Answer:
The solution of the system of equations is (x,y) = (2,0)
Step-by-step explanation:
The equation of a line through the points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is equal to:
[tex]y-y_1=m(x-x_1)[/tex]
Where [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
So, the equation of the line through the points (3, 1) and (–5, –7) is:
[tex]m=\frac{-7-1}{-5-3}=1[/tex]
[tex]y-1=1(x-3)\\y=x-3+1\\y=x-2[/tex]
Then, we have two equations, y=x-2 and y=0.5x -1 , so solving for x, we get:
x - 2 = 0.5 x - 1
x - 0.5x = 2 - 1
x = 2
Replacing x=2 in the equation y=x-2, we get:
y =2 - 2 = 0
Finally, the solution of the system of equations is (x,y) = (2,0)
Answer:The solution of the system of equations is (x,y) = (2,0)
Step-by-step explanation:
what is the product number of 88 and 26?
Answer:
2288
Step-by-step explanation:
a:b=7.2
How many times larger is a than b?
Does anyone understand this?
PLEASE HELP ASAP
Answer:
3.5 times as large
Step-by-step explanation:
The ratio can be written using a colon or a fraction bar. In the latter case, simplifying the fraction gives you your answer:
a : b = 7 : 2 = 7/2
'a' is 7/2 = 3.5 times as large as 'b'
Simplify [tex]$\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$[/tex] $\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$
Answer:
[tex]3 -\sqrt[2]3[/tex]
Step-by-step explanation:
Given
[tex]\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}[/tex]
Required
Simplify
Rewrite the given expression in index form
[tex]\frac{2 * 9 ^\frac{1}{3}}{1 + 3^{\frac{1}{3}} + 9^{\frac{1}{3}}}[/tex]
Express 9 as 3²
[tex]\frac{2 * 3^2^*^\frac{1}{3}}{1 + 3^{\frac{1}{3}} + 3^2^*^{\frac{1}{3}}}[/tex]
[tex]\frac{2 * 3^\frac{2}{3}}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}}}[/tex]
Multiply the numerator and denominator by [tex]1 - 3^{\frac{1}{3}}[/tex]
[tex]\frac{2 * 3^\frac{2}{3}}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}}} * \frac{1 - 3^{\frac{1}{3}}}{1 - 3^{\frac{1}{3}}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) (1 - 3^{\frac{1}{3}})}{(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})(1 - 3^{\frac{1}{3}})}[/tex]
Open the bracket
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{2}{3})(3^{\frac{1}{3}})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Simplify the Numerator using Laws of Indices
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{2+1}{3})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Further Simplify
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{3}{3})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^1)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Simplify the denominator
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - (3^{\frac{1}{3}})(3^{\frac{1}{3}}) - (3^{\frac{1}{3}})(3^{\frac{2}{3}})}[/tex]
Further Simplify Using Laws of Indices
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - (3^{\frac{1+1}{3}}) - (3^{\frac{1+2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3^{\frac{3}{3}}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3^1}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3}}[/tex]
Collect Like Terms
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 - 3+ 3^{\frac{1}{3}} - 3^{\frac{1}{3}}+ 3^{\frac{2}{3}} - 3^{\frac{2}{3}} }}[/tex]
Group Like Terms for Clarity
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{(1 - 3) + (3^{\frac{1}{3}} - 3^{\frac{1}{3}}) + (3^{\frac{2}{3}} - 3^{\frac{2}{3}} )}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{(- 2)+ (0) + (0)}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{-2}}[/tex]
Divide the fraction
[tex]-(3^\frac{2}{3}) + (3)[/tex]
Reorder the above expression
[tex]3 -3^\frac{2}{3}[/tex]
The expression can be represented as
[tex]3 -\sqrt[2]3[/tex]
Hence;
[tex]\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}[/tex] when simplified is equivalent to [tex]3 -\sqrt[2]3[/tex]
Write each of the following expressions without using absolute value. |z−6|−|z−5|, if z<5
Answer: 6 - 5
Step-by-step explanation:
|z - 6| - |z - 5| ; z < 5
Since z < 5, then
|z - 6| will be the absolute value of a negative number. Replace the absolute value with a negative and parentheses:
-(z - 6) = -z + 6
|z - 5| will be the absolute value of a negative number. Replace the absolute value with a negative and parentheses:
-(z - 5) = -z + 5
Now subtract them without the absolute value signs:
-z + 6 - (-z + 5)
Distribute the negative sign:
-z + 6 + z - 5
-z + z = 0 which leaves:
6 - 5
Answer: 1
Step-by-step explanation: first you need to pretend that the absolute value bars are parentheses. Then substitute a with any number less that five, for example z=3
Now we can write our new equation: (3-6)-(3-5)
now we have to determine if the final answer inside the parentheses is positive or negative. In the first parentheses 3-6=-3 with is negative. In our second parentheses we have 3-5=-2 which is a also negative.
Knowing that both parentheses are negative results we can set up an equation using z instead of 3:
-(z-6)-(-(z-5)) is our new equation. If we simplify this equation we get 1 for an answer
first correct answer gets best marks
Answer:
option three!!!!!
Step-by-step explanation:
its closed circle
on 6
and pointing left
a subway train with 47 people stops at a station and picks up 20 more people at the same station p people get off. there are 52 people left on the train. which equation shows how to find the value of p
Answer:
67 - p = 52
Step-by-step explanation:
the train starts with 47 people: 47
it picks up 20 more: 47 + 20 = 67
p people get off: 67 - p
52 people are left on train: 67 - p = 52
calculate EG if a=5 and b=15
Find the vertical asymptote of f(x)=2x^2+3x+6/x^2-1 I'm having trouble with this one, seems simple tho I just don't want to make a stupid mistake,,, And here are the choices:
Answer:
x = - 1, x = 1
Step-by-step explanation:
Given
f(x) = [tex]\frac{2x^2+3x+6}{x^2-1}[/tex]
The denominator cannot be zero as this would make f(x) undefined.
Equating the denominator to zero and solving gives the values that x cannot be and if the numerator is non zero for these values then they are vertical asymptotes.
x² - 1 = 0 ← difference of squares
(x - 1)(x + 1) = 0
x - 1 = 0 ⇒ x = 1
x + 1 = 0 ⇒ x = - 1
x = - 1 and x = 1 are vertical asymptotes
Colin has a pad with x pieces of paper on it. For his first class, he wrote on 5 fewer than half of the pieces of paper in the pad. He used 2 more sheets in his second class than in his first. How many sheets are left for his third class? ill give brainliest to the first answer
Answer:
Colin has 8 sheets left for his third class.
Step-by-step explanation:
Given that:
Total Number of pieces of papers = [tex]x[/tex]
Number of pieces of papers used for 1st class = 5 fewer than half of the pieces in the pad
Writing the equation:
[tex]\text{Number of pieces of papers used for 1st class =} \dfrac{x}{2} -5 ...... (1)[/tex]
Also, Given that number of pieces of papers used for the 2nd class are 2 more than that of papers used in the 1st class.
[tex]\text{Number of pieces of papers used for 2nd class =} \dfrac{x}{2} -5+2 = \dfrac{x}2 -3 ...... (2)[/tex]
Now, number of pieces of papers left for the third class = Total number of pieces of papers in the pad - Number of pieces of papers used in the first class - Number of pieces of papers used in the first class
[tex]\text{number of pieces of papers left for the third class = }x-(\dfrac{x}{2}-5)-(\dfrac{x}{2}-3)\\\Rightarrow x-\dfrac{x}2-\dfrac{x}2+5+3\\\Rightarrow x-x+5+3\\\Rightarrow 8[/tex]
So, the answer is:
Colin has 8 sheets left for his third class.
find the value of x. 43°
Answer: x = 137°
Step-by-step explanation:
When a quadrilateral is inscribed in a circle, the opposite angles are supplementary.
x + 43° = 180°
x = 137°
The value of x is 137°.
What is inscribed quadrilateral?The quadrilateral whose all 4 vertices lie on the circumference of the circle is called an inscribed quadrilateral.
In inscribed quadrilateral opposite angles are supplementary i.e. sum of those opposite angles is 180°.
Here given in the picture that the measurements of the two opposite angles in the inscribed quadrilateral in the circle are 43° and x°.
So as we know in the inscribed quadrilateral opposite angles are supplementary.
So sum of those opposite angles in the quadrilateral is 180°.
so we can write x+43°= 180°
⇒ x = 180°- 43°
⇒ x = 137°
Therefore the value of x is 137°.
Learn more about inscribed quadrilateral
here: https://brainly.com/question/26690979
#SPJ2
find the value of x in the triangle shown below
Answer:
46°
Step-by-step explanation:
We can tell that this triangle is an isosceles triangle because 2 of it's sides are the same, therefore, two of it's angles are the same.
Looking at it, we can assume that the two angles not defined (x and the other one) are the two angles that are the same because they look similar.
Now, the angles of all triangles add up to 180°. So, we can subtract 88° from 180 to see what the two angles add up to.
[tex]180-88=92[/tex]
So both of these angles add up to 92 degrees. Since there are two, we divide 92 by 2.
[tex]92 \div 2 = 46[/tex]
Hope this helped!
how to do this question plz answer me step by step plzz
Answer:
30, 85, 95, 150
Step-by-step explanation:
The angles of a quadrilateral add to 360
Let x be the smallest angle
x+55
x+65
x+120 are the other three angles
Add the 4 angles together and they sum to 360
x+x+55 x+65+ x+120 = 360
Combine like terms
4x+240 = 360
Subtract 240 from each side
4x+240-240 = 360 -240
4x = 120
Divide by 4
4x/4 = 120/4
x = 30
x+55= 30+55 = 85
x+65 = 30+65 = 95
x+120 = 30+120 = 150
Point K is rotated 90°. The coordinate of the pre-image point K was (2, –6) and its image K’ is at the coordinate (−6, −2). Find the direction of the rotation. The direction of rotation was .
Answer:
Hello! The answer to your question will be below.
Step-by-step explanation:
The answer would be clockwise.
So point k was rotated 90 degrees clockwise.....
Review.....
Question:
Point K is rotated 90 degrees. The coordinate of the pre-image point K was (2,-6) and it’s image K’ is at the coordinate (-6,-2).Find the direction of the rotation.
THE DIRECTION OF THE ROTATION WAS CLOCKWISE.
Hope this helps! :)
⭐️Have a wonderful day!⭐️
Answer:
clockwise.
So point k was rotated 90 degrees clockwise.....
Review.....
Question:
Point K is rotated 90 degrees. The coordinate of the pre-image point K was (2,-6) and it’s image K’ is at the coordinate (-6,-2).Find the direction of the rotation.
Step-by-step explanation:
Please answer the question in the image below ASAP
Answer:
Option A.
Step-by-step explanation:
See attachment.
Basically, the reason why I left it at cm(3) was because that's the standard unit for volume, any length of measurement to the third power.
which binomial is the additive inverse of 5 + 2C
Answer:
-5-2c
Step-by-step explanation:
The additive inverse of a term must be the opposite of it.
●-(5+2c)
●-5-2c
Answer:
Step-by-step explanation:
The additive inverse is just the opposite of the binomial in terms of the signs. The additive inverse of 5 + 2C is -(5 + 2C) which is, without parenthesis, -5 - 2C.
If the area of the trapezoid below is 75 square units, what is the value of x? AB=17 DC=8
A. 1.5
B. 12
C. 6
D. 3
Diagram related to the question can be found in the attached picture below :
Answer: 6 units
Step-by-step explanation:
From the diagram attached to the question:
Length AB = 17
Length DC = 8
height (h) = x
Area of trapezium = 75sq units
The Area (A) of a trapezium is given by:
(1/2) × (a + b) × h
Where ;
a and b are the upper and base lengths of the trapezium
h = height of trapezium
A = (1/2) × (a + b) × h
75 = (1/2) * (17 + 8) * x
75 = 0.5*25*x
75 = 12.5x
x = 75 / 12.5
x = 6 units
What is the 4th tearm to this?
b(n)=4−6(n−1)
Answer:
If you wish to find any term (also known as the {n^{th}}n
th
term) in the arithmetic sequence, the arithmetic sequence formula should help you to do so. The critical step is to be able to identify or extract known values from the problem that will eventually be substituted into the formula itself.
Step-by-step explanation:
Find the output, y, when the input, x, is 666.
Answer:
y = 8
Step-by-step explanation:
The question is simply asking for the y-value when x = 6. We look at the graph when x = 6 and see what y-value it gives us. We find that when x = 6, we have y = 8.
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Answer:
4x-2
Step-by-step explanation:
4x(3x+5)-2(3x+5)
(4x-2)(3x+5)
you can see that 4x-2 is a factor
Please help find these angle for me plz!
Answer:
<DEF = 40°<EBF = <EDF = 56°<DCF = <DEF =40°<CAB = 84°Step-by-step explanation:
In triangle DEF, we have:
Given:
<EDF=56°
<EFD=84°
So, <DEF =180° - 56° - 84° =40° (sum of triangle angles is 180°)
____________
DE is a midsegment of triangle ACB
( since CD=DA(given)=>D is midpoint of [CD]
and BE = EA => E midpoint of [BA] )
According to midsegment Theorem,
. (DE) // (CB) "//"means parallel
. DE = CB/2 = FB =CF
___________
DEBF is a parm /parallelogram.
Proof: (DE) // (FB) [(DE) // (CB)]
AND DE = FB
Then, <EBF = <EDF = 56°
___________
DEFC is parm.
Proof: (DE) // (CF) [(DE) // (CB)]
And DE = CF
Therefore, <DCF = <DEF =40°
___________
In triangle ACB, we have:
<CAB =180 - <ACB - <ABC =180° - 40° - 56° =84° (sum of triangle angles is 180°)
[tex]HOPE \: THIS \: HELPS.. GOOD \: LUCK![/tex]
Find m
A. 82
B. 32
C. 98
D. 107
Answer: A. 82
Step-by-step explanation:
The measure of <BAD can be found by simply adding 25(<BAC)+57(<CAD) = 82.
[tex]\mathrm{BAD}=\mathrm{BAC}+\mathrm{CAD}=25^{\circ}+57^{\circ}=82^{\circ}[/tex].
Hope this helps.
The following data points represent the number of children in each household on Maple Street. \qquad 0, 1, 2, 1, 20,1,2,1,20, comma, 1, comma, 2, comma, 1, comma, 2 Find the mean number of children.
Answer:
The mean number of the children is 1.2
Step-by-step explanation:
Given
Children: 0, 1, 2, 1, 2
Required
Determine the Mean number
The mean of a set is calculated as follows;
[tex]Mean = \frac{\sum x}{n}[/tex]
Where x is the given set and n is the number of sets
In this case, n = 5 children
Hence;
[tex]Mean = \frac{0 + 1 + 2 + 1 + 2}{5}[/tex]
[tex]Mean = \frac{6}{5}[/tex]
[tex]Mean = 1.2[/tex]
Hence, the mean number of the children is 1.2
If y is a positive integer, for how many different values of y is RootIndex 3 StartRoot StartFraction 144 Over y EndFraction EndRoot a whole number? 1 2 6 15
Answer:
2 possible values
Step-by-step explanation:
The given expression is:
[tex]\sqrt[3]{\frac{144}{y} }[/tex]
In order for this to result in a whole number, 144/y must be a perfect cube, the possible perfect cubes (under 144) are:
1, 8, 27, 64, 125
The values of y that would result in those numbers are:
[tex]y=\frac{144}{1}=144 \\y=\frac{144}{8}=18 \\y=\frac{144}{27}=5.333\\y=\frac{144}{64}=2.25\\y=\frac{144}{125}=1.152[/tex]
Only two values of y are integers, therefore, there are only two possible values of y for which the given expression results in a whole number.
Answer:it’s b
Step-by-step explanation:
Just took quiz on edge 2020
did this several times but still didn't get the answer .pls do try this :)
Answer:
x=-15/2 and x=1
x=6 and x=3/4
Step-by-step explanation:
You have the following equations:
[tex]\frac{4x-3}{x+2}=\frac{2x}{x+5}[/tex]
[tex]\frac{2}{x-2}+\frac{3}{x}-\frac{9}{x+3}[/tex]
To solve both equations you can first multiply by the m.c.m of the denominators, and then solve for x, just as follow:
first equation:
[tex][\frac{4x-3}{x+2}=\frac{2x}{x+5}](x+2)(x+5)\\\\(4x-3)(x+5)=2x(x+2)\\\\4x(x)+4x(5)-3(x)-3(5)=2x(x)+2x(2)\\\\4x^2+20x-3x-15=2x^2+4x\\\\4x^2-2x^2+20x-3x-4x-15=0\\\\2x^2+13x-15=0[/tex]
In this case you use the quadratic formula:
[tex]x_{1,2}=\frac{-13\pm \sqrt{(13)^2-4(2)(-15)}}{2(2)}\\\\x_{1,2}=\frac{-13 \pm 17}{4}\\\\x_1=-\frac{15}{2}\\\\x_2=1[/tex]
Then, for the first equation the solutions are x=-15/2 and x=1
second equation:
[tex][\frac{2}{x-2}+\frac{3}{x}=\frac{9}{x+3}]x(x-2)(x+3)\\\\2x(x+3)+3(x-2)(x+3)=9x(x-2)\\\\2x^2+6x+3(x^2+3x-2x-6)=9x^2-18x\\\\2x^2+6x+3(x^2+x-6)=9x^2-18x\\\\2x^2+6x+3x^2+3x-18-9x^2+18x=0\\\\-4x^2+27x-18=0[/tex]
Again, you use the quadratic formula:
[tex]x_{1,2}=\frac{-27\pm \sqrt{(27)^2-4(-4)(-18)}}{2(-4)}\\\\x_{1,2}=\frac{-27\pm 21}{-8}\\\\x_1=6\\\\x_2=\frac{3}{4}[/tex]
Then, the solutions for the second equation are x=6 and x=3/4
Please answer in two minutes
Answer:
Toa
48/55
Step-by-step explanation:
O/A
48/55
Now, you will use the inverse trig function to solve. Round to the nearest whole number. x= ∘ What trig function would we use to set up our trig function to solve for y?
Answer:
1. Cosine
2. x = 49°
3. Sine
4. y = 41°
Step-by-step explanation:
1. The trig function that will be used to solve for x is cosine.
2. Determination of angle x
x° =..?
Adjacent = 13
Hypothenus = 20
Cos x = Adjacent /Hypothenus
Cos x = 13/20
Take the inverse of Cos
x = Cos¯¹ (13/20)
x = 49°
3. The trig function that will be used to solve for y is sine.
4. Determination of angle y.
y° =..?
Opposite = 13
Hypothenus = 20
Sine y = Opposite /Hypothenus
Sine y = 13/20
Take the inverse of Sine
y = Sine¯¹ (13/20)
y = 41°
Felicia had $80 when she went to a music store that charges $18 for each CD. She needs to have no less than $20 in her wallet when she leaves the store so she has enough money to buy gas for the ride home. Which shows a possible number of CDs she could buy? Select three options. 1 2 3 4 5
Answer:
The amount of CD's she could buy would be 3.
Step-by-step explanation:
80-20=60
60÷18 = 3 CD's
Answer:
1,2,3
Step-by-step explanation:
Is y = 75 x + 52 increasing or decreasing.
Answer:
Increasing if X is positive decreasnig if X is negative
Step-by-step explanation:
Answer:
increasing
Step-by-step explanation:
positive slope of 75 so line goes up to the right
Just for the bottom 2 please
Answer:
c is 35
d is 13
Step-by-step explanation:
I multiplied both sides, and then simplified the equation.
( plz give me brainliest, that would be most appreciated! )
Eight people are going for a ride in a boat that seats eight people. One person will drive, and only three of the remaining people are willing to ride in the two bow seats. How many seating arrangements are possible?
Answer:
720 seating arrangments
Step-by-step explanation:
There are eight people but driver is always the same so we only have to deal with combinations of the other 7 seats.
the combination of the five seats has 5! times 2 combinations for each of the 3 passengers willing to ride in the two boat seats thus the total number of different seating arrangements is 5! times 3! or 720
hope this helps :)
Using the Fundamental Counting Theorem, it is found that there are 5760 possible seating arrangements.
What is the Fundamental Counting Theorem?It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
In this problem:
For the driver, there are 8 outcomes, hence [tex]n_1 = 8[/tex].For the bow seats, there are [tex]n_2 = 3 \times 2 = 6[/tex] outcomes.For the other 5 seats, there are [tex]n_3 = 5![/tex] possible outcomes.Hence:
[tex]N = 8 \times 6 \times 5! = 5760[/tex]
There are 5760 possible seating arrangements.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866