Answer:
a) Em= K +U, b) Em= K
Explanation:
The system in this case is formed by the mobilizes and the hill.
Let's write the expressions correctly and completely.
a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.
Em = K + U
be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car
Em = K
c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.
Answer:
leaves
kinetic energy
mass
potential energy
mass
Explanation:
A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time
Answer:
The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
Explanation:
The magnetic field at the center of the solenoid is given by;
B = μ(N/L)I
Where;
μ is permeability of free space
N is the number of turn
L is the length of the solenoid
I is the current in the solenoid
The rate of change of the field is given by;
[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]
The induced emf in the shorter coil is calculated as;
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
where;
N is the number of turns in the shorter coil
A is the area of the shorter coil
Area of the shorter coil = πr²
The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m
Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²
[tex]E = NA\frac{\delta B}{\delta t}[/tex]
E = 14 x 0.000491 x 0.02514
E = 1.728 x 10⁻⁴ V
Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V
The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]
Induced EMF:The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:
[tex]E=-\frac{\delta\phi}{\delta t}[/tex]
where E is the induced emf,
[tex]\phi[/tex] is the magnetic flux through the coil.
The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:
[tex]\phi = \frac{\mu_oNIA}{L}[/tex]
so;
[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]
where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.
[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]
The emf produced in the coil at the center of the solenoid which has 14 turns will be:
[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]
Learn more about induced emf:
https://brainly.com/question/16765199?referrer=searchResults
Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diameter and 6 meters long is carried on the back of a truck and is used to fuel tractors. The axis of the tank is horizontal. The opening on the tractor tank is 5 meters above the top of the tank in the truck. Find the work done in pumping the entire contents of the fuel tank into the tractor.
Answer:
work done in pumping the entire fuel is 1399761 J
Explanation:
weight per volume of the gasoline = 6600 N/m^3
diameter of the tank = 3 m
length of the tank = 6 m
The height of the tractor tank above the top of the tank = 5 m
The total volume of the fuel is gotten below
we know that the tank is cylindrical.
we assume that the fuel completely fills the tank.
therefore, the volume of a cylinder =
where r = radius = diameter ÷ 2 = 3/2 = 1.5 m
volume of the cylinder = 3.142 x x 6 = 42.417 m^3
we then proceed to find the total weight of the fuel in Newton
total weight = (weight per volume) x volume
total weight = 6600 x 42.417 = 279952.2 N
therefore,
the work done to pump the fuel through to the 5 m height = (total weight of the fuel) x (height through which the fuel is pumped)
work done in pumping = 279952.2 x 5 = 1399761 J
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
The cart now moves toward the right with an acceleration toward the right of 2.50 m/s2. What does spring scale Fz read? Show your calculations, and explain.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The spring scale [tex]F_2[/tex] reads [tex]F_2 = 2.4225 \ N[/tex]
Explanation:
From the question we are told that
The first force is [tex]F_1 = 10.5 \ N[/tex]
The acceleration by which the cart moves to the right is [tex]a = 2.50 \ m/s^2[/tex]
The mass of the cart is m = 3.231 kg
Generally the net force on the cart is
[tex]F_{net} = F_1 - F_2[/tex]
This net force is mathematically represented as
[tex]F_{net} = m * a[/tex]
So
[tex]m* a = 10 - F_2[/tex]
[tex]F_2 = 10.5 - 2.5 (3.231)[/tex]
[tex]F_2 = 2.4225 \ N[/tex]
Consider a single turn of a coil of wire that has radius 6.00 cm and carries the current I = 1.50 A . Estimate the magnetic flux through this coil as the product of the magnetic field at the center of the coil and the area of the coil. Use this magnetic flux to estimate the self-inductance L of the coil.
Answer:
a
[tex]\phi = 1.78 *10^{-7} \ Weber[/tex]
b
[tex]L = 1.183 *10^{-7} \ H[/tex]
Explanation:
From the question we are told that
The radius is [tex]r = 6 \ cm = \frac{6}{100} = 0.06 \ m[/tex]
The current it carries is [tex]I = 1.50 \ A[/tex]
The magnetic flux of the coil is mathematically represented as
[tex]\phi = B * A[/tex]
Where B is the magnetic field which is mathematically represented as
[tex]B = \frac{\mu_o * I}{2 * r}[/tex]
Where [tex]\mu_o[/tex] is the magnetic field with a constant value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]
substituting value
[tex]B = \frac{4\pi * 10^{-7} * 1.50 }{2 * 0.06}[/tex]
[tex]B = 1.571 *10^{-5} \ T[/tex]
The area A is mathematically evaluated as
[tex]A = \pi r ^2[/tex]
substituting values
[tex]A = 3.142 * (0.06)^2[/tex]
[tex]A = 0.0113 m^2[/tex]
the magnetic flux is mathematically evaluated as
[tex]\phi = 1.571 *10^{-5} * 0.0113[/tex]
[tex]\phi = 1.78 *10^{-7} \ Weber[/tex]
The self-inductance is evaluated as
[tex]L = \frac{\phi }{I}[/tex]
substituting values
[tex]L = \frac{1.78 *10^{-7} }{1.50 }[/tex]
[tex]L = 1.183 *10^{-7} \ H[/tex]
A proton is accelerated from rest through a potential difference V0 and gains a speed v0. If it were accelerated instead through a potential difference of 2V0, what speed would it gain
Answer:
Explanation:
Let the charge on proton be q .
energy gain by proton in a field having potential difference of V₀
= V₀ q
Due to gain of energy , its kinetic energy becomes 1/2 m v₀²
where m is mass and v₀ is velocity of proton
V₀ q = 1/2 m v₀²
In the second case , gain of energy in electrical field
= 2 V₀q , if v be the velocity gained in the second case
2 V₀q = 1/2 m v²
1/2 m v² = 2 V₀q = 2 x 1/2 m v₀²
mv² = 2 m v₀²
v = √2 v₀
A commercial aircraft is flying westbound east of the Sierra Nevada Mountains in California. The pilot observes billow clouds near the same altitude as the aircraft to the south, and immediately turns on the "fasten seat belt" sign. Explain why the aircraft experiences an abrupt loss of 500 meters of altitude a short time later.
Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?
Answer:
The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
Explanation:
We are told that the particle moves back and forth along a straight line with velocity v(t).
Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.
Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds
A hot air balloon competition requires a balloonist to drop a ribbon onto a target on the ground. Initially the hot air balloon is 50 meters above the ground and 100 meters from the target. The wind is blowing the balloon at v= 15 meters/sec on a course to travel directly over the target. The ribbon is heavy enough that any effects of the air slowing the vertical velocity of the ribbon are negligible. How long should the balloonist wait to drop the ribbon so that it will hit the target?
Answer:
The wait time is [tex]t_w = 3.4723 \ s[/tex]
Explanation:
From the question we are told that
The distance of the hot air balloon above the ground is [tex]z = 50 \ m[/tex]
The distance of the hot air balloon from the target is [tex]k = 100 \ m[/tex]
The speed of the wind is [tex]v = 15 \ m/s[/tex]
Generally the time it will take the balloon to hit the ground is
[tex]t = \sqrt{ \frac{2 * z }{g} }[/tex]
where g is acceleration due to gravity with value [tex]g = 9.8 m/s^2[/tex]
substituting values
[tex]t = \sqrt{ \frac{2 * 50 }{9.8} }[/tex]
[tex]t = 3.194 \ s[/tex]
Now at the velocity the distance it will travel before it hit the ground is mathematically represented as
[tex]d = v * t[/tex]
substituting values
[tex]d = 15 * 3.194[/tex]
[tex]d = 47.916 \ m[/tex]
Now in order for the balloon to hit the target on the ground it will need to travel b distance on air before the balloonist drops it and this b distance can be evaluated as
[tex]b = k - d[/tex]
substituting values
[tex]b =100 -47.916[/tex]
[tex]b = 52.084 \ m[/tex]
Hence the time which the balloonist need to wait before dropping the balloon is mathematically evaluated as
[tex]t_w = \frac{b}{v}[/tex]
substituting values
[tex]t_w = \frac{52.084}{15}[/tex]
[tex]t_w = 3.4723 \ s[/tex]
A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2
Answer:
650W/m²Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
A sound wave of frequency 162 Hz has an intensity of 3.41 μW/m2. What is the amplitude of the air oscillations caused by this wave? (Take the speed of sound to be 343 m/s, and the density of air to be 1.21 kg/m3.)
Answer:
I believe it is 91
Explanation:
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
Isaac drop ball from height og 2.0 m, and it bounces to a height of 1.5 m what is the speed before and after the ball bounce?
Explanation:
It is given that, Isaac drop ball from height of 2.0 m, and it bounces to a height of 1.5 m.
We need to find the speed before and after the ball bounce.
Let u is the initial speed of the ball when he dropped from height of 2 m. The conservation of energy holds here. So,
[tex]\dfrac{1}{2}mu^2=mgh\\\\u=\sqrt{2gh} \\\\u=\sqrt{2\times 9.8\times 2} \\\\u=6.26\ m/s[/tex]
Let v is the final speed when it bounces to a height of 1.5 m. So,
[tex]\dfrac{1}{2}mv^2=mgh\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 1.5} \\\\v=5.42\ m/s[/tex]
So, the speed before and after the ball bounce is 6.26 m/s and 5.42 m/s respectively.
The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?
Answer:
F= 175.5N
Explanation:
Given:
Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance
torque of 38N⋅m
angle of 120∘
Torque(τ): 38Nm
position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m
Angle: 120°
To find the Force, the torque equation will be required which is expressed below
τ = Frsinθ
We need to solve for F, if we rearrange the equation, we have the expression below
F= τ/rsinθ
Note: the torque is maximum when the angle is 90 degrees
But θ= 180-120=60
F= 38/0.25( sin(60) )
F= 175.5N
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
An apple falls from a tree and hits your head with a force of 9J. The apple weighs 0.22kg. How far did the apple fall?
Answer:
The apple fell at a distance of 4.17 m.
Explanation:
Work is defined as the force that is applied on a body to move it from one point to another. When a force is applied, an energy transfer occurs. Then it can be said that work is energy in motion.
When a net force is applied to the body or a system and this produces displacement, then that force is said to perform mechanical work.
In the International System of Units, work is measured in Joule. Joule is equivalent to Newton per meter.
The work is equal to the product of the force by the distance and by the cosine of the angle that exists between the direction of the force and the direction that travels the point or the object that moves.
Work=Force*distance* cosine(angle)
On the other hand, Newton's second law says that the acceleration of a body is proportional to the resultant of forces on it acting and inversely proportional to its mass. This is represented by:
F=m*a
where F is Force [N], m is Mass [kg] and a Acceleration [m / s²]
In this case, the acceleration corresponds to the acceleration of gravity, whose value is 9.81 m / s². So you have:
Work= 9 JF=m*a=0.22 kg*9.81 m/s²= 2.1582 Ndistance= ?angle=0 → cosine(angle)= 1Replacing:
9 J= 2.1582 N* distante* 1
Solving:
[tex]distance=\frac{9J}{2.1582 N*1}[/tex]
distance= 4.17 m
The apple fell at a distance of 4.17 m.
Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the strength of the electric field between the plates
Answer:
The electric field strength between the plates can be increased by decreasing the length of each side of the plates.
Explanation:
The electric field strength is given by;
[tex]E = \frac{V}{d}[/tex]
where;
V is the electric potential of the two opposite charges
d is the distance between the two parallel plates
[tex]E =\frac{V}{d} = \frac{\sigma}{\epsilon _o} \\\\(\sigma = \frac{Q}{A} )\\\\E = \frac{Q}{A\epsilon_o} \\\\E = \frac{Q}{L^2\epsilon_o}[/tex]
Where;
ε₀ is permittivity of free space
L is the length of each side of the plates
From the equation above, the electric field strength can be increased by decreasing the length of each side of the plates.
Therefore, decreasing the length of each side of the plates, could be made to increase the strength of the electric field between the plates
6. How would the measurements for potential difference and current change if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor? Explain your answer.
Answer:
Explanation:
Resistance is defined as the opposition to the flow of an electric current in a circuit. This means that a higher amount of resistance tends to reduce the amount of current flowing through the resistance. The lower the current, the greater the possibility for the resistor to allow current to pass through it. if a 200 Ω resistor was used in Circuit 1 instead of the 100 Ω resistor, then the current in the circuit will tends to increase since we are replacing the load with a lesser resistor and a smaller resistance tends to allow more current to flow through it
For the potential difference, a decrease in the resistance value will onl decrease the potential difference flowing in the circuit according to ohm's law. According to the law the pd in a circuit is directly proportional to the current which means an increase in the resistance value will cause an increase in the corresponding pd and vice versa.
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe
Answer:
0.0127m
Explanation:
Using
Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m
A particle with mass m = 700 g is found to be moving with velocity v vector (-3.50i cap + 2.90j cap) m/s. From the definition of the scalar product, v^2 = v vector. v vector.
a. What is the particle's kinetic energy at this time? J If the particle's velocity changes to v vector = (6.00i cap - 5.00j cap) m/s,
b. What is the net work done on the particle? J
Answer:
Explanation:
v₁² = v₁ . v₁
= ( - 3.5 i + 2.9 j ).( - 3.5 i + 2.9 j )
= 12.25 + 8.41
= 20.66 m /s
a ) kinetic energy = 1/2 m v₁²
= 1/2 x .7 x 20.66
= 7.23 J
b )
changed velocity v₂ = v₂.v₂
= (6i - 5 j ) . (6i - 5 j )
= 36 + 25
= 61 m /s
kinetic energy = 1/2 m v₂²
= 1/2 x .7 x 61
= 21.35 J
Work done = change in energy
= 21.35 - 7.23
= 14.12 J .
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s2 until it runs out of fuel at an altitude of 850 m . After this point, its acceleration is that of gravity, downward.
Answer:
v = 73.75 m/s
Explanation:
It is given that,
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s² until it runs out of fuel at an altitude of 850 m.
Let us assume we need to find the velocity of the rocket when it runs out of fuel.
Let v is the final speed. Using the third equation of kinematics as :
[tex]v^2-u^2=2as[/tex]
u = 0
[tex]v=\sqrt{2as} \\\\v=\sqrt{2\times 3.2\times 850}\\\\v=73.75\ m/s[/tex]
So, the velocity of the rocket when it runs out of the fuel is 73.75 m/s
A satellite orbits a planet of unknown mass in a circular orbit of radius 2.3 x 104 km. The gravitational force on the satellite from the planet is 6600 N. What is the kinetic energy of the satellite
Answer:
The kinetic energy is [tex]KE = 7.59 *10^{10} \ J[/tex]
Explanation:
From the question we are told that
The radius of the orbit is [tex]r = 2.3 *10^{4} \ km = 2.3 *10^{7} \ m[/tex]
The gravitational force is [tex]F_g = 6600 \ N[/tex]
The kinetic energy of the satellite is mathematically represented as
[tex]KE = \frac{1}{2} * mv^2[/tex]
where v is the speed of the satellite which is mathematically represented as
[tex]v = \sqrt{\frac{G M}{r^2} }[/tex]
=> [tex]v^2 = \frac{GM }{r}[/tex]
substituting this into the equation
[tex]KE = \frac{ 1}{2} *\frac{GMm}{r}[/tex]
Now the gravitational force of the planet is mathematically represented as
[tex]F_g = \frac{GMm}{r^2}[/tex]
Where M is the mass of the planet and m is the mass of the satellite
Now looking at the formula for KE we see that we can represent it as
[tex]KE = \frac{ 1}{2} *[\frac{GMm}{r^2}] * r[/tex]
=> [tex]KE = \frac{ 1}{2} *F_g * r[/tex]
substituting values
[tex]KE = \frac{ 1}{2} *6600 * 2.3*10^{7}[/tex]
[tex]KE = 7.59 *10^{10} \ J[/tex]
A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is
Answer:
0.0081T
Explanation:
The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e
B ∝ I [tex]\frac{N}{L}[/tex]
B = μ₀ I [tex]\frac{N}{L}[/tex] ----------------(i)
Where;
μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²
Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by
L = 2π r
L = 2π (0.042)
L = 0.084π
The number of turns N = 1000
The current in the toroid = 1.7A
Substitute these values into equation (i) to get the magnetic field as follows;
B = 4π x 10⁻⁷ x 1.7 x [tex]\frac{1000}{0.084\pi }[/tex] [cancel out the πs and solve]
B = 0.0081T
The magnetic field along the central radius is 0.0081T
In a single-slit diffraction experiment, the width of the slit through which light passes is reduced. What happens to the width of the central bright fringe
Answer:
It becomes wider
Explanation:
Because The bigger the object the wave interacts with, the more spread there is in the interference pattern. Decreasing the size of the opening increases the spread in the pattern.
Which has more mass electron or ion?
An electron, moving toward the west, enters a uniform magnetic field. Because of this field the electron curves upward. The direction of the magnetic field is
Answer:
The magnetic field's direction is towards the north
Explanation:
The force on a positive charge in a uniform magnetic field is represented by the right hand rule. To determine the direction of the force, place your right hand with your palm up, and your thumb at 90° to the other fingers. If the fingers represent the magnetic field, and the thumb the direction of the positive charge, then the palm will push up in the direction of the force. But a negative charge like an electron pushes in exactly the opposite direction. So if you follow this rule, you will find that the magnetic field points towards the north.
The direction of the magnetic field is towards the North. This can be
determined using the right hand rule by Fleming.
The right hand rule states that to determine the direction of the magnetic
force, the right thumb should be pointed in in the direction of the velocity,
index finger in the direction of the magnetic field and middle finger in the
direction of magnetic force.
When this is applied, we will discover that the index finger will point towards
the north region.
Read more on https://brainly.com/question/19904974
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m