The total cost of tuition, books, and fees for this student when attending college for four years will be $64651
Assuming that the annual increase of $750 per year is compounded each year
we can use the formula for the future value of an annuity to calculate the total cost of tuition, books, and fees for the four years:
[tex]FV = PMT \frac{((1 + r)^n - 1)}{r}[/tex]
In this case, PMT = $15,000, r = 750/15000 = 0.05, and n = 4.
Plugging in these values, we get:
Total cost or FV = $15,000 x ((1 + 0.05)⁴ - 1) / 0.05
FV = $15,000 x(1.2155)-1)/0.05
FV = $15,000 x 0.2155/0.05
FV = $15,000 x4.31
FV = $64651
Hence, the total cost of tuition, books, and fees for this student when attending college for four years will be $64651
To learn more on Percentage click:
https://brainly.com/question/24159063
#SPJ1
A random group of 900 students, from the 5 million students in a certain state, is to be taken using the random number table. How many digits will be needed to be assigned to each person?
You need to assign a 3-digit identifier to each person to randomly select 900 students from a population of 5 million using a random number table.
To randomly select 900 students from a population of 5 million using a random number table, you need to assign a unique identifier to each person. This identifier should be a sequence of digits that allows you to distinguish between individuals and assign a random number to each.
To determine the number of digits required for this identifier, you can use the formula:
n = log10(N)
where N is the population size and n is the number of digits required. In this case:
N = 5,000,000
n = log10(5,000,000) = 6.7
This means that you need 7 digits to assign a unique identifier to each individual. However, since you are only selecting 900 students, you can truncate the identifier to 3 digits, which will still be sufficient to identify each individual in the sample. Therefore, you need to assign a 3-digit identifier to each person to randomly select 900 students from a population of 5 million using a random number table.
To learn more about random number visit:
https://brainly.com/question/29582166
#SPJ4
The equation of line fis y - 7=(x-4). Line g, which is parallel to line f, includes the point
10
(10, 4). What is the equation of line g?
The equation of line g is y = (3/10)x + 1.
What is the equation of line g?The formula for equation of line is expressed as;
y = mx + b
Where m is slope and b is y-intercept.
Given the equation of line f is y - 7 = (3/10)(x - 4).
Since line g is parallel to line f, it will have the same slope as line f, which is 3/10.
Hence, the equation of line g can be written in the form:
y - y1 = m(x - x1)
Where (x1, y1) is the given point (10, 4) and m is the slope of line f, which is 3/10.
Substituting the values, we get:
y - y1 = m(x - x1)
y - 4 = (3/10)(x - 10)
y - 4 = (3/10)x - 3
y = (3/10)x + 1
Therefore, y = (3/10)x + 1 is the equation of line g.
Learn more about equation of line here: brainly.com/question/2564656
#SPJ1
Question 6 of 13
Incorrect
2 tries left. Please try again.
Which transformations are displayed in the graph of g(x) = (x-1)-3 as it relates to the graph of the parent function? Select all that apply.
The translations to the parent function f(x) = x² to generate the function g(x) = (x - 1)² - 3 are given as follows:
Shift right one unit.Shift down three units.What is a translation?A translation happens when either a figure or a function is moved horizontally or vertically on the coordinate plane.
The four translation rules for functions are defined as follows:
Translation left a units: f(x + a).Translation right a units: f(x - a).Translation up a units: f(x) + a.Translation down a units: f(x) - a.The changes to the parent function in this problem are given as follows:
g(x) = f(x - 1) = translation right one unit.g(x) = f(x - 1) - 3 = translation down three units.More can be learned about translations at brainly.com/question/28174785
#SPJ1
What is a legal question an interviewer may ask an applicant at a job interview?
Question 6 options:
Does the applicant have or plan to have children?
What is the applicant's age?
Does the applicant have a criminal history?
What is the applicant's nationality?
Answer:
A legal question an interviewer may ask an application at a job interview is does the applicant has a criminal history.,
You have a dictionary of n-words, each with up to 10 characters, given two words s and t, you need to find a way to change the word s into the word t, while changing only one letter at a time such that every intermediate word belongs to D
For example, if we have D= ['hit', 'cog', 'hot', 'dot', 'dog', 'lot', 'log'], one way to change 'hit' to 'cog' is 'hit'→'hot' → dot → dog →'cog'
a. Model this as a graph problem, what would be the vertices and edges in the graph? How can the original problem of changing the words to the word t be stated in terms of this graph? [2M]
b. Show that this graph can be constructed in O(n²) time, and its size is up to O(n²).
The problem of changing the word s into the word t can be stated in terms of finding a path in this graph from vertex s to vertex t, where each intermediate vertex (word) in the path differs from the previous one by only one character and belongs to D.
a. To model this as a graph problem, we can treat each word in the dictionary D as a vertex in the graph. Then, we can create an edge between two vertices (words) if they differ by only one character. For example, there would be an edge between 'hit' and 'hot', as they differ by only one character ('i' and 'o'). The problem of changing the word s into the word t can be stated in terms of finding a path in this graph from vertex s to vertex t, where each intermediate vertex (word) in the path differs from the previous one by only one character and belongs to D.
b. To construct the graph, we can iterate through all pairs of words in D and check if they differ by only one character. This takes O(n²) time. Once we have identified the edges in the graph, the size of the graph is also up to O(n²), since there can be at most n vertices and n² edges (when every vertex is connected to every other vertex). Therefore, constructing the graph takes O(n²) time, and the size of the graph is up to O(n²).
To know more about the vertex of a graph visit:
https://brainly.com/question/12520974
#SPJ11
given the equation f(x)=-x^2-2x+3 what is the equation of the axis of symmetry?
Answer:
x = -1
Step-by-step explanation:
Pre-SolvingWe are given the following function: f(x) = -x²-2x+3
We want to find the equation of the axis of symmetry.
The axis of symmetry is a line that we can draw down the center of a parabola. It will split the parabola into two equal halves.
The axis of symmetry is given with the equation x = h, where h is the value of the vertex.
The vertex is either the highest or lowest point on the parabola, so it makes sense that the x value of it will split the parabola into two equal halves.
SolvingWe need to find the value of x at the vertex.
It can be found with the equation [tex]h = \frac{-b}{2a}[/tex], where b is the coefficient of x in the equation and a is the coefficient of x² in the equation.
We can see that because there is a - sign in front of x², the coefficient of x² is -1. We can also see that there is a -2 in front of x, which means that the coefficient in front of x is -2.
Let's substitute these values in.
[tex]h = \frac{-b}{2a}[/tex]
[tex]h = \frac{--2}{2(-1)}[/tex]
Simplify
[tex]h = \frac{+2}{-2}[/tex]
h = -1
So, the value of x at the vertex is -1.
Therefore, the axis of symmetry is x = -1.
Unit 7 lesson 5 circles in the coordinate plane
The required equation of the circle with center (3, 5) and radius 8 is
(x - 3)² + (y - 5)² = 64.
Therefore option C is correct.
How do we describe a circle?The circle is described as the locus of a point whose distance from a fixed point is constant with center (h, k).
The equation of the circle is shown as :
(x - h)² + (y - k)² = r²
where h, k = coordinate of the center of the circle on the coordinate plane
r = radius of the circle.
With reference from the graph
the center of the circle is (3, 5) and radius of the circle is 8
we then can write the equation of the circle as,
(x - h)² + (y - k)² = r²
(x - 3)² + (y - 5)² = 8²
(x - 3)² + (y - 5)² = 64
Learn more about circles at:
https://brainly.com/question/28162977
#SPJ1
The complete question is attached as an image.
Estimate the answer by rounding each fraction to the nearest whole or half and then adding.
15 9/10 + 5 3/7 = ??
The estimate of the given fraction, 15 9/10 + 5 3/7, is 21
Estimating the value of the fraction expressionFrom the question, we are to estimate the answer of the given expression
From the given information, we have a fraction expression.
The given expression is
15 9/10 + 5 3/7
To estimate the answer, we will add the fractions
First,
Convert the fractions from mixed to improper fractions
159/10 + 38/7
Find the LCM of 10 and 7
LCM of 10 and 7 = 70
Using the LCM, add the fractions
[7(159) + 10(38)]/70
(1113 + 380)/70
1493/70
= 21 23/70
≈ 21
Hence,
The estimate is 21
Learn more on Estimating fractions here: https://brainly.com/question/20824930
#SPJ1
A water tanks holds 204 gallons but id leaking at a rate of 3 gallons per week. A second water tank holds 306 gallons but id leaking at a rate of 5 gallons per week. After how many weeks will the amount of water in the two tanks be the same?
Answer:
51 weeks
Step-by-step explanation:
Let y represent the total amount of water and w represent the number of weeks. We have the equation for each tank below
First tank: y = 204 - 3w
Second tank: y = 306 - 5w
After how many weeks will the amount of water in the two tanks be the same?
204 - 3w = 306 - 5w
204 + 2w = 306
2w = 102
w = 51 weeks
So, after 51 weeks, the amount of water in the two tanks will be the same.
5/4 to 3/8 percent change
Answer: 70% decrease
Step-by-step explanation:
Jamilla solved the inequality x+ b2 and graphed the solution as shown below. 6 5 4 3 -2 -1 0 1 2 3 4 5 6 What is the value of b and the missing symbol in Jamilla's inequality? Ob=-1,2 O b=-1, s O b = 1,2 O b= 1, g
The inequality solved to give a solution of x ≥ 1 and x ≤ -3 is |x + 1| ≥ 2.
b = 1, ≥
From the diagram, the solution to the inequality is x ≥ 1 and x ≤ -3
Hence:
|x + b| ≥ 2
x + b ≥ 2 or -(x + b) ≥ 2
x ≥ 2 - b or x ≤ -2 - b
2 - b = 1 and -2 - b = -3
b = 1
Hence |x + 1| ≥ 2
The inequality solved to give a solution of x ≥ 1 and x ≤ -3 is |x + 1| ≥ 2. b = 1, ≥
Find out more on inequality at: brainly.com/question/24372553
#SPJ1
Prove that 5 divides n^5−n for any positive integer n≥1.
We used mathematical induction to prove that 5 divides n⁵ - n for any positive integer n. We proved it for k+1 by showing that (k+1)⁵ - (k+1) is divisible by 5 if k⁵ - k is divisible by 5. Therefore, the statement holds for all positive integers, n≥1.
We can prove this by induction.
Mathematical induction is a proof technique used to prove statements about all positive integers. The proof is divided into two steps: the base step and the inductive step.
Base Step: Prove the statement is true for the smallest integer n.
Inductive Step: Assume the statement is true for an arbitrary positive integer k, and use this assumption to prove the statement is true for the next integer k+1.
Here is the prove
Base case: For n=1, we have 1⁵ - 1 = 0 which is divisible by 5.
Inductive step: Assume that for some positive integer k≥1, 5 divides k⁵ - k. We want to show that 5 divides (k+1)⁵ - (k+1).
Expanding (k+1)⁵ - (k+1), we get
(k+1)₅ - (k+1) = k⁵ + 5k⁴ + 10k³ + 10k² + 5k + 1 - (k+1)
= k⁵ - k + 5k⁴ + 10k³ + 10k² + 5k
By the inductive hypothesis, k₅ - k is divisible by 5. Also, every other term in the expression is clearly divisible by 5. Therefore, (k+1)⁵ - (k+1) is divisible by 5 as well.
By mathematical induction, we have proved that 5 divides n⁵ - n for any positive integer n≥1.
To know more about mathematical induction:
https://brainly.com/question/29503103
#SPJ4
Use the formula (x) = |f ″(x)| 1 (f ′(x))2 3⁄2 to find the curvature. Y = 5x4
the point (1,5), the curve is relatively flat with a small curvature of approximately 0.034. As x approaches 0, the curvature increases infinitely, indicating that the curve is becoming more and more sharply curved near the origin.
The curvature (k) of the function y =
[tex]5x^4[/tex]
can be calculated using the formula k =
[tex]|f ″(x)| / [1 + (f ′(x))^2]^1.5[/tex]
where f ′(x) and f ″(x) are the first and second derivatives of the function, respectively.
Taking the first derivative of y =
[tex]5x^4[/tex]
yields f ′(x) =
[tex]20x^3[/tex]
and taking the second derivative yields f ″(x) =
[tex]60x^2[/tex]
Substituting these values into the curvature formula gives:
k =
[tex]|60x^2| / [1 + (20x^3)^2]^1.5[/tex]
Simplifying this expression gives:
k =
[tex]|60x^2| / [400x^6 + 1]^1.5[/tex]
The curvature at any point on the curve can be found by plugging in the value of x. For example, at x = 1, the curvature is: k =
[tex]|60(1)^2| / [400(1)^6 + 1]^1.5[/tex]
k ≈ 0.034
Learn more about curvature here:
https://brainly.com/question/31403088
#SPJ4
the distance from the ground, in meters, of a person riding on a ferris wheel after t seconds can be modeled by the function based on the graph of the function that represents the rider's distance from the ground, how long will it take before the rider is at the lowest point on the ferris wheel?
The time it takes before the rider is at the lowest point on the ferris wheel can be determined by identifying the minimum point on the graph of the function.
To determine the time it takes before the rider is at the lowest point on the ferris wheel, we need to find the minimum point on the graph of the function. The function that models the distance of the rider from the ground is not given, so we cannot determine the exact time.
However, we can use the graph to estimate the time it takes for the rider to reach the lowest point. The lowest point on the graph corresponds to the lowest distance from the ground.
Therefore, we need to identify the x-coordinate of the lowest point on the graph, which represents the time it takes for the rider to reach the lowest point. Once we have this time, we can provide a more accurate estimate of when the rider reaches the lowest point.
For more questions like Distance click the link below:
https://brainly.com/question/15172156
#SPJ11
compared to small samples, large samples have ___________ variability and thus will have a ___________ error from the population parameters.
Compared to small samples, large samples have less variability and thus will have a smaller error from the population parameters. Variability refers to the degree to which the data points in a sample differ from one another.
A small sample size may not accurately represent the population it was taken from, as it is subject to random variation. This random variation may lead to a large degree of variability in the sample, which in turn leads to a larger error from the population parameters.
On the other hand, large samples tend to have a more representative selection of individuals from the population. As a result, they tend to have less variability and a smaller error from the population parameters. This means that the estimates made from a large sample are likely to be more accurate than those made from a small sample. However, it is important to note that even with a large sample size, there may still be some degree of error due to other factors such as sampling bias or measurement error. Therefore, it is important to carefully consider the sample size and other factors when making statistical inferences about a population.
Compared to small samples, large samples have lower variability and thus will have a smaller error from the population parameters.
To explain further, a "sample" is a subset of a larger group, called the "population." When conducting research or analyzing data, researchers use samples to make inferences about the overall population. The characteristics of the population, such as the mean and standard deviation, are called "parameters."
When a sample is small, it is more susceptible to variability, which is the degree to which the data points in the sample differ from one another. High variability can lead to unreliable conclusions about the population parameters. A small sample may not be representative of the entire population, so the error, or difference between the sample estimate and the actual population parameter, can be larger.
On the other hand, large samples tend to have lower variability because they include more data points from the population, making them more representative of the overall group. This increased representation leads to a smaller error between the sample estimate and the actual population parameter.
In summary, using large samples is generally more advantageous because they provide lower variability and smaller errors, leading to more accurate estimates of population parameters.
Learn more about variation at : brainly.com/question/13977805
#SPJ11
which of the following is the necessary condition for creating confidence intervals for the population mean?
The necessary condition for creating confidence intervals for the population mean is that the sample mean is normally distributed or that the sample size is large enough to satisfy the central limit theorem.
Thus, a necessary condition for creating confidence intervals for the population mean is that the sample data should follow a normal distribution, or the sample size should be sufficiently large (usually n ≥ 30) to apply the Central Limit Theorem.
This condition ensures that the confidence interval accurately estimates the population mean with a specified level of confidence.
Learn more about population mean here:- brainly.com/question/30727743
#SPJ11
A store sells only five items and is analyzing its sales. The chart below relates
the number of units sold of each item. For every one Polo shirt sold, how many
Sunglasses did the company sell? (Enter a decimal to two places).
Show your
work here
Polo shirts 20.6%
Wristbands 19.2%
Sunglasses 19.2%
T-shirts 20.4%
Hats 20.7%
40%
Step-by-step explanation:
For every one Polo shirt sold, the store sells approximately 0.93 Sunglasses. This value is a ratio, not the actual quantity of items sold.
Explanation:The chart shows that the percentage of Polo Shirts sold is 20.6%, while the sunglasses sold are 19.2%. To determine the ratio of Polo shirts to Sunglasses sold, we divide the percentage of Sunglasses by the percentage of Polo shirts.
So, 19.2 divided by 20.6 equals approximately 0.93. This means for every one Polo shirt sold, approximately 0.93 Sunglasses are sold. It's important to note that this number is a ratio, not the actual number of items sold. It's also rounded to two decimal places as instructed.
Learn more about Ratio here:https://brainly.com/question/32531170
#SPJ2
A group would like to estimate the percentage of town residents who would support a teen curfew.
Which statement describes a method that will help the group accurately estimate this percentage?
Responses
Take a random sample of residents in the town, and ask each resident in the sample whether or not they support a teen curfew. Then calculate the percentage of the total who say "yes."
Take a random sample of residents in the town, and ask each resident in the sample whether or not they support a teen curfew. Then calculate the percentage of the total who say "yes."
Identify all nearby towns that have a teen curfew. Contact the mayor of each of those towns and ask whether he or she thinks the curfew is a good policy. Calculate the percentage of the total who say "yes."
Identify all nearby towns that have a teen curfew. Contact the mayor of each of those towns and ask whether he or she thinks the curfew is a good policy. Calculate the percentage of the total who say "yes."
Contact every parent who lives in the town and ask whether they support a teen curfew. Calculate the percentage of the total who say "yes."
Contact every parent who lives in the town and ask whether they support a teen curfew. Calculate the percentage of the total who say "yes."
Take a random sample of towns in the state. Ask an administrator in the city office whether the town has a teen curfew, and then calculate the percentage of the total who say "yes."
Answer:
The first statement is the correct method to estimate the percentage of town residents who would support a teen curfew. This is because a random sample will ensure that the results are representative of the entire population. The other statements are not as accurate because they do not involve a random sample. For example, the second statement only asks the mayors of nearby towns, which may not be representative of the entire population. The third statement only asks parents, which may not be representative of the entire population. The fourth statement asks administrators in city offices, which may not be representative of the entire population.
Here are some other things to consider when estimating the percentage of town residents who would support a teen curfew:
* The size of the sample: The larger the sample, the more accurate the results will be.
* The method of sampling: The random sample should be representative of the entire population.
* The questions asked: The questions should be clear and concise, and they should be answered in a way that is easy to interpret.
* The way the results are analyzed: The results should be analyzed using statistical methods that are appropriate for the data.
Mr. Vellman has a test bank with 75 multiple-choice questions on Lesson 4.7. The test bank comes with a random generator that will select and arrange questions to make different versions of a test. How many different versions of a 10-question multiple-choice test on this lesson could Mr. Vellman make?
Mr. Vellman has a test bank with 75 multiple-choice questions on Lesson 4.7, and the test bank comes with a random generator that will select and arrange questions to make different versions of a test.
If Mr. Vellman wants to create a 10-question multiple-choice test on this lesson, there are a few different ways to approach the problem. One method is to use the combination formula, which calculates the number of ways to choose a certain number of items from a larger set without regard to order. In this case, we want to know how many different combinations of 10 questions can be selected from a pool of 75 questions. The formula for this is: nCr = n! / r! (n - r)! where n is the total number of items, r is the number of items being selected, and ! denotes the factorial function (i.e., n! = n x (n-1) x (n-2) x ... x 1).
Using this formula, we can calculate the number of different versions of a 10-question test that Mr. Vellman could make from his test bank: 75C10 = 75! / (10! (75-10)!) = 75! / (10! 65!) = 75 x 74 x 73 x ... x 66 / 10 x 9 x 8 x ... x 2 x 1 This simplifies to: 75C10 = 6,424,369,000 Therefore, Mr. Vellman could create over 6 billion different versions of a 10-question multiple-choice test on Lesson 4.7 using his test bank.
Know more about test bank here:
https://brainly.com/question/30132710
#SPJ11
a sample was done, collecting the data below. calculate the standard deviation, to one decimal place 4,25,11,26,30
The standard deviation of the data set is approximately 11.1, rounded to one decimal place.
To calculate the standard deviation of a set of data, we need to follow a few steps. First, we need to find the mean (average) of the data set. Then, we need to subtract the mean from each data point and square the result. We add up all of the squared differences, divide by the number of data points minus one, and take the square root of the result.
So, for the data set 4, 25, 11, 26, 30:
- The mean is (4+25+11+26+30)/5 = 19.2
- The differences between each data point and the mean are:
- 4-19.2 = -15.2
- 25-19.2 = 5.8
- 11-19.2 = -8.2
- 26-19.2 = 6.8
- 30-19.2 = 10.8
- Squaring these differences gives:
- (-15.2)^2 = 231.04
- 5.8^2 = 33.64
- (-8.2)^2 = 67.24
- 6.8^2 = 46.24
- 10.8^2 = 116.64
- Adding up these squared differences gives 495.96
- Dividing by 4 (the number of data points minus one) gives 123.99
- Taking the square root of 123.99 gives approximately 11.1
To learn more about standard deviation : brainly.com/question/13905583
#SPJ11
it takes as input the number of tikets sold and returns as output the amount of money raised a(n) = 3n - 20
The returns when 30 tickets were sold would be $ 70 .
How to find the amount raised ?To calculate the total earnings from 30 sold tickets using the formula a ( n ) = 3 n - 20 , we must input n as 30 and assess the outcome .
Therefore, the returns raised when there were 30 tickets sold would be :
= 3 n - 20
= 3 ( 30 ) - 20
= 3 x 30 - 20
= 90 - 20
= 90 - 20
= $ 70
Therefore, with 30 tickets sold, the amount of money raised is $70.
Find out more on tickets sold at https://brainly.com/question/8112999
#SPJ1
Question is:
How much was raised when 30 tickets were sold?
2(– 2–5q)=– 3(– 4–2q)
The figure is an isosceles trapezoid.
A trapezoid has equal left and ride sides.
How many lines of reflectional symmetry does the trapezoid have?
The trapezoid has only one line of reflectional symmetry.
When we divide the image, the mirror image of one side of the image to the other is known as reflectional symmetry. We can say that one half of the image is the reflection of the other half. Reflection symmetry is also known as mirror symmetry.
In an isosceles trapezoid, the length of the sides is the same which means that the left and the right sides are equal. But, the bases of an isosceles trapezoid are not the same. When a vertical line is drawn in the middle of the isosceles trapezoid, the left side of the image becomes the reflection of the right side. So there is only one line of reflection symmetry.
Therefore, there is only one line of reflectional symmetry in this figure of an isosceles trapezoid.
To learn more about reflectional symmetry;
https://brainly.com/question/2036345
#SPJ4
The complete question is "The figure is an isosceles trapezoid. How many lines of reflectional symmetry does the trapezoid have? The image is given below"
pls help me with this problem. I need this today. thank you
Solve the system of linear equations using iterative methods 1. 6X1 + 2x2 + x3 = 26 = = 2x1 + 8x2 - 2x3 = 24 = X1 - 2X2 + 6x3 = 30
The solution to the system of linear equations using iterative methods is X1 = 2.24, X2 = 2.17, and X3 = 4.68.
To solve this system of linear equations using iterative methods, we can use the Gauss-Seidel method. Here are the steps:
1. Rearrange the equations so that each variable is on the left side and the constants are on the right side:
X1 = (26 - 2x2 - x3)/6
X2 = (24 - 2x1 + 2x3)/8
X3 = (30 - x1 + 2x2)/6
2. Make an initial guess for X1, X2, and X3. Let's use (0, 0, 0) as our initial guess.
3. Use the equations from Step 1 and plug in the initial guess for X1, X2, and X3 to get new values.
X1 = (26 - 2(0) - (0))/6 = 4.333
X2 = (24 - 2(0) + 2(0))/8 = 3
X3 = (30 - (0) + 2(0))/6 = 5
4. Use the new values for X1, X2, and X3 in the equations from Step 1 to get newer values.
X1 = (26 - 2(3) - (5))/6 = 2.167
X2 = (24 - 2(2.167) + 2(5))/8 = 2.125
X3 = (30 - (2.167) + 2(3))/6 = 4.556
5. Keep repeating step 4 until the values for X1, X2, and X3 stop changing significantly. Let's repeat step 4 one more time.
X1 = (26 - 2(2.125) - (4.556))/6 = 2.24
X2 = (24 - 2(2.24) + 2(4.556))/8 = 2.17
X3 = (30 - (2.24) + 2(2.125))/6 = 4.68
6. We can see that the values for X1, X2, and X3 are not changing significantly anymore. Therefore, the solution to the system of linear equations using iterative methods is X1 = 2.24, X2 = 2.17, and X3 = 4.68.
Learn more about iterative methods at https://brainly.com/question/31370534
#SPJ11
Jorge's score on Exam 1 in his statistics class was at the 64th percentile of the scores for all students. His score falls
(a) between the minimum and the first quartile.
(b) between the first quartile and the median. پا
(c) between the median and the third quartile.
(d) between the third quartile and the maximum.
(e) at the mean score for all students.
Jorge's score on Exam 1 in his statistics class was at the 64th percentile, which means his score falls (c) between the median and the third quartile. This is because the median represents the 50th percentile and the third quartile represents the 75th percentile, and his score falls within that range.
Based on the information given, we know that Jorge's score is at the 64th percentile of all the scores. This means that 64% of the scores are below his score and 36% of the scores are above his score.
Option (c) between the median and the third quartile is the correct answer. The median represents the 50th percentile, and the third quartile represents the 75th percentile. Since Jorge's score is at the 64th percentile, it falls between these two values.
Options (a), (b), (d), and (e) can be eliminated because they do not fall within the range of the 64th percentile.
To learn more about median, click here:
brainly.com/question/28060453
#SPJ11
If you have a digital scale in your home that only reads in integers, is your weight a discrete variable?
Yes because the scale reports integers.
It depends on the accuracy of the scale.
No because weight is still a continuous variable regardless of the ability to measure it.
It depends on your weight
Yes because the digital scale only reports integers, making the measurement of weight a discrete variable.
However, the accuracy of the scale can also affect whether the weight measurement is truly discrete or has some degree of variability. If the scale has a high level of accuracy, the weight measurement may still be considered continuous even though it is reported in integers.
When using a digital scale that only reads in integers, your weight is considered a discrete variable, as it can only take on specific, separate values (whole numbers) rather than continuous values (including decimals). However, it's important to note that weight is inherently a continuous variable, but the limitations of the scale make it discrete in this specific scenario.
Learn more about weight measurement here: brainly.com/question/17940519
#SPJ11
Make x the subject of the formula
Y=x(a+b)
The value of x in the expression is bx-y/a
How to calculate the value of x ?The expression is
Y= x(a+b)
remove the bracket
Y= ax + bx
ax= bx-y
divide both sides by the coefficient of x which is a
ax/a= bx-y/a
x= bx-y/a
Read more on expression here
https://brainly.com/question/196834
# SPJ1
The angle formed by the radius of a circle and a tangent line to the circle is always:
equal to 90°
greater than 90°
less than 90°
The angle formed by the radius of a circle and a tangent line to the circle is always equal to 90°
Completing the statement of the relationship between the radius of a circle and a tangent lineFrom the question, we have the following parameters that can be used in our computation:
The statement
In the statement, we have
Radius of a circleTangent lineAs a general rule, the pojnt of intersection between the Radius of a circle and a Tangent line is right angles
This means that the angle is 90 degrees
Hence, the angle formed by the radius of a circle and a tangent line to the circle is always equal to 90°
Read mroe about tangent lines at
https://brainly.com/question/16038958
#SPJ1
If ab is parallel to de, ab = 9, de = 6, ec = 4, what is the measure of bc?
The measure of BC is 20/3 or approximately 6.67.
Since ab is parallel to de, we know that angle abc is congruent to angle cde (corresponding angles of parallel lines). Let x be the length of bc.
Using the similar triangles ABC and CDE, we can set up the following proportion:
AB/CD = BC/DE
Substituting the given values:
9/CD = x/6
Solving for CD:
CD = 9/6 * x = 3/2 * x
Using the fact that EC = CD - DE, we can substitute the given values to get:
4 = (3/2 * x) - 6
10 = 3/2 * x
x = 20/3
Learn more about parallel lines
https://brainly.com/question/16701300
#SPJ4
A survey of 54 students and 23 teachers asks whether lunch should be moved 30 minutes later in the day. The two-way table shows the results. Use the survey results to make a two-way table that shows the conditional relative frequencies based on the row totals. Round each value to the nearest thousandth.
The total row and column provide the overall proportions of "Yes" and "No" responses in the survey, as well as the total number of responses.
We can make the two-way table with conditional relative frequencies based on the row totals by dividing each count in a row by the total number of responses in that row. Rounded to the nearest thousandth, the table looks like this:
Yes No Total
Students (n=54) 0.407 0.593 1.000
Teachers (n=23) 0.696 0.304 1.000
Total 0.481 0.519 1.000
In the first row, the conditional relative frequency for "Yes" is found by dividing the number of "Yes" responses among students (22) by the total number of student responses (54), which gives 22/54 ≈ 0.407. Similarly, the conditional relative frequency for "No" is found by dividing the number of "No" responses among students (32) by the total number of student responses, which gives 32/54 ≈ 0.593.
In the second row, the conditional relative frequency for "Yes" is found by dividing the number of "Yes" responses among teachers (16) by the total number of teacher responses (23), which gives 16/23 ≈ 0.696. Similarly, the conditional relative frequency for "No" is found by dividing the number of "No" responses among teachers (7) by the total number of teacher responses, which gives 7/23 ≈ 0.304.
The total row and column provide the overall proportions of "Yes" and "No" responses in the survey, as well as the total number of responses.
Learn more about statistics here:
https://brainly.com/question/23575914
#SPJ1