Substitute n = 1, n = 2, n = 3 and n = 4 to the equation f(n) = n² - 1:
f(1) = 1² - 1 = 1 - 1 = 0
f(2) = 2² - 1 = 4 - 1 = 3
f(3) = 3² - 1 = 9 - 1 = 8
f(4) = 4² - 1 = 16 - 1 = 15
David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to-spice ratio is 15:115:115, colon, 1. He currently has 404040 grams of the spice blend, and he can go buy more if necessary. He wants to make 101010 servings, where each serving has 757575 grams of rice. Overall, David spends 4.504.504, point, 50 dollars on rice.
Answer:
.006
:)
Step-by-step explanation:
8 servings can David make with the current amount of spice.
What is Ratio?Ratio is defined as a relationship between two quantities, it is expressed one divided by the other.
The rice-to-spice ratio = 15:1
The 75 grams of rice in one serving will require
⇒75/15
⇒5 gram of spice.
David's inventory of 40 gram of spice is enough for
40 g/(5 g/serving) = 8 servings
Hence, 8 servings can David make with the current amount of spice.
Learn more about Ratio
brainly.com/question/1504221
#SPJ2
PLEASE HELP QUICK!!! In how many ways can you put seven marbles in different colors into two jars? Note that the jars may be empty.
Answer: 14384 ways
Step-by-step explanation:
With 0 identical marbles permitted to be included in any of the jars, An expression can be developed to determine the total of marbles in jar arrangements, which is:
E = [(n+j -1)!]*{1/[(j-1)!]*[(n)!]}, where n = number of identical balls and j =number of distinct jars, the contents of all of which must sum to n for each marbles in j jars arrangement. With n = 7 and j = 4. E = 10!/(3!)(7!) = 120= number of ways 7 identical marbles can be distributed to 4 distinct jars such that up to 3 boxes may be empty and the maximum to any box is 7 balls.
The marble arrangements are: (7,0,0,0) in 4!/3! = 4 ways, (6,1,0,0) in 4!/2! = 12 ways, (5,2,0,0) in 4!/2! = 12 ways, (5,1,1,0) in 4!/2! = 12 ways, (4,3,0,0) in 4!/2! = 12 ways, (4,2,1,0) in 4! = 24 ways, (4,1,1,1) in 4!/3! = 4 ways, (3,3,1,0) in 4!/2! = 12 ways, (3,2,2,0) in 4!/2! = 12 ways, (3,2,1,1) in 4!/2! = 12 ways, (2,2,2,1) in 4!/3! = 4 ways.
Total of ways = 4+12+12+12+12+24+4+12+12+12+4 = 120 as previously determined above for identical marbles and distinct jars.
Taking into account distinct colored marbles, the number of ways of marble distribution into 4 jars becomes as follows:
For (7,0,0,0) = 4*(7!/7!) =4. For (6,1,0,0) = 12*[7!/(6!)(1!)] = 84. For (5,2,0,0) =
12*[7!/(5!)(2!)] = 252. For (5,1,1,0) = 12*[7!/(5!)(1!)(1!)] = 504. For (4,3,0,0) =
12*[7!/(4!)(3!)] = 420. for (4,2,1,0) = 24*[7!/(4!)(2!)(1!)] = 2,520. For (4,1,1,1) =
4*7!/(4!)(1!)(1!)(1!)] = 840. For (3,3,1,0) = 12*]7!/(3!)(3!)(1!) = 1,680. For (3,2,20) = 12*]7!/(3!)(2!)(2!) = 2,520. For (3,2,1,1) = 12*]7!/(3!)(2!)(1!)(1!) = 5,040. For (2,2,2,1) = 4*]7!/(2!)(2!)(2!)(1!) = 2,520.
Total of ways as requested for distinct colored marbles and distinct jars = 4+84+252+504+420+2,520+840+1,680+2,520+5,040+2,520 = 14,384.
Please answer this correctly without making mistakes
66.7
you will get the answer
Answer:
66.7
Step-by-step explanation:
The bicycle shop is 24.1 kilometers west of the train station meaning the distance between them is 24.1 kilometers.
The hardware store is 42.6 kilometers west of the bicycle shop meaning the distance between them is 42.6 kilometers.
Finally, you add both of the distances. (42.6 + 24.1)
You get the answer 66.7 kilometers.
Hope this helps!
The following sample was obtained from a population with unknown parameters.
Scores: 13, 7, 6, 12, 0, 4
a. Compute the sample mean and standard deviation. (Note that these are descriptive values that summarize the sample data.)
b. Compute the estimated standard error for M. (Note that this is an inferential value that describes how accurately the sample mean represents the unknown population mean.)
Answer:
i think is 7
Step-by-step explanation:
Identify the value of the CRITICAL VALUE(S) used in a hypothesis test of the following claim and sample data:
Claim: "The average battery life (between charges) of this model of tablet is at least 12 hours."
A random sample of 80 of these tablets is selected, and it is found that their average battery life is 11.58 hours with a standard deviation of 1.93 hours. Test the claim at the 0.05 significance level.
a. -0.218
b. -1.645
c. -1.946
d. -1.667
Answer:
C
Step-by-step explanation:
The critical value we are asked to state in this question is the value of the z statistic
Mathematically;
z-score = (x- mean)/SD/√n
From the question
x = 11.58
mean = 12
SD = 1.93
n = 80
Substituting this value, we have
z= (11.58-12)/1.93/√80 = -1.946
Evaluate the series
Answer:
the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
C) 59
Step-by-step explanation:
Recall that;
[tex]\sum_{1}^{n}a_n = a_1+a_2+...+a_n\\[/tex]
Therefore, we can evaluate the series;
[tex]\sum_{k=1}^{6}(25-k^2)[/tex]
by summing the values of the series within that interval.
the values of the series are evaluated by substituting the corresponding values of k into the equation.
[tex]\sum_{k=1}^{6}(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_{k=1}^{6}(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_{k=1}^{6}(25-k^2) =24+21+16+9+0+(-11)\\\sum_{k=1}^{6}(25-k^2) = 59\\[/tex]
So, the value of the series;
[tex]\sum_{k=1}^{6}(25-k^2) = 59[/tex]
What is the solution to the system that is created by the equation y = 2 x + 10 and the graph shown below? On a coordinate plane, a line goes through (negative 2, 0) and (0, 2). (–8, –6) (–4, –2) (0, 2) (2, 4)
Answer:
(–8, –6)
Step-by-step explanation:
The given points represent the x- and y- intercepts of the line, so we can write the equation in intercept form as ...
x/(x-intercept) +y/(y-intercept) = 1
x/(-2) +y/2 = 1 . . . use the given intercepts
x - y = -2 . . . . . multiply by -2
Then the system is ...
y = 2x +10x - y = -2Using the first to substitute into the second, we get ...
x - (2x +10) = -2
-8 = x . . . . . . . . . . . add x+2, simplify
y = 2(-8) +10 = -6
The solution is (x, y) = (-8, -6).
Answer:
(-8,-6)
Step-by-step explanation:
Got it right on edge soooo <3
A living room is two times as long and one and one-half times as wide as a bedroom. The amount of
carpet needed for the living room is how many times greater than the amount of carpet needed for the
bedroom?
1 1/2
2
3
3 1/2
Answer:
3
Step-by-step explanation:
let's call X the length of the bedroom, Y the wide of the bedroom, A the length of the living room and B the wide of the living room
A living room is two times as long as the bedroom, so:
A = 2X
A living room is one and one-half times as wide as a bedroom, so:
B = 1.5Y
The amount of carpet needed for the living room is A*B and the amount of carpet needed by the bedroom is X*Y
So, AB in terms of XY is:
A*B = (2X)*(1.5Y) = 3(X*Y)
It means that the amount of c arpet needed for the living room is 3 times greater than the amount of carpet needed for the bedroom.
Evaluate the integral by interpreting it in terms of areas. In other words, draw a picture of the region the integral represents, and find the area using geometry. ∫ 3 0 | 8 x − 10 | d x
Please find attached
thank you
The area of Integral is 19 sq units.
What is Integral?An integral in calculus is a mathematical concept that can be used to represent an area or an expanded version of an area. The basic components of calculus are integrals and derivatives. The terms antiderivative and primal are additional terms for integral.
In mathematics, an integral is either a number representing the region under a function's graph for a certain interval or a new function, the derivative of which is the original function (indefinite integral).
Given:
∫ 3 0 | 8 x − 10 | d x
Now, the graph touches the x axis
when 8x- 10 = 0
x= 10/8
x= 5/4
and, When x = 0, y = 10.
So, the limit range will be x = 0 to x = 5/4.
Now, Area of First triangle
= 10 x 5/4 x 1/2
= 25/4
and, Area of second triangle
= 14 x (3- 10/8) x 1/2
= 7 x 7/4
= 49/4
Hence, the total Area = 25/4 + 49/4 = 19 sq. units
Learn more about integration here:
https://brainly.com/question/18125359
#SPJ5
A nut-raisin mix costs $5.26 a pound. Rashid buys 15.5 pounds of the mix for a party. Rashid’s estimated cost of the nut-raisin mix is A.$16 B.$22 C.$61 D.$80
Answer:
D.$80
Step-by-step explanation:
$5.26 x 15.5= $81.53
The closest amount to $81.53 is D.$80
stephano walks 2/5 mile in 1/4 hour. What is stephano's speed in miles?
Please help with this question ASAP!
You are studying for the SAT and start the first week spending 2 hours studying. You plan to increase the amount you study by 10% each week. How many hours do you study in the 8th week?
Answer:
8w : 3.8974342 ≈ 3.9 or 4 (hope it help)
Step-by-step explanation:
1w : 2
2w : 2 + 10% = 2.2
3w : 2.2 + 10% = 2.42
4w : 2.42 + 10% = 2.662
5w : 2.662 + 10% = 2.9282
6w : 2.9282 + 10% = 3.22102
7w : 3.22102 + 10% = 3.543122
8w : 3.543122 + 10% = 3.8974342
3.8974342 ≈ 3.9 or 4
A bag contains six balls labeled 1 through 6. One ball will be randomly picked.
What is the probability of picking an odd number?
Write your answer as a fraction in simplest form.
S = sample space = set of all possible outcomes
S = set of whole numbers 1 through 6
S = {1,2,3,4,5,6}
E = event space = set of outcomes we want to happen
E = set of odd numbers between 1 through 6
E = {1,3,5}
We have 3 items in set E and 6 items in set S. So there are 3 ways to get what we want to happen out of 6 ways total. The probability is therefore 3/6 = 1/2
Answer: 1/2Find the surface area of this shape (here is the grid too)
Answer:
12
Step-by-step explanation:
The second diagram is most helpful for finding the surface area.
Find the area of the middle square: 2 * 2 = 4Find the area of the triangle using A = 1/2*B*H, so A = 1/2 * 2 * 2 = 2Since there are 4 triangles, the surface area of all the triangles is 2 * 4 = 8Add the surface area of the triangles with the surface area of the square to get the total surface area: 8 + 4 = 12If you want further tutoring help in geometry or other subjects for FREE, check out growthinyouth.org.
A swimming pool is circular with a 30-ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool. (Round your answer to the nearest whole number.) ft3
Answer:
Volume of water in the pool is 3,182 ft^3
Step-by-step explanation:
In this question, what we want to calculate is the volume of water in the pool.
We proceed as follows;
diameter of pool = 30ft
depth: 2 to 7ft linearly
average depth = (2 + 7)/2 = 9/2 = 4.5 ft
Volume = area * average depth
V = pi * radius^2 * 4.5
where radius = diameter/2 = 30/2 = 15 ft
V = pi * 15^2 * 4.5
V = 22/7 * 225 * 4.5
V = 3,182.14 ft^3
which is 3,182 ft^3 to nearest whole number
The volume of water in the pool is; Volume = 3181 ft³
We are given;
Diameter of swimming Pool; d = 30 ft
Thus; radius; r = d/2 = 30/2 = 15 ft
We are told that the depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end.
Thus, average depth is;
h_avg = (2 + 7)/2
h_avg = 4.5 ft
Formula for area is; A = πr²
Thus;
A = π × 15²
A = 225π
Formula for volume here is;
Volume = Area × depth
Volume = 225π × 4.5
Volume = 3180.86 ft³
Approximating to a whole number gives;
Volume = 3181 ft³
Read more at; https://brainly.com/question/15276135
A construction crew is lengthening a road. The road started with a length of 56 miles, and the crew is adding 3 miles to the road each day. Let L represent the total length of the road (in miles), and let D represent the number of days the crew has worked. Write an equation relating L to D. Then use this equation to find the total length of the road after the crew has worked 33 days.
Answer:
Below
Step-by-step explanation:
The initial length of the road was 56. 56 is the y-intercept assuming that the graph of this function is a line.
so the equation is:
y= mx+56
m is the slope of the function wich is by how much the function grows.
By analogy, m is the distance added to the road each day.
● y= 3x+56
X is the number of days.
■■■■■■■■■■■■■■■■■■■■■■■■■■
To find the length of the road after 33 days, replace x by 33.
y= 3*33+56 = 155
So after 33 days the road is 155 miles.
What is the least number of colors you need to correctly color in the sections of the pictures so that no two touching sections are the same color?
Answer:
8 colors
Step-by-step explanation:
There should be at least 8 different colors available for coloring the sections. The one color is used to color all the small triangles on the upper most and lower most lines, then there will be required another color so that the edges does not matches with the previous color. For the bigger hexagon shapes in the center we will require different colors for all of them because all of the hexagon shapes touches a line and an edge with each other.
Answer:
its 2 trust me
Step-by-step explanation:
its two cause if you think about it and color in the hexagons and triangles two different colors it works
Answer the following questions: 2/3 is what percent of 1/4?
Answer:
1/2 or 0.5
Step-by-step explanation:
To find out what 2/3 is out of 3/4, we just have to multiply them together to get our exact answer.
[tex]\frac{2}{3} *\frac{3}{4}=\frac{6}{12}=\frac{1}{2}[/tex]
Our final answer is 1/2 or 0.5.
The owner of a shoe store wanted to determine whether the average customer bought more than $100 worth of shoes. She randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below.
Use a TI-83, TI-83 Plus, or TI-84 calculator to test whether the mean is greater than $100 and then draw a conclusion in the context of the problem. Use α=0.05.
125 99 219 65 109 89 79 119 95 135
Select the correct answer below:
A) Reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
B) Reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
C) Fail to reject the null hypothesis. There is sufficient evidence to conclude that the mean is greater than $100.
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
Answer:
D) Fail to reject the null hypothesis. There is insufficient evidence to conclude that the mean is greater than $100.
Step-by-step explanation:
We are given that the owner of a shoe store randomly selected 10 receipts and identified the total spent by each customer. The totals (rounded to the nearest dollar) are given below;
X: 125, 99, 219, 65, 109, 89, 79, 119, 95, 135.
Let [tex]\mu[/tex] = average customer bought worth of shoes.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] $100 {means that the mean is smaller than or equal to $100}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > $100 {means that the mean is greater than $100}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = [tex]\frac{\sum X}{n}[/tex] = $113.4
s = sample standard deviation = [tex]\sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }[/tex] = $42.78
n = sample of receipts = 10
So, the test statistics = [tex]\frac{113.4-100}{\frac{42.78}{\sqrt{10} } }[/tex] ~ [tex]t_9[/tex]
= 0.991
The value of t-test statistics is 0.991.
Now, at a 0.05 level of significance, the t table gives a critical value of 1.833 at 9 degrees of freedom for the right-tailed test.
Since the value of our test statistics is less than the critical value of t as 0.991 < 1.833, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region.
Therefore, we conclude that the mean is smaller than or equal to $100.
x+15=6 What does x equal?
Answer:
x=-9
Step-by-step explanation:
6-15=-9
Answer:
-9
Step-by-step explanation:
When you add some thing to a negative that means you are actually subtract that number