Answer:
79.95, 82.62
Step-by-step explanation:
using excel to find a 95% confidence interval for the mean bounce height of the golf ball
Heights given are :
81.4
80.8
84.4
85.6
82.9
76.0
80.0
83.2
80.8
79.6
82.9
83.4
82.2
86.0
76.2
84.8
82.0
76.3
77.0
75.4
82.0
79.8
80.4
86.9
82.1
The statistical out put of the problem after solving with excel is attached below
therefore the 95% confidence interval from the attached solution will be ( 79.95, 82.62 )
Answer: (79.95, 82.61)
Step-by-step explanation:
Use Excel to calculate the 95% confidence interval, where α=0.05 and n=25.
1. Open Excel and enter the given data in column A. Find the sample mean, x¯, using the AVERAGE function and the sample standard deviation, s, using the STDEV.S function. Thus, the sample mean, rounded to two decimal places, is 81.28 and the sample standard deviation, rounded to two decimal places, is 3.23.
2. Click on any empty cell, enter =CONFIDENCE.T(0.05,3.23,25), and press ENTER.
3. The margin of error, rounded to two decimal places, is 1.33. The confidence interval for the population mean has a lower limit of 81.28−1.33=79.95 and an upper limit of 81.28+1.33=82.61.
Thus, the 95% confidence interval for the mean bounce height of the golf balls is (79.95, 82.61).
A casino offers a game wherein a player can roll one six sided die. If the player rolls a 1or 2, they
win. If the player rolls a 3, 4, 5, or 6, they lose. If a player bets $2.00 and wins, they will be paid out
an additional $3.00. If they lose, they lose their initial $2.00. Find the expected value of the $2.00
bet.
Enter your answer rounded to the nearest cent and don't forget, expected values can be negative!
Answer:
Expected Value of $2:
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
Step-by-step explanation:
Probability of a win = 2/6 = 0.3333
Probability of a loss = 4/6 = 0.6667
Expected Value of $2:
Win, 0.3333 x $3 = $1
Plus
Loss, 0.6667 x -$2 = -$1.33
Expected value = ($0.33)
The casino game player's expected value is computed by multiplying each of the possible outcomes by the likelihood (probability) of each outcome and then adding up the values. The sum of the values is the expected value, which amounts to a loss of $0.33.
A committee consists of 8 men and 11 women. In how many ways can a subcommittee of 3 men and 5 women be chosen?
Answer:
25872 ways
Step-by-step explanation:
We're choosing 5 women from a group of 11 and 3 men from a group of 8. We don't care about what order they are picked and so we'll use the combination formula, which is:
n!/(k!)(n-k)! with n as population and k as picks.
We'll multiply the results together. (8! / (3!)(8-3)!) * (11! / (5!)(11-5)!)
That equals: (8! / (3!)(5!) ) * (11! / (5!)(6!)) = 40320/(6x120) * 39916800/ (120x720)
56 * 462 = 25872
A word is anything of seven letters of the alphabet(26 letters) (no space in between). Repeated lettersare allowed. How many words are there?
Answer:
26^7=8 031 810 176
Step-by-step explanation:
The word has 7 letters. So the word have 7 places where any of 26 letters can be placed.
Any of 26 letters can stay at 1st place
Any of 26 letters can stay at 2-nd place (because letters can be repeated)
Any of 26 letters can stay at 3rd place
Any of 26 letters can stay at 4th place
Any of 26 letters can stay at 5th place
Any of 26 letters can stay at 6th place
Any of 26 letters can stay at 7th place
So N= 26*26*26*26*26*26*26=26^7=8 031 810 176
A housepainter mixed 3 1/2 pints of blue paint in a bucket with 1 1/6 pints of white paint. How much paint was in the bucket? The answer should be written as a proper mixed number and should be simplified, if possible.
Answer:
4 2/3 :)
Step-by-step explanation:
The total paint in the bucket in the simplified mixed fraction is [tex]6\frac{2}{3}[/tex] pints.
What is a fraction?A fraction is written in the form of p/q, where q ≠ 0.
Fractions are of two types they are proper fractions in which the numerator is smaller than the denominator and improper fractions where the numerator is greater than the denominator.
Given, A housepainter mixed [tex]3\frac{1}{2}[/tex] pints of blue paint in a bucket with [tex]1\frac{1}{6}[/tex] pints of white paint.
So, The total paint in the bucket is the sum of the pints of both paints which
is, = [tex](3\frac{1}{2} + 1\frac{1}{6})[/tex] pints.
[tex]= (\frac{7}{2} + \frac{7}{6})[/tex] pints.
[tex]= \frac{21 + 7}{6}[/tex] pints.
[tex]= \frac{28}{6}[/tex] pints.
[tex]= 6\frac{2}{3}[/tex] pints.
learn more about fractions here :
https://brainly.com/question/10354322
#SPJ2
I NEED HELP ASAP choose one of the multiple choice
Answer:
B. Square both sides of the equation.
Step-by-step explanation:
You cannot do anything to the equation unless you square both sides to eliminate the square root on the left (squaring each individual term of the equation does not help; you need to square the entire square root to eliminate it).
Hope this helps!
Plz help this is an evil question
Answer:
18.9 units of fencing
Step-by-step explanation:
First find the perimeter
P = 2(l+w)
P = 2( 2.5+1.28)
P = 2( 3.78)
P =7.56m
We need 2.5 units of fencing for each meter
Multiply by 2.5
7.56*2.5
18.9 units of fencing
Answer:
Julio needs to purchase 18.9 units of fencing.
Step-by-step explanation:
I meter of the perimeter accounts for 2.5 units of fencing. Respectively 2 meters account for 2 times as much, and 3 meters account for 3 times as much of 2.5 units. Therefore, if we determine the perimeter of this rectangular garden, then we can determine the units of fencing by multiplying by 2.5.
As you can see this is a 2.5 by 1.28 garden. The perimeter would be two times the supposed length, added to two times the width.
2.5 x 2 + 1.28 x 2 = 5 + 2.56 = 7.56 - this is the perimeter. The units of fencing should thus be 7.56 x 2.5 = 18.9 units, or option d.
Please help!! Over several years, Stephon gathered data about his age and the time it took him to run two laps on the school track. The scatter plot shows the data he gathered and the line of best fit. The equation of the line of best fit is y = -2.1x + 565.6. Based on the line of best fit, approximately how long will it take Stephon to run two laps on the track when he is 192 months old?
Answer:
Time taken by Stephen = 162 seconds
Step-by-step explanation:
Stephan gathered data which fits in the line of best fit,
y = -2.1x + 565.6
Where x represents the age (in months)
And y represents the time (in seconds) taken by Stephen to run two laps on the track.
Time taken to run 2 laps at the age of 192 months,
By substituting x = 192 months,
y = -2.1(192) + 565.6
= -403.2 + 565.6
= 162.4 seconds
≈ 162 seconds
Therefore, time taken by Stephen to cover 2 laps was 162 seconds when he was 192 months old.
Tabitha wants to hang a painting in a gallery. The painting and frame must have an area of 58 square feet. The painting is 7 feet wide by 8 feet long. Which quadratic equation can be used to determine the thickness of the frame, x? (5 points)
Answer:
4x² + 30x - 2 = 0
Step-by-step explanation:
Given:
Area = 58 square feet
Width = 7 feet
Length = 8 feet
Since the area is 58, writing the equation, we have:
(8 + 2x)(7 + 2x) = 58
Now expand the equation:
56 + 16x + 14x + 4x² = 58
56 + 30x + 4x² = 58
Collect like terms:
30x + 4x² + 56 - 58 = 0
30x + 4x² - 2 = 0
Rearrange the equation to a proper quadratic equation:
4x² + 30x - 2 = 0
The quadratic equation that can be used to determine the thickness of the frame, x is 4x² + 30x - 2 = 0
An appliance company determines that in order to sell x dishwashers, the price per dishwasher must be p = 420 - 0.3x. It also determines that the total cost of producing x dishwashers is given by C(x) = 5000 + 0.3x2. How many dishwashers must the company produce and sell in order to maximize profit? g
The company must produce and sell 350 dishwashers in order to maximize profit.
How to determine the number of dishwashersTo determine the number of dishwashers the company must produce and sell in order to maximize profit, we need to find the value of x that corresponds to the maximum point of the profit function.
The profit (P) is given by the equation:
P(x) = Revenue - Cost
The revenue is calculated by multiplying the price per dishwasher (p) by the number of dishwashers sold (x):
Revenue = p * x
The cost is given by the function C(x):
Cost = C(x)
Therefore, the profit function can be expressed as:
P(x) = p * x - C(x)
Substituting the given expressions for p and C(x):
P(x) = (420 - 0.3x) * x - (5000 + 0.3x²)
Expanding and simplifying the equation:
P(x) = 420x - 0.3x² - 5000 - 0.3x²
Combining like terms:
P(x) = -0.6x² + 420x - 5000
To find the value of x that maximizes profit, we need to find the vertex of the quadratic function. The x-coordinate of the vertex can be determined using the formula:
x = -b / (2a)
In our case, a = -0.6 and b = 420:
x = -420 / (2 * -0.6)
x = -420 / (-1.2)
x = 350
Learn more about maximize profit at
https://brainly.com/question/29257255
#SPJ1
350 dishwashers must the company produce and sell in order to maximize profit.
Maxima means a point at which the function attains the maximum value.
Given the following information:
Price per dishwasher, p = 420 - 0.3x
Total cost of producing x dishwashers, C(x) = 5000 + 0.3x2
Profit= Total Selling price- Total Cost Price
Total Selling price of x dishwasher, S.P= xp
S.P=x(420 - 0.3x)
S.P=420x - 0.3x²
Profit= 420x - 0.3x² - ( 5000 + 0.3x²)
Profit= 420x - 0.3x² - 5000 - 0.3x²
Profit= -0.6x²+420x-5000
So, profit, f(x)=-0.6x²+420x-5000
To determine the value of x so that maximum profit is possible:
1. Calculate the first derivative of profit function and calculate the value of x by equating it to zero.
2. Select that value of x for which the profit function attains the maximum value, to check the maxima calculate 2nd derivative, if it gives a negative value for the value of x. Then, x is the point of maxima for the given function.
[tex]f(x)=-0.6x^2+420x-5000\\f\prime(x)=-1.2x+420\\f\prime(x)=0\\-1.2x+420=0[/tex]
Calculating the value of x by transposing,
x=420/1.2
x=350
To check maxima, calculating second derivative.
[tex]f\prime(x)=-1.2x+420=0\\f\prime\prime(x)=-1.2[/tex]
2nd derivative is negative, it means that x=350 is the point of maxima.
Thus, a company must produce and sell 350 dishwashers in order to maximize profit.
Learn more about maxima:
https://brainly.com/question/13995084
#SPJ4
Shawn has 25 coins, all nickels and dimes. The total value is $2.00. How many of each coin does he have ?
Answer:
[tex]\boxed{15 \ dime \ and \ 10 \ nickel \ coins}[/tex]
Step-by-step explanation:
1 dime = 10 cents
1 nickel = 5 cents
So,
If there are 15 dimes
=> 15 dimes = 15*10 cents
=> 15 dimes = 150 cents
=> 15 dimes = $1.5
Rest is $0.5
So, for $0.5 we have 10 nickels coins
=> 10 nickels = 10*5
=> 10 nickels = 50 cents
=> 10 nickel coins = $0.5
Together it makes $2.00
Show all work for 135 points (90 points + brainliest = 135 pts)
Answer:
(a) 5/7 chance
(b) 2/7 chance
(c) 5/7 chance
Step-by-step explanation:
Event X: There are 3 letters that come before "D". A, B, and C. There is a 3 out of 7 chance of picking one of those letters. (3/7)
Event Y: There are 4 letters in "C A G E". Those 4 letters are in the 7 first letters of the alphabet meaning that they are in our pile of tiles. There is a 4 out of 7 chance of picking one of those letters. (4/7)
(a) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 5/7 chance of either Event X or Event Y happening since tiles "A" and "C" are included in both events.
(b) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 2/7 chance of both X and Y happening since there are only 2 tiles that are the same in both events, "A" and "C". (We are only allowed to pick one tile)
(c) The complement of Event Y is 1-4/7=5/7 chance.
Answer:
a) 5/7 chance
(b) 2/7 chance
(c) 5/7 chance
Step-by-step explanation:
Event X: There are 3 letters that come before "D". A, B, and C. There is a 3 out of 7 chance of picking one of those letters. (3/7)
Event Y: There are 4 letters in "C A G E". Those 4 letters are in the 7 first letters of the alphabet meaning that they are in our pile of tiles. There is a 4 out of 7 chance of picking one of those letters. (4/7)
(a) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 5/7 chance of either Event X or Event Y happening since tiles "A" and "C" are included in both events.
(b) Since there is a 3/7 chance of Event X happening and a 4/7 chance of Event Y happening, there is a 2/7 chance of both X and Y happening since there are only 2 tiles that are the same in both events, "A" and "C". (We are only allowed to pick one tile)
(c) The complement of Event Y is 1-4/7=5/7 chance.
The owner of a music store gathered data from several schools about the number of students in their concert and marching bands. The scatter plot shows the data she gathered and the line of best fit. The equation of the line of best fit is y = 0.677x + 1.77. Based on the line of best fit, approximately how many students are predicted to be in the marching band at a school with 35 students in the concert band?
Answer:
25 students
Step-by-step explanation:
Given the equation of the best line of fit, [tex] y = 0.677x + 1.77 [/tex] , the number of students predicted to be in the matching band, if we have 35 students in the concert band, can be approximated by plugging in 35 as "x" in the equation of the best line of fit, and solve for "y". y would give us the predicted number of students to expect in the marching band.
[tex] y = 0.677(35) + 1.77 [/tex]
[tex] y = 23.695 + 1.77 [/tex]
[tex] y = 25.465 [/tex]
The approximated number of to be in the marching band, with 35 students in the concert band is roughly 25 students.
Answer:25 students
Step-by-step explanation:
easy khan academy math. please answer asap
Answer:
[tex]\boxed{\sf B \ and \ C}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
We can use trigonometric functions to solve.
[tex]\sf sin(\theta)=\frac{opposite}{hypotenuse}[/tex]
[tex]\sf sin(60)=\frac{5.2}{KL}[/tex]
[tex]\sf KL=\frac{5.2}{sin(60)}[/tex]
[tex]\sf sin(90-60)=\frac{3}{KL}[/tex]
[tex]\sf KL=\frac{3}{sin(90-60)}[/tex]
The height of a cylinder is 9.5 cm. The diameter is 1.5 cm longer than the height. Which is closest to the volume of the cylinder?
Answer:
853.8cm^3
Step-by-step explanation:
[tex]h = 9.5cm\\d = 1.5cm + 9.5 = 10.7\\r =d/2=10.7/2=5.35\\\\V = \pi r^2 h\\V = 3.14 \times (5.35)^2 \times 9.5\\\\V =853.8 cm^3[/tex]
What is the measure of o?
Answer:
2π radians
Step-by-step explanation:
If f is a function f: X Y, then Y is called (a) Domain (b) Co-domain (c) Range (d) None of these
Answer:
y is the range
Step-by-step explanation:
the y is the range
x isthe domain
The line passing through points
(4,0) and (-2, 1) has a slope of?
A. -6
B. -1/6
C. 1/2
D. 2
E. 1/6
Answer:
b. -1/6
Step-by-step explanation:
slope = (difference in y)/(difference in x)
slope = (1 - 0)/(-2 - 4) = 1/(-6) = -1/6
Answer:
m = -1/6 = B
Step-by-step explanation:
[tex]m = \frac{y_2-y_1}{x_2-x_1} \\ x_1=4\\ y_1=0\\ x_2=-2\\y_2=1.\\m = \frac{1-0}{-2-4} \\m = \frac{1}{-6}[/tex]
A special tool manufacturer has 50 customer orders to fulfill. Each order requires one special part that is purchased from a supplier. However, typically there are 2% defective parts. The components can be assumed to be independent. If the manufacturer stocks 52 parts, what is the probability that all orders can be filled without reordering parts
Answer:
0.65463
Step-by-step explanation:
From the given question:
It is stated that 2% of the parts are defective (D) out of 50 parts
Therefore the probability of the defectives;
i.e p(defectives) = [tex]\dfrac{N(D)}{N(S)}[/tex]
p(defectives) = [tex]\dfrac{2}{50}[/tex]
p(defectives) = 0.04
The probability of the failure is the P(Non-defectives)
p(Non-defectives) = 1 - P(defectives)
p(Non-defectives) = 1 - 0.04
p(Non-defectives) = 0.96
Also , Let Y be the number of non -defective out of the 52 stock parts.
and we need Y ≥ 50
P( Y ≥ 50) , n = 52 , p = 0.96
P( Y ≥ 50) = P(50 ≤ Y ≤ 52) = P(Y = 50, 51, 52)
= P(Y = 50) + P(Y =51) + P(Y=52) (disjoint events)
P(Y = 50) = [tex](^{52}_{50}) ( 0.96)^{50}(1-0.96)^2[/tex]
[tex]P(Y = 50) = 1326 (0.96)^{50}(0.04)^2[/tex]
P(Y = 50) = 0.27557
P(Y = 51) =[tex](^{52}_{51}) ( 0.96)^{51}(1-0.96)^1[/tex]
[tex]P(Y = 51) = 52(0.96)^{51}(0.04)^1[/tex]
P(Y = 51) = 0.25936
(Y = 52) =[tex](^{52}_{52}) ( 0.96)^{52}(1-0.96)^0[/tex]
[tex]P(Y = 52) = 1*(0.96)^{52}(0.04)^0[/tex]
P(Y = 52) = 0.1197
∴
P(Y = 50) + P(Y =51) + P(Y=52) = 0.27557 + 0.25936 + 0.1197
P(Y = 50) + P(Y =51) + P(Y=52) = 0.65463
A new cola company is testing to see what proportion of their cans contain at least 12 oz. If they want to be within 3% of the actual percentage, how many cans should they measure to be 90% confident
Answer: 752
Step-by-step explanation:
Given that,
Margin of error = 3% = 0.03
confidence level = 90% = 0.90
therefore from the z-table
z = 1.645
Now since no prior estimate of p is given, so we say p = 0.5
Sample size required will be
n = 1.645² × 0.5 ×(1-0.5) / 0.03² = 751.67
n = 751.67 ≈ 752
You are tossing a coin, then rolling a die, then drawing a card from a deck of cards. What is the probability that you will get: a tail AND an even number on the die AND a card less than 5 (assume the ace is equal to 1) from the deck?
[tex]|\Omega|=2\cdot6\cdot52=624\\|A|=1\cdot3\cdot16=48\\\\P(A)=\dfrac{48}{624}=\dfrac{1}{13}[/tex]
Answer:
1/13
Step-by-step explanation:
Intelligence quotients (IQs) measured on the Stanford Revision of the Binet Simon Intelligence Scale are normally distributed with a mean of 100 and a standard deviation of 16. Determine the percentage of people who have an IQ between 115 and 140.
Answer:
the percentage of people who have an IQ between 115 and 140 is 16.79%
Step-by-step explanation:
From the information given:
We are to determine the percentage of people who have an IQ between 115 and 140.
i.e
P(115 < X < 140) = P( X ≤ 140) - P( X ≤ 115)
[tex]P(115 < X < 140) = P( \dfrac{X-100}{\sigma}\leq \dfrac{140-100}{16})-P( \dfrac{X-100}{\sigma}\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{140-100}{16})-P( Z\leq \dfrac{115-100}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq \dfrac{40}{16})-P( Z\leq \dfrac{15}{16})[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.9375)[/tex]
[tex]P(115 < X < 140) = P( Z\leq 2.5)-P( Z\leq 0.938)[/tex]
From Z tables :
[tex]P(115 < X < 140) = 0.9938-0.8259[/tex]
[tex]P(115 < X < 140) = 0.1679[/tex]
Thus; we can conclude that the percentage of people who have an IQ between 115 and 140 is 16.79%
Using the normal distribution, it is found that 82.02% of people who have an IQ between 115 and 140.
Normal Probability DistributionIn a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.In this problem:
The mean is of [tex]\mu = 100[/tex].The standard deviation is of [tex]\sigma = 15[/tex].The proportion of people who have an IQ between 115 and 140 is the p-value of Z when X = 140 subtracted by the p-value of Z when X = 115, hence:
X = 140:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 100}{16}[/tex]
[tex]Z = 2.5[/tex]
[tex]Z = 2.5[/tex] has a p-value of 0.9938.
X = 115:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{115 - 100}{16}[/tex]
[tex]Z = -0.94[/tex]
[tex]Z = -0.94[/tex] has a p-value of 0.1736.
0.9938 - 0.1736 = 0.8202.
0.8202 = 82.02% of people who have an IQ between 115 and 140.
More can be learned about the normal distribution at https://brainly.com/question/24663213
4x + 12 = 20y Solve for x.
Answer:
x=5y-3
Step-by-step explanation:
[tex]4x+12=20y\\4x=20y-12\\x=\frac{20y-12}{4} \\x=\frac{20y}{4}- \frac{12}{4} \\x=5y-3[/tex]
The initial population of a town is , and it grows with a doubling time of 10 years. What will the population be in years?
Answer:
This question is incomplete, i will answer it as:
"The initial population of a town is A, and it grows with a doubling time of 10 years. What will the population be in X years?"
Ok, the growth of a population usually is an exponential growth, so we can write this as:
P(t) = A*exp(r*t)
Where A is the initial population.
r is the rate of growth, and t is our variable, in this case, number of years.
Now we know that when t = 10y, the population doubles, so we should have:
P(10y) = 2*A = A*exp(r*10y)
2 = exp(r*10)
ln(2) = r*10
ln(2)/10 = r = 0.069.
Then our equation is:
P(t) = A*exp(0.069*t)
Now, if we want to know the population in X years, we need to replace the variable t by X
P(t = X) = A*exp(0.069*X)
A firm has the marginal-demand function Upper D prime (x )equalsStartFraction negative 1200 x Over StartRoot 25 minus x squared EndRoot EndFraction . Find the demand function given that Dequals16 comma 000 when x equals $ 4 per unit.
Answer:
The demand function is [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
Step-by-step explanation:
A firm has the marginal-demand function [tex]D' x = \dfrac{-1200}{\sqrt{25-x^2 } }[/tex].
Find the demand function given that D = 16,000 when x = $4 per unit.
What we are required to do is to find the demand function D(x);
If we integrate D'(x) with respect to x ; we have :
[tex]\int\limits \ D'(x) \, dx = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
Let represent t with [tex]\sqrt{25-x^2}}[/tex]
The differential of t with respect to x is :
[tex]\dfrac{dt}{dx}= \dfrac{1}{2 \sqrt{25-x^2}}}(-2x)[/tex]
[tex]\dfrac{dt}{dx}= \dfrac{-x}{ \sqrt{25-x^2}}}[/tex]
[tex]{dt}= \dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex]
replacing the value of [tex]\dfrac{-xdx}{ \sqrt{25-x^2}}}[/tex] for dt in [tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
So; we can say :
[tex]D(x) = \int\limits{\dfrac{-1200 x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = 1200\int\limits{\dfrac{- x}{\sqrt{25-x^2}} } \, dx[/tex]
[tex]D(x) = 1200\int\limits \ dt[/tex]
[tex]D(x) = 1200t+ C[/tex]
Let's Recall that :
t = [tex]\sqrt{25-x^2}}[/tex]
Now;
[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex]
GIven that:
D = 16,000 when x = $4 per unit.
i.e
D(4) = 16000
SO;
[tex]D(x) = 1200(\sqrt{25-x^2}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{25-4^2}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{25-16}})+ C[/tex]
[tex]D(4) = 1200(\sqrt{9}})+ C[/tex]
[tex]D(4) = 1200(3}})+ C[/tex]
16000 = 1200 (3) + C
16000 = 3600 + C
16000 - 3600 = C
C = 12400
replacing the value of C = 12400 into [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2}})+ C}[/tex], we have:
[tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
∴ The demand function is [tex]\mathbf{D(x) = 1200(\sqrt{25-x^2})+ 124000}[/tex]
ANZ Corporation manufactures a product available in two models: ABC, and PQR. Despite the growing popularity of the PQR model, company profits have been declining steadily, and management is beginning to think there might be a problem with their costing system. Material and Labour costs are given below:
ABC PQR
Sales demand 30000 15000
Direct material cost/unit $45 $60
Direct labour cost/unit $30 $40
Production overheads are $600,000 each month.
These are absorbed on a sales demand basis.
Calculate the full production costs for ABC and PQR, using traditional costing method
Answer:
The full production costs are:
ABC = $22,900,000
PQR = $1,700,000
Step-by-step explanation:
Traditional costing method is a costing method that allocates or applies overhead based on a particular metric determined by a company. It therefore add both direct cost of production and production overheads absorbed to obtain the full cost of production.
Since production overheads in this question is absorbed on demand sales basis, the full production costs for ABC and PQR can be computed as follows:
ANZ Corporation
Computation of Full Production Costs
Particulars ABC PQR
Sales demand 30,000 15,000
Cost $ $
Direct cost:
Direct materials cost (w.1) 1,350,000 900,000
Direct labor cost (w.2) 900,000 600,000
Total direct cost 22,500,000 1,500,000
Indirect cost:
Production overhead (w.3) 400,000 200,000
Full production cost 22,900,000 1,700,000
Workings:
w.1: Computation of direct material cost
Direct material cost = Direct material cost per unit * Sales demand
Therefore;
ABC Direct material cost = $45 * 30,000 = $1,350,000
PQR Direct material cost = $60 * 15,000 = $900,000
w.2: Computation of direct labor cost
Direct labor cost = Direct labor cost per unit * Sales demand
Therefore;
ABC Direct material cost = $30 * 30,000 = $900,000
PQR Direct material cost = $40 * 15,000 = $600,000
w.3: Allocation of production overhead
Production overheads allocated to a model = Production overheads * (Model's Sales Demand / Total Sales demand)
Total Sales demand = 30,000 + 15,000 = 45,000
Therefore, we have:
Production overhead allocated to ABC = $600,000 * (30,000 / 45,000) = $400,000
Production overhead allocated to PQR = $600,000 * (15,000 / 45,000) = $200,000
f(x)=2x+1 and g(x)=3x2+4, find (f∘g)(−2) and (g∘f)(−2).
Answer:
Step-by-step explanation:
Fog=2(g)+1
2(3x+2+4)+1
2{3x+6)+1
6x+12+1
=6x+13
Fog(-2)=6(-2)+13
-12+13
=1
Gof=3(f)+2+4
=3(2x+1)+6
6x+3+6
=6x+9
Gof(-2)=6(-2)+9
-12+9
=-3
Given: angle 1 congruent angle2 prove: p||q
Please hurry
Answer:
converse of alternate exterior angle theorem
Step-by-step explanation:
um im not sure if i should explain the full proof but
What expression be used to add 3/4 + 1/6
Answer:
11 / 12 or 0.9167
Step-by-step explanation:
Given:
3/4 + 1/6
Find:
Value with expression
Computation:
"3/4 added to number 1/6"
3/4 + 1/6
By taking LCM
[9 + 2] / 12
11 / 12 or 0.9167
help i will give you brailenst
6th grade math, help me please.
Answer:
a) [tex]\frac{2}{3} \,\frac{lb}{bread}[/tex]
b) [tex]1\frac{1}{4} \,\frac{in}{domino}[/tex]
Step-by-step explanation:
Part a:
every 4 lbs of flour, she makes 6 loaves of bread. this as a rate in simplest fraction form is:
[tex]\frac{4}{6} \,\frac{lb}{bread} = \frac{2}{3} \,\frac{lb}{bread}[/tex]
Part b:
every 10 inches , 8 dominoes can be placed. then the rate can be written as:
[tex]\frac{10}{8} \,\frac{in}{domino} = \frac{5}{4} \,\frac{in}{domino} =1\frac{1}{4} \,\frac{in}{domino}[/tex]