A typical electric oven has two separate heating elements: one on top and one on the bottom. The bottom element is used for baking while the top element is used to broil foods. When only the bottom element is active and glowing red hot, what heat transfer mechanisms carry most of the heat to the food in the oven?

Answers

Answer 1

Answer:

Convection and Radiation mechanisms carry most of the heat

Explanation:

This is because Convection proceeds strongy as heated air rises from the hot element while Radiation is also strong, although the material of the cooking pots will how effective it is.


Related Questions

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?

Answers

Answer:

The current is  [tex]I = 2042\ A[/tex]

Explanation:

From the question we are told that

    The length of the solenoid is  [tex]l = 2.2 \ m[/tex]

    The  radius is  [tex]r_i = 30 \ cm = 0.30 \ m[/tex]

    The number of turn is [tex]N = 1200 \ turns[/tex]

    The  magnetic field is  [tex]B = 1.4 \ T[/tex]

The  magnetic field produced  is mathematically represented as

         [tex]B = \frac{\mu_o * N * I }{l }[/tex]

making [tex]I[/tex] the subject

       [tex]I = \frac{B * l}{\mu_o * N }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

 substituting values

        [tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]

        [tex]I = 2042\ A[/tex]

A stone with a mass m is dropped from an airplane that has a horizontal velocity v at a height h above a lake. If air resistance is neglected, the horizontal distance R from the point on the lake directly below the point of release to the point where the stone strikes the water is given by which formula? R=v(2h/g)2 None of these are correct. R = 2mv sqrt(2h/g) R = v sqrt(2h/g) R=(1/2)gt2

Answers

Answer:

  R = v √(2h / g)

Explanation:

This exercise can be solved using the concepts of science, projectile launching

let's calculate the time it takes to get to the water

           y = y₀ +[tex]v_{oy}[/tex] t - ½ g t²

as the stone is skipped the vertical speed is zero

           y = y₀ - ½ g t²

for y=0

           t = √ (2y₀ / g)

           

the horizontal distance it covers in this time is

           R = v₀ₓ t

            R = v₀ₓ √(2 y₀ / g)

           

let's call the horizontal velocity as v and the height is h

            R = v √(2h / g)

Two objects are in all respects identical except for the fact that one was coated with a substance that is an excellent reflector of light while the other was coated with a substance that is a perfect absorber of light. You place both objects at the same distance from a powerful light source so they both receive the same amount of energy U from the light. The linear momentum these objects will receive is such that:

Answers

Answer:

absorbent    p = S / c

reflective         p = 2S/c

Explanation:

The moment of radiation on a surface is

          p = U / c

where U is the energy and c is the speed of light.

In the case of a fully absorbent object, the energy is completely absorbed. The energy carried by the light is given by the Poynting vector.

           p = S / c

in the case of a completely reflective surface the energy must be absorbed and remitted, therefore there is a 2-fold change in the process

           p = 2S/c

EXAMPLE 5 Find the radius of gyration about the x-axis of a homogeneous disk D with density rho(x, y) = rho, center the origin, and radius a. SOLUTION The mass of the disk is m = rhoπa2, so from these equations we have 2 = Ix m = 1 4​πrhoa4 rhoπa2 = a2 4​ .

Answers

Answer:

Radius of gyration = a/2.

Explanation:

So, from the question above I can see that the you are already answering the question and you are stuck up or maybe that's how the problem is set from the start. Do not worry, you are covered in any of the ways. So, from the question we have that;

"The mass of the disk is m = ρπa^2, so from these equations we have y^2 = Ix/m."

(NB: I changed the "rho" word to its symbol).

Thus, the radius of gyration with respect to x-axis = (1/4 πρa^4)/ πρa^2 = a^2/4.

Therefore, the Radius of gyration = a/2.

A uniform stick 1.5 m long with a total mass of 250 g is pivoted at its center. A 3.3-g bullet is shot through the stick midway between the pivot and one end The bullet approaches at 250 m/s and leaves at 140 m/s
With what angular speed is the stick spinning after the collision?

Answers

Answer:

63.44 rad/s

Explanation:

mass of bullet = 3.3 g = 0.0033 kg

initial velocity of bullet [tex]v_{1}[/tex] = 250 m/s

final velocity of bullet [tex]v_{2}[/tex] = 140 m/s

loss of kinetic energy of the bullet = [tex]\frac{1}{2}m(v^{2} _{1} - v^{2} _{2})[/tex]

==> [tex]\frac{1}{2}*0.0033*(250^{2} - 140^{2} )[/tex] = 70.785 J

this energy is given to the stick

The stick has mass = 250 g =0.25 kg

its kinetic energy = 70.785 J

from

KE = [tex]\frac{1}{2} mv^{2}[/tex]

70.785 = [tex]\frac{1}{2}*0.25*v^{2}[/tex]

566.28 = [tex]v^{2}[/tex]

[tex]v= \sqrt{566.28}[/tex] = 23.79 m/s

the stick is 1.5 m long

this energy is impacted midway between the pivot and one end of the stick, which leaves it with a radius of 1.5/4 = 0.375 m

The angular speed will be

Ω = v/r = 23.79/0.375 = 63.44 rad/s

3. According to Hund's rule, what's the expected magnetic behavior of vanadium (V)?
O A. Ferromagnetic
O B. Non-magnetic
C. Diamagnetic
O D. Paramagnetic​

Answers

Answer:

Diamagnetic

Explanation:

Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).

For vanadium V ion, there are 18 electrons which will be arranged as follows;

1s2 2s2 2p6 3s2 3p6.

All the electrons present are spin paired hence the ion is expected to be diamagnetic.

Answer:

its paramagnetic

Explanation:

i took this quiz

"On a movie set, an alien spacecraft is to be lifted to a height of 32.0 m for use in a scene. The 260.0-kg spacecraft is attached by ropes to a massless pulley on a crane, and four members of the film's construction crew lift the prop at constant speed by delivering 135 W of power each. If 18.0% of the mechanical energy delivered to the pulley is lost to friction, what is the time interval required to lift the spacecraft to the specified height?"

Answers

Answer:

The time interval required to lift the spacecraft to this specified height is 123.94 seconds

Explanation:

Height through which the spacecraft is to be lifted = 32.0 m

Mass of the spacecraft = 260.0 kg

Four crew member each pull with a power of 135 W

18.0% of the mechanical energy is lost to friction.

work done in this situation is proportional to the mechanical energy used to move the spacecraft up

work done = (weight of spacecraft) x (the height through which it is lifted)

but the weight of spacecraft = mg

where m is the mass,

and g is acceleration due to gravity 9.81 m/s

weight of spacecraft = 260 x 9.81 = 2550.6 N

work done on the space craft = weight x height

==> work = 2550.6 x 32 = 81619.2 J

this is equal to the mechanical energy delivered to the system

18.0% of this mechanical energy delivered to the pulley is lost to friction.

this means that

0.18 x 81619.2  = 14691.456 J   is lost to friction.

Total useful mechanical energy =  81619.2 J - 14691.456 J = 66927.74 J

Total power delivered by the crew to do this work = 135 x 4 = 540 W

But we know tat power is the rate at which work is done i.e

[tex]P = \frac{w}{t}[/tex]

where p is the power

where w is the useful work done

t is the time taken to do this work

imputing values, we'll have

540 = 66927.74/t

t = 66927.74/540

time taken t = 123.94 seconds

1.5 kg of air within a piston-cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 800 K and 300 K, respectively. The heat transfer from the air during the isothermal compression is 80 kJ. At the end of the isothermal compression, the volume is 0.2 m3. Determine the volume at the beginning of the isothermal compression, in m3. Assume the ideal gas model for air and neglect kinetic and potential energy effects.

Answers

Answer:

Explanation:

Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .

So the given process of isothermal compression must have been done at the temperature of 300K  , keeping the temperature constant .

Work done on gas at isothermal compression is equal to heat transfer .

work done on gas = 80 x 10³ J

work done on gas = n RT ln v₁ / v₂

n is number of moles v₁ and v₂ are initial and final volume

molecular weight of gas = 28.97 g

1.5 kg = 1500 / 28.97 moles

= 51.77 moles

work done on gas = n RT ln v₁ / v₂

Putting the values in the equation above

80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2

ln v₁ / .2 = .62

v₁ / .2 = 1.8589

v₁ = 0.37 m³

Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.

Answers

Answer:

a) 6.57 m/s

b) 53.75 J

c) 6.37 m/s

d) -98.297 J

Explanation:

mass of player = [tex]m_{p}[/tex] = 117.5 kg

speed of player = [tex]v_{p}[/tex] = 6.5 m/s

mass of ball = [tex]m_{b}[/tex] = 0.43 kg

velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s

Recall that momentum of a body = mass x velocity = mv

initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s

initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s

initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] =  2482.187 J

a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.

for this first case that they travel in the same direction, their momenta carry the same sign

[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

where v is the final velocity of the player.

inserting calculated momenta of ball and player from above, we have

763.75 + 11.395 = (117.5 + 0.43)v

775.145 = 117.93v

v = 775.145/117.93 = 6.57 m/s

b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J

change in kinetic energy = 2535.94 - 2482.187 = 53.75 J  gained

c) if they travel in opposite direction, equation becomes

[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

763.75 - 11.395 = (117.5 + 0.43)v

752.355 = 117.93v

v = 752.355/117.93 = 6.37 m/s

d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex]  = 2383.89 J

change in kinetic energy = 2383.89 - 2482.187 = -98.297 J

that is 98.297 J  lost

Question 8
A spring is attached to the ceiling and pulled 8 cm down from equilibrium and released. The
damping factor for the spring is determined to be 0.4 and the spring oscillates 12 times each
second. Find an equation for the displacement, D(t), of the spring from equilibrium in terms of
seconds, t.
D(t) =

Can someone please help me ASAP?!!!!

Answers

Answer: D(t) = [tex]8.e^{-0.4t}.cos(\frac{\pi }{6}.t )[/tex]

Explanation: A harmonic motion of a spring can be modeled by a sinusoidal function, which, in general, is of the form:

y = [tex]a.sin(\omega.t)[/tex] or y = [tex]a.cos(\omega.t)[/tex]

where:

|a| is initil displacement

[tex]\frac{2.\pi}{\omega}[/tex] is period

For a Damped Harmonic Motion, i.e., when the spring doesn't bounce up and down forever, equations for displacement is:

[tex]y=a.e^{-ct}.cos(\omega.t)[/tex] or [tex]y=a.e^{-ct}.sin(\omega.t)[/tex]

For this question in particular, initial displacement is maximum at 8cm, so it is used the cosine function:

[tex]y=a.e^{-ct}.cos(\omega.t)[/tex]

period = [tex]\frac{2.\pi}{\omega}[/tex]

12 = [tex]\frac{2.\pi}{\omega}[/tex]

ω = [tex]\frac{\pi}{6}[/tex]

Replacing values:

[tex]D(t)=8.e^{-0.4t}.cos(\frac{\pi}{6} .t)[/tex]

The equation of displacement, D(t), of a spring with damping factor is [tex]D(t)=8.e^{-0.4t}.cos(\frac{\pi}{6} .t)[/tex].

"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."

Answers

Answer:

9.6×10⁹ A

Explanation:

From the question above,

P = VI.................... Equation 1

Where P = Electric power, V = Voltage, I = current.

make I the subject of the equation

I = P/V............. Equation 2

Given: P = 200 kW = 200×10³ W, V = 48000 V.

Substitute these vales into equation 2

I = 200×10³×48000

I = 9.6×10⁹ A.

Hence the current in the line is 9.6×10⁹ A.

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

What is the wavelength λλlambda of the wave described in the problem introduction? Express the wavelength in terms of the other given variables and constants

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The wavelength is   [tex]\lambda= \frac{2 \pi }{k}[/tex]

Explanation:

From the question we are told that  

      The electric field is [tex]\= E = E_o sin (kx - wt )\r j[/tex]

       The magnetic field is  [tex]\= B = B_0 sin (kx -wt) \r k[/tex]

From the above equation

and  k is the wave number which is mathematically represented as

        [tex]k = \frac{2 \pi }{\lambda }[/tex]

=>     [tex]\lambda= \frac{2 \pi }{k}[/tex]

Where [tex]\lambda[/tex] is the wavelength

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum

Answers

Complete  Question

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 57.9 cm from the slits?

Answer:

a

  [tex]\theta = 0.3819^o[/tex]

b

  [tex]y = 0.00386 \ m[/tex]

Explanation:

From the question we are told that

    The slit separation is  [tex]d = 150 \lambda[/tex]

    The  distance from the screen is  [tex]D = 57.9 \ cm = 0.579 \ m[/tex]

 

Generally the condition for constructive interference is mathematically represented as

            [tex]dsin (\theta ) = n * \lambda[/tex]

=>        [tex]\theta = sin ^{-1} [\frac{n * \lambda }{ d } ][/tex]

where  n is the order of the maxima  and value is 1 because we are considering the central maximum and an adjacent maximum

     and  [tex]\lambda[/tex] is the wavelength of the light

So

       [tex]\theta = sin ^{-1} [\frac{ 1 * \lambda }{ 150 \lambda } ][/tex]

       [tex]\theta = 0.3819^o[/tex]

Generally the distance between the maxima is mathematically represented as

       [tex]y = D tan (\theta )[/tex]

=>    [tex]y = 0.579 tan (0.3819 )[/tex]

=>    [tex]y = 0.00386 \ m[/tex]

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?

Answers

Answer:

Explanation:

a = F / m

where a is acceleration , F is thrust and m is mass

taking log and differentiating

da / a = dF / F - dm / m

(da / a)x 100 = (dF / F)x100 - (dm / m) x100

percentage increase in a = percentage increase in F - percentage increase in m

= percentage increase in acceleration a   = 39 - 13 = 26 %

required increase = 26 %.

Solve 3* +5-220t = 0​

Answers

Answer:

t = 27.5

Explanation:

[tex]3 + 5 -220t = 0[/tex]

Well to solve for t we need to combine like terms and seperate t.

So 3+5= 8

8 - 220t = 0

We do +220 to both sides

8 = 220t

And now we divide 220 by 8 which is 27.5

Hence, t = 27.5

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.

Answers

Answer:

a) 6738.27 J

b) 61.908 J

c)  [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex]

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

[tex]I[/tex] =  [tex]\frac{1}{2}[/tex][tex]*11*1.1^{2}[/tex] = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]31.82^{2}[/tex] = 6738.27 J

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex]*16*2.8^{2}[/tex] = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = [tex]Iw[/tex] = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

[tex](I_{1} +I_{2} )w[/tex]

where the subscripts 1 and 2 indicates the values first and second  flywheels

[tex](I_{1} +I_{2} )w[/tex] = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]3.05^{2}[/tex] = 61.908 J

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

where m is the mass of the car

[tex]v_{car}[/tex] is the velocity of the car

Equating the energy

2246.09 =  [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

making m the subject of the formula

mass of the car m = [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

4. The Richter scale describes how much energy an earthquake releases. With every increase of 1.0 on the scale, 32 times more energy is released. How many times more energy would be released by a quake measuring 2.0 more units on the Richter scale?

Answers

Answer:

64 times

Explanation:

if increase of 1 gives you 32

then increase of 2 will give you its double

64

If you increase one, you get 32 then multiplying by 2 will give you 64, which is its double.

What is Earthquake?

An earthquake is a sudden energy released in the Earth's lithosphere that causes shock wave, which cause the Earth's surface to shake. Earthquakes can range in strength from ones that are so small that no one can feel them to quakes that are so powerful that they uproot entire cities, launch individuals and objects into the air, and harm vital infrastructure.

The frequency, kind, and intensity of earthquakes observed over a specific time period are considered to be the seismic activity of an area.

The average rate of earthquake energy output per unit volume determines the basicity of a certain area of the Earth. The non-earthquake seismic rumbling is also alluded to as a tremor.

To know more about Earthquake:

https://brainly.com/question/1296104

#SPJ5

Determine the slit spacing d. Explain which measurement you made, show your calculation and your result for the slit spacing. There are several measurements you can make.

Answers

Answer:

The quantities to measure are:

* the distance to the screen

* The distance from the central maximum to each interference

* in order of interference

* wavelength

Explanation:

To determine the gap spacing we must use the constructive interference equation

            d sin θ = m λ

as the angles are small

          tan θ = sin θ / cos θ

          tan θ = sin θ

and the definition of tangent is

          tan θ = y / L

Thus

         sin θ = y / L

when replacing

          d y / L = m λ

          d = m λ L / y

with this equation we can know what parameter should be measured.

The quantities to measure are:

* the distance to the screen

* The distance from the central maximum to each interference

* in order of interference

* wavelength

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

(a) Find the speed of waves on a violin string of mass 717 mg and length 24.3 cm if the fundamental frequency is 980 Hz. (b) What is the tension in the string? For the fundamental, what is the wavelength of (c) the waves on the string and (d) the sound waves emitted by the string? (Take the speed of sound in air to be 343 m/s.)

Answers

Answer:

a)v = 476.28 m / s , b) T = 6.69 10⁵ N , c)  λ = 0.486 m , d)     λ = 0.35 m

Explanation:

a) The speed of a wave on a string is

          v = √T /μ

also all the waves fulfill the relationship

          v = λ f

they indicate that the fundamental frequency is f = 980 Hz.

The wavelength that is fixed at its ends and has a maximum in the center

          L = λ / 2

          λ = 2L

we substitute

           v = 2 L f

let's calculate

           v = 2  0.243  980

           v = 476.28 m / s

b) The tension of the rope

             T = v² μ

the density of the string is

            μ = m / L

            T = v² m / L

            T = 476.28²   0.717 / 0.243

            T = 6.69 10⁵ N

           

c)          λ = 2L

            λ = 2  0.243

            λ = 0.486 m

d) The violin has a resonance process with the air therefore the frequency of the wave in the air is the same as the wave in the string. Let's find the wavelength in the air

          v = λ f

          λ= v / f

          λ = 343/980

          λ = 0.35 m

Two protons are released from rest, with only the electrostatic force acting. Which of the following statements must be true about them as they move apart? (There could be more than one correct choice.)a. Their electrical potential energy keeps decreasing.b. Their acceleration keeps decreasing.c. Their kinetic energy keeps increasing.d. Their kinetic energy keeps decreasing.e. Their electric potential energy keeps increasing.

Answers

Answer:

Explanation:

correct options

a ) Their electrical potential energy keeps decreasing

Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases

so a ) option is correct

b ) Their acceleration keeps decreasing

As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .

c ) c. Their kinetic energy keeps increasing

Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .

The moving apart should be true statements:

a. The electrical potential energy should be reduced.

b. The acceleration should be reduced.

c. The kinetic energy should be increased.

True statements related to moving apart:

At the time when the moving part, there is the reduction of the electric potential energy because there is a rise in the distance due to which the increment of the kinetic energy.  The reduction of the mutual force of repulsion because of increment in the distance due to this the acceleration should be reduced. There is the increase in the kinetic energy due to the reduction of the electrical potential energy. here the law of conversation of energy should be applied.

Learn more about energy here: https://brainly.com/question/10658188

A horizontal uniform meter stick is supported at the 50.0 cm mark. It has a mass of 0.52 kg, hanging from it at the 20.0 cm mark and a mass of 0.31 kg mass hanging from the 60.0 cm mark. Determine the position on the meter stick, at which one would hang a third mass of 0.61 kg, to keep the meter stick in balance. Group of answer choices

Answers

Answer: 70.5 cm

Explanation:

The position on the meter stick, at which one would hang a third mass of 0.61 kg, to keep the meter stick in balance will be at the side of 0.31kg.

You will use the moment techniques.

That is,

Sum of the clockwise moment = sum of anticlockwise moments

Please find the attached file for the remaining explanation and solution.

Sally who weighs 450 N, stands on a skate board while roger pushes it forward 13.0 m at constant velocity on a level straight street. He applies a constant 100 N force.


Work done on the skateboard


a. Rodger Work= 0J


b. Rodger work= 1300J


c. sally work= 1300J


d. sally work= 5850J


e. rodger work= 5850J

Answers

Answer:

b. Rodger work = 1300 J

Explanation:

Work done: This can be defined as the product of force and distance along the direction of the force.

From the question,

Work is done by Rodger using a force of 100 N  in pushing the skateboard through a distance of 13.0 m.

W = F×d............. Equation 1

Where W = work done, F = force, d = distance.

Given: F = 100 N, d = 13 m

Substitute these values into equation 1

W = 100(13)

W = 1300 J.

Hence the right option is b. Rodger work = 1300 J

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.

Answers

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

A typical home uses approximately 1600 kWh of energy per month. If the energy came from a nuclear reaction, what mass would have to be converted to energy per year to meet the energy needs of the home

Answers

Answer:

7.68×10^25kg

Explanation:

The formula for energy used per year is calculated as

Energy used per year =12 x Energy used per month

By substituting Energy used per month in the above formula, we get

Energy used per year =12 x 1600kWh

= 19200kWh

Conversion:

From kWh to J:

1 kWh=3.6 x 10^6 J

Therefore, it is converted to J as

19200 kWh =19200 x 3.6 x 10^6 J

= 6.912×10^10 J

Hence, energy used per year is 6.912×10^10 J

To find the mass that is converted to energy per year.

E = MC^2 ............1

E is the energy used per year

C is the speed of light = 3.0× 10^8m/s

Where E= 6.912×10^10 J

Substituting the values into equation 1

6.912×10^10 J = M × 3.0× 10^8m/s

M = 6.912×10^10 J / (3.0× 10^8m/s)^2

M = 6.912×10^10 J/9×10^16

M = 7.68×10^25kg

Hence the mass to be converted is

7.68×10^25kg

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

Other Questions
APart DExplain why your model improves upon the student's original model. How would your model help someone who waslearning about photosynthesis for the first time?BI UxXFont SizesA- A. Which system of equations represents the matrix shown below?112 -180 3 15-2 4 181x + 2y + Z-8O A. x+y+3z = 15x + 2y + 4z = 18x+2y - z- 8B. -x +32 - 15x - 2y + 4z = 18X+2y- Z=8O C. -X+ y + 3z = 15X-2y + 4z = 18x+2y + z = 8D. X+37 = 15x +2y + 4z = 18 Skin by Roald DahlWhat is Drioli's occupation? PLEASE HELP QUICKLY!!! California finally joined the Union following the death of President Millard Fillmore. President Zachary Taylor. Senator William Seward. Senator John C. Calhoun Consider a sample with a mean of 60 and a standard deviation of 5. Use Chebyshev's theorem to determine the percentage of the data within each of the following ranges (to the nearest whole number).a. 50 to 70, at least %b. 35 to 85, at least %c. 51 to 69, at least %d. 47 to 73, at least %e. 43 to 77, at least % Graph the equation below by plotting the y-intercept and a second point on the line. When you click Done, your line will appear A 25 kg box sliding to the left across a horizontal surface is brought to a halt in a distance of 15 cm by a horizontal rope pulling to the right with 15 N tension.Required:a. How much work is done by the tension? b. How much work is done by gravity? The muscle that originates on the sacrum and transverse process of each vertebra and inserts on the spinous process of the third or fourth more superior vertebra is the ________ muscle. find the value of x and y if the distance of the point (x,y) from (-2,0) and (2,0) are both 14 units. distinguish between deliquescence and efflorescence. One number is 6 more than another. Their product is -9. Need help fast Jerry solved the system of equations. x minus 3 y = 1. 7 x + 2 y = 7. As the first step, he decided to solve for y in the second equation because it had the smallest number as a coefficient. Max told him that there was a more efficient way. What reason can Max give for his statement? The variable x in the first equation has a coefficient of one so there will be fewer steps to the solution. The variable x in the second equation has a coefficient of 7 so it will be easy to divide 7 by 7. The variable y in the second equation has a coefficient of 2 so it will be easy to divide the entire equation by 2. The variable x in the second equation has the largest coefficient. When dividing by 7, the solution will be a smaller number. What were the effects of the war? Conduct internet research on Vietnam today. How has Vietnam progressed in the last 30 years? Suppose you titrate 25.00 mL of 0.200 M KOBr with 0.200M H2SO4. The pH at half-equivalence point is 7.75 a). What is the initial pH of the 25.00mL of 0.200M KOBr mentioned above Find the partial sum of the first 4 terms of the series:5n + 2n=1605885None of these You're in the lunchroom at work one day, 3 weeks into the execution of a project you are managing, and your project sponsor approaches you to see if you can squeeze in another feature on his project. This is an example of... *PLEASE ANSWER DIFFICULT QUESTION* Both the Bosnia War and the Kosvo Wars were typical of United States military engagement during the 1990s. In what ways were they typical? a.) These wars engaged the entire U.S. military force and were supported by the American people. b.) These wars were fought on European lands with equal numbers of European and American soldiers. c.) These wars had massive U.S. involvement but little particpation by the European troops. d.) These wars used American forces in limited ways and on a small scale compared to earlier wars. Your neighbor decides to add the Internet to their home network and there are a lot of options for them. In a document, list their options using your own real options for an example and describe each one in detail. There are a lot of issues they may have to deal with. Make sure you are thorough in your desk Globus Autos sells a single product. 8 comma 3008,300 units were sold resulting in $ 84 comma 000$84,000 of sales revenue, $ 24 comma 000$24,000 of variable costs, and $ 18 comma 000$18,000 of fixed costs. If Globus reduces the selling price by $ 1.10$1.10 per unit, the new margin of safety is: (Round any intermedary calculations to the nearest cent.) The image of a parabolic lens is traced onto a graph. The function f(x) = (x + 8)(x 4) represents the image. At which points does the image cross the x-axis?