Hey there! I'm happy to help!
We see that it takes 45 minutes for a person to drive 50 miles. We can write this as a fraction that is 45/50, which simplifies to 9/10, meaning it would take this person 9 minutes to travel 10 miles.
So, how long would it take to travel 120? Well, we know that if we take 10 miles and multiply it by 12 we will have 120 miles. If we take the time it takes to drive those ten miles (9 minutes) and multiply it by 12, we will figure out how long it takes to drive 120 miles!
9×12=108
However, we want this to be written in hours. We know that there are 60 minutes in an hour, and if we subtract 60 from 108 we have 48. This gives us 1 hour and 48 minutes.
Therefore, it will take 1 hour and 48 minutes for this person to travel 120 miles at the same rate.
Have a wonderful day! :D
im not sure what it is asking me to do
Answer:
0.79Step-by-step explanation:
[tex]p(x \leqslant 0) = p( - 5) + p( - 3) + p( - 2) + p(0)[/tex]
[tex] = 0.17 + 0.13 + 0.33 + 0.16 [/tex]
[tex] = 0.79[/tex]
Hope this helps...
Best regards!!
Suppose that the local sales tax rate is 6% and you purchase a computer for $1260.
a. How much tax is paid?
b. What is the computer’s total cost?
Answer:
a. $75.60
b. $1335.60
Step-by-step explanation:
A. First convert the percentage to a decimal.
6% = 0.06
Multiply the cost of the computer by the decimal to find the tax paid.
$1260 × 0.06 = $75.60
B. To find the total cost, add the cost of the computer with the tax.
$1260 + $75.60 = $1335.60
what is the constant of proportionality for 4y=16
Answer:
Step-by-step explanation:
y=4x
In the diagram AB=AD and
Answer:
AC ≅ AE
Step-by-step explanation:
According to the SAS congruence theorem, if two triangles have 2 corresponding sides that are equal, and also have one included corresponding angle that are equal to each other in both triangles, both triangles are regarded as congruent.
Given ∆ABC and ∆ADC in the question above, we are told that segment AB ≅ AD, and also <BAC ≅ <DAC, the additional information that is necessary to prove that ∆ABC and ∆ADC are congruent, according to the SAS theorem, is segment AC ≅ segment AE.
This will satisfy the requirements of the SAS theorem for considering 2 triangles to be equal or congruent.
174 people ate lunch at Alice’s restaurant yesterday, and 1/3 of them had dessert. How many people had dessert after lunch?Explain how you got your answer. (90 points!!!)
Answer:
58 people
Step-by-step explanation:
174 people ate lunch.
1/3 of the 74 people had dessert after lunch.
Multiplying 1/3 and 174.
1/3 × 74
= 58
58 people had desert after lunch.
Answer:
[tex]\boxed{ 58\ people}[/tex]
Step-by-step explanation:
People who ate lunch = 174 people
People among among them who had desserts = 1/3 of the total
(Remember "of" means to "multiply")
=> 1/3 * 174
=> 1 * 58
=> 58 people
Which would give a significantly smaller value than 1.19 x 10^-2 and which would give a significantly larger value?
1.19 x 10^-2 + 1.07 x 10^-2 smaller or larger?
1.19 x 10^-2 - 1.07 x 10^-2 smaller or larger?
1.19 x 10^-2 x 1.07 x 10^-2 smaller or larger?
1.19 x 10^-2 / 1.07 x 10^-2 (this problem is division) smaller or larger?
Answer:
a) [tex]1.19 \times 10^{-2} + 1.07\times 10^{-2}[/tex] is larger than [tex]1.19\times 10^{-2}[/tex]; b) [tex]1.19 \times 10^{-2} - 1.07\times 10^{-2}[/tex] is smaller than [tex]1.19\times 10^{-2}[/tex]; c) [tex](1.19\times 10^{-2})\cdot (1.07\times 10^{-2})[/tex] is smaller than [tex]1.19\times 10^{-2}[/tex]; d) [tex](1.19\times 10^{-2})/ (1.07\times 10^{-2})[/tex] is greater than [tex]1.19\times 10^{-2}[/tex].
Step-by-step explanation:
a) Is [tex]1.19 \times 10^{-2} + 1.07\times 10^{-2}[/tex] smaller or larger?
1) [tex]1.19 \times 10^{-2} + 1.07\times 10^{-2}[/tex] Given.
2) [tex](1.19+1.07)\times 10^{-2}[/tex] Distributive property.
3) [tex]2.26 \times 10^{-2}[/tex] Addition/Result.
[tex]1.19 \times 10^{-2} + 1.07\times 10^{-2}[/tex] is larger than [tex]1.19\times 10^{-2}[/tex].
b) Is [tex]1.19 \times 10^{-2} - 1.07\times 10^{-2}[/tex] smaller or larger?
1) [tex]1.19 \times 10^{-2} - 1.07\times 10^{-2}[/tex] Given.
2) [tex](1.19-1.07)\times 10^{-2}[/tex] Distributive property.
3) [tex][1.19+(-1.07)]\times 10^{-2}[/tex] Subtraction.
4) [tex]0.12\times 10^{-2}[/tex] Addition/Result.
[tex]1.19 \times 10^{-2} - 1.07\times 10^{-2}[/tex] is smaller than [tex]1.19\times 10^{-2}[/tex].
c) Is [tex](1.19\times 10^{-2})\cdot (1.07\times 10^{-2})[/tex] smaller or larger?
1) [tex](1.19\times 10^{-2})\cdot (1.07\times 10^{-2})[/tex] Given.
2) [tex](1.19\times 1.07)\cdot (10^{-2}\times 10^{-2})[/tex] Associative property/Commutative property.
3) [tex]1.27\times 10^{-4}[/tex] Multiplication/ ([tex]a^{b}\cdot a^{c} = a^{b+c}[/tex])/ [tex](-x)\cdot (-y) = x\cdot y[/tex] /Result.
[tex](1.19\times 10^{-2})\cdot (1.07\times 10^{-2})[/tex] is smaller than [tex]1.19\times 10^{-2}[/tex].
d) Is [tex](1.19\times 10^{-2})/ (1.07\times 10^{-2})[/tex] smaller or larger?
1) [tex](1.19\times 10^{-2})/ (1.07\times 10^{-2})[/tex] Given.
2) [tex](1.19\times 10^{-2})\cdot (1.07\times 10^{-2})^{-1}[/tex] Division.
3) [tex](1.19\times 10^{-2})\cdot (1.07\times 10^{2})[/tex] ([tex](a^{b})^{c} = a^{b\cdot c}[/tex]; [tex](-x)\cdot (-y) = x\cdot y[/tex])
4) [tex](1.19\times 1.07)\cdot (10^{-2}\cdot 10^{2})[/tex] Associative property/Commutative property.
5) [tex]1.27[/tex] Multiplication/([tex](a^{b})^{c} = a^{b\cdot c}[/tex]; [tex]a^{0} = 1[/tex])/Modulative property/Result.
[tex](1.19\times 10^{-2})/ (1.07\times 10^{-2})[/tex] is greater than [tex]1.19\times 10^{-2}[/tex].
A hypothesis will be used to test that a population mean equals 9 against the alternative that the population mean is less than 9 with known variance . What is the critical value for the test statistic for the significance level of 0.020
Answer:
-2.05
Step-by-step explanation:
From the given information,
Let consider [tex]\mu[/tex] to represent the population mean
Therefore,
The null and alternative hypothesis can be stated as :
[tex]H_o :\mu=9[/tex]
[tex]H_1 :\mu<9[/tex]
From the hypothesis , the alternative hypothesis is one tailed (left)
when the level of significance = 0.020, the Z- critical value can be determined from the standard normal distribution table
Hence, the Z-critical value at ∝ = 0.020 is -2.05
Consider the expression 8 – 4 / 2. One student says the answer is 2 and another says it is 6. Which student is correct? Explain what went wrong with the student who made a mistake.
Answer:
It is 6. The student who got a two did not use order of operations.
Step-by-step explanation:
PEMDAS
You must do division before subtraction. 4/2 = 2.
8 - 2 = 6
Pecans sell for 7.95 per round. How much will 3.2 pounds cost? NEED STEP BY STEP EXPLANATION.
Answer:
$25.44
Step-by-step explanation:
if they sell for 7.95 and you get 3.2 you do 7.95 times 3.2
Suppose Mr. Pink is 28 years old right now and puts away $1,800 per quarter in an account that returns 6% interest. a.) How much will be in the account when he turns 68? b.)What is his total contribution to the account?
Answer: (a) When he turns 68 , the account will have = $1,179,415.39
(b) $ 288,000
Step-by-step explanation:
Formula: Future value of annuity =[tex]P[\dfrac{(1+r)^n-1}{r}][/tex], where P+ periodic payment, r = rate of interest per period, n= number of periods.
As per given, we have
P= $1800
rate of interest = 6% = 0.06
(a) n= 68-28 = 40
Rate per period : r= [tex]\dfrac{0.06}{4}=0.015[/tex]
Number of periods: n = 4x 40 =160
Now, Future value of amount when Mr. Pink turns 28 years = [tex]1800(\dfrac{(1+0.015)^{160}-1}{0.015})[/tex]
[tex]=1800(\dfrac{10.8284615777-1}{0.015})\\\\=1800\times\dfrac{9.8284615777}{0.015}\\\\\approx\$1179415.39[/tex]
Hence, when he turns 68 , the account will have = $1,179,415.39
(b) Total contribution = P × n
=1800 × 160
=$ 288,000
Hence, Total contribution =$ 288,000
Explain how estimating the quotient helps you place the first
digit in the quotient of a division problem.
Step-by-step explanation:
look at the picture and if you still need help let me know or if this doenst help then well im sorry lol
A line passes through the points ( – 4, – 2) and ( - 1, - 2). Determine the slope of the line.
Answer: -4/3
Step-by-step explanation:
Formula to find a slope of two given points is
y(sub2) - y(sub1) / x(sub2) - x(sub1)
Plug the values in to get the answer.
-2 - 2 / -1 - (-4)
-4/3
in the diagram ,a and 46° are complementary angles. It is given that a and b are supplementary angles and the angle conjugate to c is 283°. Calculate the values of a,b,c and d. pleaseeeee answer soonn
Answer:
[tex]a=44^{\circ},b=136^{\circ},c=77^{\circ},d=57^{\circ}[/tex].
Step-by-step explanation:
It is given that a and 46° are complementary angles.
[tex]a+46^{\circ}=90^{\circ}[/tex]
[tex]a=90^{\circ}-46^{\circ}[/tex]
[tex]a=44^{\circ}[/tex]
It is given that a and b are supplementary angles.
[tex]a+b=180^{\circ}[/tex]
[tex]44^{\circ}+b=180^{\circ}[/tex]
[tex]b=180^{\circ}-44^{\circ}[/tex]
[tex]b=136^{\circ}[/tex]
Angle conjugate to c is 283°.
[tex]c+283^{\circ}=360^{\circ}[/tex]
[tex]c=360^{\circ}-283^{\circ}[/tex]
[tex]c=77^{\circ}[/tex]
Sum of all angles at a point is 360 degrees.
[tex]a+b+c+d+46^{\circ}=360^{\circ}[/tex]
[tex]44^{\circ}+136^{\circ}+77^{\circ}+d+46^{\circ}=360^{\circ}[/tex]
[tex]d+303^{\circ}=360^{\circ}[/tex]
[tex]d=360^{\circ}-303^{\circ}[/tex]
[tex]d=57^{\circ}[/tex]
Therefore, [tex]a=44^{\circ},b=136^{\circ},c=77^{\circ},d=57^{\circ}[/tex].
You weigh six packages and find the weights to be 26, 18,58,22,54,and 50 ounces. If you include a package that weighs 66 ounces, which will increase more, the median or the mean?
Answer:
Step-by-step explanation:
The mean which is also known as the average is determined by dividing the sum of the weight of the packages by the total number of packages. From the information given,
Mean = (26 + 18 + 58 + 22 + 54 + 50)/6 = 38
If you include a package that weighs 66 ounces, the new mean would be
New mean = (26 + 18 + 58 + 22 + 54 + 50 + 66)/7 = 42
For the median, we would rearrange the weights in ascending order. It becomes
18, 22, 26, 50, 54, 58
Median = (26 + 50)/2 = 38
By adding the new weight, it becomes
18, 22, 26, 50, 54, 58, 66
New median = 50
It can be seen that both the median increased by more. It increased by 12 while the mean increased by 4
Answer: The mean which is also known as the average is determined by dividing the sum of the weight of the packages by the total number of packages. From the information given, Mean = (26 + 18 + 58 + 22 + 54 + 50)/6 = 38If you include a package that weighs 66 ounces, the new mean would be New mean = (26 + 18 + 58 + 22 + 54 + 50 + 66)/7 = 42For the median, we would rearrange the weights in ascending order. It becomes18, 22, 26, 50, 54, 58Median = (26 + 50)/2 = 38By adding the new weight, it becomes18, 22, 26, 50, 54, 58, 66New median = 50It can be seen that both the median increased by more. It increased by 12 while the mean increased by 4
Step-by-step explanation:
Determine the critical value for a 98% confidence interval when the sample size is 12 for the t ‑distribution. Enter the positive critical value rounded to 3 decimal places.
Answer:
+2.718
Step-by-step explanation:
from the question,
the sample size is 12
therefore the degree of freedom,
df = 12 - 1
= 11
alpha = 1 - 0.98
= 0.02
this is because the confidence level is 98%
under the t distribution table, a degree of freedom of 11 and 0.02 alpha level = 2.718
the critical value t* = 2.718
I hope this helps!
A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours. To test this claim, the Internet provider randomly samples 30 households and finds that these families' mean number of hours spent on the Internet on a Saturday was 6 hours with a standard deviation of 1.5 hours. At a level of significance of 0.05, can the Internet provider's claim be supported?
A) Fail to Reject the Null Hypothesis
B) Reject the Null Hypothesis
C) Reject The Alternative Hypothesis
D) Fail to Reject the Alternative Hypothesis
E) Accept the Null Hypothesis
F) Accept the Alternative Hypothesis
Answer:
A) Fail to Reject the Null Hypothesis
Step-by-step explanation:
Given that:
A local Internet provider wants to test the claim that the average time a family spends online on a Saturday is at least 7 hours.
sample size = 30
sample mean [tex]\bar x[/tex] = 6
standard deviation [tex]\sigma[/tex] = 1.5
level of significance ∝ = 0.05
The null hypothesis and the alternative hypothesis can be computed as:
[tex]\mathbf{ H_o: \mu \leq 7}[/tex]
[tex]\mathbf{ H_i: \mu \geq 7}[/tex]
The test statistic can be computed as:
[tex]z = \dfrac{\bar x - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \dfrac{6 -7} {\dfrac{1.5}{\sqrt {30}}}[/tex]
[tex]z = \dfrac{-1} {\dfrac{1.5}{5.477}}}[/tex]
[tex]z = \dfrac{-5.477} {1.5}[/tex]
z = -3.65
Given that ;
level of significance of 0.05;
z = -3.65
degree of freedom = 30 - 1 = 29
The p-value = P([tex]t_{29}[/tex] > - 3.65)
= 0.9998
Decision Rule: Reject [tex]H_o[/tex] if p-value is less than the level of significance
But since the p -value is greater than the level of significance, we conclude that There is no enough evidence to support the Internet provider claim, Therefore;
Fail to Reject the Null Hypothesis
Change Y - 4X = 0 to the slope-intercept form of the equation of a line.
Answer:
y=4x
Step-by-step explanation:
Add 4x to both sides to get y=mx+b
0 is y-intercept.
4x is the slope.
Match each pair of points A and B to point C such that ∠ABC = 90°. A(3, 3) and B(12, 6) C(6, 52) A(-10, 5) and B(12, 16) C(16, -6) A(-8, 3) and B(12, 8) C(18, 4) A(12, -14) and B(-16, 21) C(-11, 25) A(-12, -19) and B(20, 45) A(30, 20) and B(-20, -15) arrowBoth arrowBoth arrowBoth arrowBoth
Answer:
i) A = (3, 3), B = (12, 6), C = (6, 52) : Not orthogonal, ii) A = (-10, 5), B = (12, 16), C = (6, 52) : Not orthogonal, iii) A = (-8, 3), B = (12, 8), C = (18, 4) : Not orthogonal, iv) A = (12, -14), B = (-16, 21), C = (-11, 25) : Orthogonal, v) A = (-12, -19), B = (20, 45) : Impossible orthogonality, vi) A = (30, 20), B = (-20, -15) : Impossible orthogonality.
Step-by-step explanation:
The statement indicates that segments AB and BC must be orthogonal. Vectorially speaking, this can be expressed by using the following expression from Linear Algebra:
[tex]\overrightarrow {AB} \bullet \overrightarrow {BC} = 0[/tex]
[tex](AB_{x}, AB_{y})\bullet (BC_{x},BC_{y}) = 0[/tex]
[tex]AB_{x}\cdot BC_{x} + AB_{y}\cdot BC_{y} = 0[/tex]
Now, let is evaluate each choice:
i) A = (3, 3), B = (12, 6), C = (6, 52)
[tex]\overrightarrow {AB} = \vec B - \vec A[/tex]
[tex]\overrightarrow {AB} = (12, 6) - (3, 3)[/tex]
[tex]\overrightarrow {AB} = (12-3, 6-3)[/tex]
[tex]\overrightarrow {AB} = (9, 3)[/tex]
[tex]\overrightarrow {BC} = \vec C - \vec B[/tex]
[tex]\overrightarrow {BC} = (6, 52) - (12, 6)[/tex]
[tex]\overrightarrow {BC} = (6 - 12, 52 - 6)[/tex]
[tex]\overrightarrow {BC} = (-6, 46)[/tex]
[tex]\overrightarrow {AB} \bullet \overrightarrow {BC} = (9, 3)\bullet (-6, 46)[/tex]
[tex]\overrightarrow{AB} \bullet \overrightarrow {BC} = (9)\cdot (-6) + (3) \cdot (46)[/tex]
[tex]\overrightarrow{AB}\bullet \overrightarrow {BC} = 84[/tex]
AB and BC are not orthogonal.
ii) A = (-10, 5), B = (12, 16), C = (6, 52)
[tex]\overrightarrow {AB} = \vec B - \vec A[/tex]
[tex]\overrightarrow {AB} = (12, 16) - (-10, 5)[/tex]
[tex]\overrightarrow {AB} = (12+10, 16-5)[/tex]
[tex]\overrightarrow {AB} = (22, 11)[/tex]
[tex]\overrightarrow {BC} = \vec C - \vec B[/tex]
[tex]\overrightarrow {BC} = (6, 52) - (12, 16)[/tex]
[tex]\overrightarrow {BC} = (6 - 12, 52 - 16)[/tex]
[tex]\overrightarrow {BC} = (-6, 36)[/tex]
[tex]\overrightarrow {AB} \bullet \overrightarrow {BC} = (22, 11)\bullet (-6, 36)[/tex]
[tex]\overrightarrow{AB} \bullet \overrightarrow {BC} = (22)\cdot (-6) + (11) \cdot (36)[/tex]
[tex]\overrightarrow{AB}\bullet \overrightarrow {BC} = 264[/tex]
AB and BC are not orthogonal.
iii) A = (-8, 3), B = (12, 8), C = (18, 4)
[tex]\overrightarrow {AB} = \vec B - \vec A[/tex]
[tex]\overrightarrow {AB} = (12, 8) - (-8, 3)[/tex]
[tex]\overrightarrow {AB} = (12+8, 8-3)[/tex]
[tex]\overrightarrow {AB} = (20, 5)[/tex]
[tex]\overrightarrow {BC} = \vec C - \vec B[/tex]
[tex]\overrightarrow {BC} = (18, 4) - (12, 8)[/tex]
[tex]\overrightarrow {BC} = (18 - 12, 4 - 8)[/tex]
[tex]\overrightarrow {BC} = (6, -4)[/tex]
[tex]\overrightarrow {AB} \bullet \overrightarrow {BC} = (20, 5)\bullet (-6, -4)[/tex]
[tex]\overrightarrow{AB} \bullet \overrightarrow {BC} = (20)\cdot (-6) + (5) \cdot (-4)[/tex]
[tex]\overrightarrow{AB}\bullet \overrightarrow {BC} = -140[/tex]
AB and BC are not orthogonal.
iv) A = (12, -14), B = (-16, 21), C = (-11, 25)
[tex]\overrightarrow {AB} = \vec B - \vec A[/tex]
[tex]\overrightarrow {AB} = (-16,21) - (12, -14)[/tex]
[tex]\overrightarrow {AB} = (-16-12, 21+14)[/tex]
[tex]\overrightarrow {AB} = (-28, 35)[/tex]
[tex]\overrightarrow {BC} = \vec C - \vec B[/tex]
[tex]\overrightarrow {BC} = (-11,25) - (-16, 21)[/tex]
[tex]\overrightarrow {BC} = (-11+16, 25-21)[/tex]
[tex]\overrightarrow {BC} = (5, 4)[/tex]
[tex]\overrightarrow {AB} \bullet \overrightarrow {BC} = (-28,35)\bullet (5, 4)[/tex]
[tex]\overrightarrow{AB} \bullet \overrightarrow {BC} = (-28)\cdot (5) + (35) \cdot (4)[/tex]
[tex]\overrightarrow{AB}\bullet \overrightarrow {BC} = 0[/tex]
AB and BC are orthogonal.
v) A = (-12, -19), B = (20, 45)
It is not possible to determine the orthogonality of this solution, since point C is unknown.
vi) A = (30, 20), B = (-20, -15)
It is not possible to determine the orthogonality of this solution, since point C is unknown.
A group of children is trying to share a pile of stickers. If every
child gets two stickers, there will be 7 stickers left over. If two
children do not get any stickers, then each of the remaining
children will get exactly 3 stickers.
How many children are in the group?
Answer:
7 children
Step-by-step explanation:
Answer:
7 children is the correct answer
and you follow me if you can't I will unfollow you
YOU WILL GET 30 POINTS AND BRAINLIEST IF YOU GET THIS CORRECT AND ANSWER THIS IN 5 MIN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A car manufacturer is reducing the number of incidents with the transmission by issuing a voluntary recall. During week 3 of the recall, the manufacturer fixed 391 cars. In week 13, the manufacturer fixed 361 cars. Assume that the reduction in the number of cars each week is linear. Write an equation in function form to show the number of cars seen each week by the mechanic. f(x) = 3x + 400 f(x) = 3x + 391 f(x) = −3x + 391 f(x) = −3x + 400
Answer:
f(x)= -3x + 400
Step-by-step explanation:
[tex]\frac{x-x_{1} }{x_{2}-x_{1} } = \frac{y-y_{1} }{y_{2}-y_{1} }[/tex]
[tex]\frac{x-3}{13-3} =\frac{y-391}{361-391}[/tex]
-3 ( x-3 ) = (y - 391 )
-3x + 400
Answer:
he is correct
Step-by-step explanation:
Find the surface area of the triangular prism using its net (below).
Answer:
It is 96 square units
Step-by-step explanation:
What the answer now fast
Answer:
[tex]m < C = 60[/tex]
Step-by-step explanation:
From the given right angled triangle, ∆ABC,
[tex] BC = Hypotenuse = 2\sqrt{11} [/tex]
[tex] AC = Adjacent = \sqrt{11} [/tex]
Thus, m<C can be found by applying the following trigonometric ratio formula as shown below:
[tex] cos(C) = \frac{adjacent}{hypotenuse} [/tex]
[tex] cos(C) = \frac{\sqrt{11}}{2\sqrt{11}} [/tex]
Evaluate: √11 cancels √11
[tex] cos(C) = \frac{1}{2} [/tex]
[tex] cos(C) = 0.5 [/tex]
[tex] C = cos^{-1}(0.5) [/tex]
[tex] C = 60 [/tex]
[tex]m < C = 60[/tex]
xdy+ydx= ? (a) d(x+y) (b) d(x/y) (c) d(x-y) (d) d(xy)
Answer:
d) d(x)
Step-by-step explanation:
Derivative Rules
Product Rule xy -> d(xy) = xdy + ydxTensile strength tests were performed on two different grades of aluminum spars used in manufacturing the wing of a commercial transport aircraft. From past experience with the spar manufacturing process and the testing procedure, the standard deviations of tensile strengths are assumed to be known. The data obtained are as follows:
n_1 = 10
x_1 = 87.6
σ_1 = 1
n_2 = 12
x^2 = 74.5
σ_2 = 1.5.
Required:
If μ _1 and μ _2 denote the true mean tensile strengths for the two grades of spars. Construct a 90 percentage confidence interval on the difference in mean strength.
Answer:
(12.141, 14.059)
Step-by-step explanation:
Explanation is provided in the attached document.
Please explain this to me If f(x)=4x-2 than f(x-1)= A. 4x^2-6x+2 B. 4x^2+2x+2 C. 4x+2 D. 4x-6 E. 4x-1
Answer:
D. 4x − 6
Step-by-step explanation:
f(x) = 4x − 2
f(x−1) = 4(x−1) − 2
f(x−1) = 4x − 4 − 2
f(x−1) = 4x − 6
The principal P is borrowed at a simple interest rate r for a period of time t. Find the simple interest owed for the use of the money. Assume there are 360 days in a year. P = $7000, r = 0.2%, t = 6months
Answer:
$7
Step-by-step explanation:
Simple interest formula:
I = Prt
6 months = 6 * 30 days = 180 days
1 year = 360 days
t = (180 days)/(360 days) = 0.5
I = $7000 * 0.002 * 0.5
I = $7
Answer:
$7
Step-by-step explanation:
Recall that simple interest is given by
I = Prt,
Where :
I = interest (we are asked to find this)
P = principal amount = given as $7000
r = rate = given as 0.2% = 0.002
t = time in years = given as 6 months = 0.5 years
SImply substitute the known values into the equation above:
I = Prt
= (7000)(0.002)(0.5)
= $7
what is the equation of a vertical ellipse with a major axis= 20 and a minor axis = 14?
[tex]\bold{\text{Answer: b.}\quad \dfrac{y^2}{100}+\dfrac{x^2}{49}=1}[/tex]
Step-by-step explanation:
The ellipse is vertical so y has the biggest radius.
Major axis (y) = 20 so the y-radius is 20/2 = 10
Minor axis (x) = 14 so the x-radius is 14/2 = 7
The equation of an ellipse is: [tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the center of the ellipsea is the x-radiusb is the y-radiusGiven: a = 7, b = 10
Assume: (h, k) = (0, 0)
[tex]\dfrac{(x-0)^2}{7^2}+\dfrac{(y-0)^2}{10^2}=1\\\\\\\dfrac{x^2}{49}+\dfrac{y^2}{100}=1\\\\\\\longrightarrow \dfrac{y^2}{100}+\dfrac{x^2}{49}=1[/tex]
A manufacturing company has an old machine which produces 25 components per hour. The company has recently installed a new machine which produces 35 components per hour. Yesterday, both machines were in operation for different periods of time. If 430 components were produced when the total number of hours of operation was 14 hours, determine for how many hours each machine was in operation
Answer: old machine 150, new machine 280
Step-by-step explanation:
given data:
Old machine = 25t
New machine = 35t
where t = hrs
we dont know the time for old machine so we assume it to be ( t ),
while that of the new machine is ( 14-t ) hours for new machine, and sum of 430 components.
therefore;
25t +490 - 35t = 430
-10t = -60
divide both sides by -10
t = 6 hours for the first machine.
6hrs * 25 components /hr
= 150 component parts For old machine.
for new machine
= 14 - t ........... eq1.
where ( t = 6 ), substitute t into the equation
= 14 - 6
= 8 hours for the second machine
= 8 * 35
= 280 components parts
Part A Each time you press F9 on your keyboard, you see an alternate life for Jacob, with his status for each age range shown as either alive or dead. If the dead were first to appear for the age range of 75 to 76, for example, this would mean that Jacob died between the ages of 75 and 76, or that he lived to be 75 years old. Press F9 on your keyboard five times and see how long Jacob lives in each of his alternate lives. How long did Jacob live each time? Part B The rest of the potential clients are similar to Jacob, but since they’ve already lived parts of their lives, their status will always be alive for the age ranges that they’ve already lived. For example, Carol is 44 years old, so no matter how many times you press F9 on your keyboard, Carol’s status will always be alive for all the age ranges up to 43–44. Starting with the age range of 44–45, however, there is the possibility that Carol’s status will be dead. Press F9 on your keyboard five more times and see how long Carol lives in each of her alternate lives. Remember that she will always live to be at least 44 years old, since she is already 44 years old. How long did Carol live each time? Part C Now you will find the percent survival of each of your eight clients to the end of his or her policy using the simulation in the spreadsheet. For each potential client, you will see whether he or she would be alive at the end of his or her policy. The cells in the spreadsheet that you should look at to determine this are highlighted in yellow. Next, go to the worksheet labeled Task 2b and record either alive or dead for the first trial. Once you do this, the All column will say yes if all the clients were alive at the end of their policies or no if all the clients were not alive at the end of their policies. Were all the clients alive at the end of their policies in the first trial? Part D Next, go back to the Task 2a worksheet, press F9, and repeat this process until you have recorded 20 trials in the Task 2b worksheet. In the Percent Survived row at the bottom of the table on the Task 2b worksheet, it will show the percentage of times each client survived to the end of his or her policy, and it will also show the percentage of times that all of the clients survived to the end of their respective policies. Check to see whether these percentages are in line with the probabilities that you calculated in questions 1 through 9 in Task 1. Now save your spreadsheet and submit it to your teacher using the drop box. Are your probabilities from the simulation close to the probabilities you originally calculated?
Step-by-step explanation:
brain list me please......
Answer:
Jacob:
Alive 69-70
alive 79-80
alive 62-63
alive 73-74
alive 78-Died 79
Carol:
alive 88-89
alive 67-68
alive 99-100
alive 73-74
alive 94- Died 95
Step-by-step explanation:
Where L is the length, in feet, of the pendulum, and π is approximately 22/7. How long must the pendulum be if one complete cycle takes 8 seconds?
Answer:
The simple pendulum should be 15.9 m long.
Step-by-step explanation:
Approximately (for small amplitudes), the period of a simple pendulum is
T = 2*pi * sqrt (L/g), L=length
using pi = 22/7, and g=9.8 m/s^2
8 = 2* 22/7 * sqrt(L/9.8)
solve for L
L = (8*7/(2*22))^2 * 9.8
= 15.874 m
That's quite a long pendulum!