Hey there! I'm happy to help!
To find the volume of a cone, we multiply the base by the height and then divide by three.
First, we find the area of the base, which is a circle. To find a circle, you square the radius and then multiply by pi (or 3.14 in our case).
Radius is half of the diameter.
3/2=1.5
We square this.
1.5²=2.25
We multiply by 3.14
2.25×3.14=7.065
Now, we multiply this base area by the height.
7.065×7=49.455
We divide by 3.
49.455/3=16.485
Therefore, if we round this, our answer is 16.49 in³.
Now you can find the volume of a cone! Have a wonderful day! :D
Answer:
16.49
Step-by-step explanation:
One of these is not an aquatic swimming A. canoeing B. shooting C. swimming D. diving
The answer is B. Shooting. Shooting is a sport on dry land, while the other three are aquatic sports, that is, they are on or in the water.
List the coordinates of FOUR vertices that create the feasible region on the graph. Submit your answer in the form of FOUR ordered Pairs (x, y)
Answer:
see below
Step-by-step explanation:
The feasible region is the shaded area. We just need to find the coordinates of its vertices. These are (200, 200), (300, 0), (500,0) and (300, 200).
given that sin x equals to a over b then what is tan x
Answer:
Hey there!
Sine is equal to opposite/hypotenuse
Tangent is equal to opposite/adjacent
opposite=a
hypotenuse=b
adjacent=c
Thus, tangent x= a/c.
Hope this helps :)
Answer:
tan x = a/sqrt(b^2 - a^2)
Step-by-step explanation:
sin x = a/b = opp/hyp
tan x = opp/adj
adj^2 + opp^2 = hyp^2
adj^2 + a^2 = b^2
adj = sqrt(b^2 - a^2)
tan x = a/sqrt(b^2 - a^2)
James determined that these two expressions were equivalent expressions using the values of y=4 and yu 6. Which
statements are true? Check all that apply
7x+4 and 3x+5+4x-1
When - 2. both expressions have a value of 18.
The expressions are only equivalent for X-4 and X- 6.
The expressions are only equivalent when evaluated with even values.
The expressions have equivalent values for any value of x.
The expressions should have been evaluated with one odd value and one even value.
When - 0, the first expression has a value of 4 and the second expression has a value of 5.
The expressions have equivalent values if X-
Answer with explanation:
Two or more Algebraic expressions are said to be equivalent, if both the expression produces same numerical value , when variable in the expressions are replaced by any Real number.
The two expressions are
1. 7 x +4
2. 3 x +5 +4 x =1
Adding and subtracting Variables and constants
→7 x +5=1
→7 x +5-1
→7 x +4
→ When x=2,
7 x + 4 =7×2+4
=14 +4
=18
So, Both the expression has same value =18.
→So, by the definition of equivalent expression, when ,you substitute , x by any real number the two expression are equivalent.
Correct options among the given statement about the expressions are:
1.When x = 2, both expressions have a value of 18.
2.The expressions have equivalent values for any value of x.
3.The expressions have equivalent values if x = 8.
Let f(x) = 3x + 5 and g(x) = x2. Find g(x) − f(x).
Answer:
2x-(3x+5) = -x-5
Step-by-step explanation:
2x + 0
-
3x + 5
-———————-
-x - 5
Which equation describes the same line as y -3 equals -1 (x + 5)?
Answer:
y=-x-2
Step-by-step explanation:
y-3=-x-5
y=-x-2
Please answer it now in two minutes
Answer:
3.9
Step-by-step explanation:
Pythagorean theorem:
a^2 + b^2 = c^2
a^2 + 1^2 = 4^2
a^2 + 1 = 16
a^2 = 15
a = sqrt(15)
a = 3.9
Answer a = 3.9 yards
Answer:
[tex]\boxed{3.9}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
Apply Pythagorean theorem.
[tex]a^2 + b^2 = c^2[/tex]
[tex]a^2 + 1^2 = 4^2[/tex]
[tex]a^2 + 1 = 16[/tex]
[tex]a^2 = 15[/tex]
[tex]a=\sqrt{15}[/tex]
[tex]a \approx 3.872983[/tex]
What is the slope of line m?
Answer:
2.
Step-by-step explanation:
The slope is calculated by doing rise over run.
The rise is: 6 - 0 = 6.
The run is: 0 - (-3) = 0 + 3 = 3.
6 / 3 = 2 / 1 = 2.
Hope this helps!
Determine if the function is a polynomial function. If the function is a polynomial function, state the degree and leading coefficient. If the function is not a polynomial, state why. f(x)=x^4(2-x^3)+1
Answer:
The correct option is
This is a polynomial function of degree 7 with a leading coefficient of -1
Step-by-step explanation:
Functions that consist of a variable such as x raised to positive integer powers which are equal to or larger than zero added together to make the function are known as polynomial functions
Therefore, the function in the question which is f(X) = x⁴ × (2 - x³) + 1
Which can be expanded as follows
f(x) = 2·x⁴ - x⁷ + 1, which is the same as given as follow equation;
f(x) = -x⁷ + 2·x⁴ + 1
Which is polynomial function with a leading coefficient of -1 as it consists of only whole number positive powers of x including the powers of x 4 and 7
Therefore, the correct option is that f(x) is a polynomial function of degree 7 with a leading coefficient of -1.
Exit polling is a popular technique used to determine the outcome of an election prior to results being tallied. Suppose a referendum to increase funding for education is on the ballot in a large town (voting population over 100,000). An exit poll of 200 voters finds that 94 voted for the referendum. How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
Answer:
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
Step-by-step explanation:
From the information given :
An exit poll of 200 voters finds that 94 voted for the referendum.
How likely are the results of your sample if the population proportion of voters in the town in favor of the referendum is 0.52? Based on your result, comment on the dangers of using exit polling to call elections.
This implies that ;
the Sample size n = 200
the probability p = 0.52
Let X be the random variable
So; the Binomial expression can be represented as:
X [tex]\sim[/tex] Binomial ( n = 200, p = 0.52)
Mean [tex]\mu[/tex] = np
Mean [tex]\mu[/tex] = 200 × 0.52
Mean [tex]\mu[/tex] = 104
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{np(1-p)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(1-0.52)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{200 \times 0.52(0.48)}[/tex]
The standard deviation [tex]\sigma[/tex] = [tex]\sqrt{49.92}[/tex]
The standard deviation [tex]\sigma[/tex] = 7.065
However;
P(X ≤ 94) because the discrete distribution by the continuous normal distribution values lies in the region of 93.5 and 94.5 .
The less than or equal to sign therefore relates to the continuous normal distribution of X < 94.5
Now;
x = 94.5
Therefore;
[tex]z = \dfrac{x- \mu}{\sigma}[/tex]
[tex]z = \dfrac{94.5 - 104}{7.065}[/tex]
[tex]z = \dfrac{-9.5}{7.065}[/tex]
z = −1.345
P(X< 94.5) = P(Z < - 1.345)
From the z- table
P(X ≤ 94) = 0.09012
From what we observe; There is a probability of less than 94 people who voted for the referendum is 0.09012
Comment:
The result is unusual because the probability that p is equal to or more extreme than the sample proportion is greater than 5%. Thus, it is not unusual for a wrong call to be made in an election if the exit polling alone is considered.
If log3=0.4771 and log2=0.3010,Find the value of log12
Answer:
log 12 = 1.0761
Step-by-step explanation:
log 12
=log(3*2*2)
= log 3 +log 2+ log 2
=0.4771+0.3010+0.3010
=1.0761
Answer:
Log 12 = 1.0791
Step-by-step explanation:
=> log (12)
Prime Factorizing 12
=> log (2×2×3)
Using log rule : [tex]log (a*b) = log a+logb[/tex]
=> Log 2 + log 2 + log 3
Given that log 2 = 0.3010 , log 3 = 0.4771
=> 0.3010 + 0.3010 + 0.4771
=> 1.0791
a car is driving at a speed of 40mi/h.what is the speed of the car in feet per minute
Answer:
[tex]\boxed{3520\ ft/min}[/tex]
Step-by-step explanation:
1 miles per hour = 88 feet per minute
Multiplying both sides by 40
40 miles per hour = 88*40 ft/min
40 mi./hr = 3520 ft/min
Answer:
3520 feet/min
Step-by-step explanation:
the speed of the car in feet per minute:
first convert miles to feet ( 1 mile =5280 feet) and hours to minutes(1hr=60min.)
(40*5280)/1*60=3520 feet/min
Find the angle measures given the figure is a rhombus.
Answer:
1 = 90°, 2 = 66°
Step-by-step explanation:
Since the diagonals of a rhombus are perpendicular, ∠1 = 90°. Using the Exterior Angles Theorem (exterior angle = sum of remote interior angles, we see that ∠2 = 90 - 24 = 66°.
The slope of the line below is 4 . Which of the following is the point slope form of that line ? ( top answer gets )
Answer:
C
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
Here m = 4 and (a, b) = (- 3, - 4) , thus
y - (- 4) = 4(x - (- 3)) , that is
y + 4 = 4(x + 3) → C
The researcher is interested to know if policy A (new) is more effective than policy B (old). Frame the hypothesis and describe what each error would represent in terms of reality and conclusion.
Answer:
Null hypothesis: Policy B remains more effective than policy A.
Alternate hypothesis: Policy A is more effective than policy B.
Step-by-step explanation:
Remember, a hypothesis is a usually tentative (temporary until tested) assumption about two variables– independent and the dependent variable.
We have two types of hypothesis errors:
1. A type I error occurs when the null hypothesis (H0) is wrongly rejected.
That is, rejecting the assumption that policy B remains more effective than policy A when it is actually true.
2. A type II error occurs when the null hypothesis H0, is not rejected when it is actually false. That is, accepting the assumption that policy B remains more effective than policy A when it is actually false.
Find the dimensions of a deck which will have railings on only three sides. There is 28 m of railing available and the deck must be as large as possible.
Answer:
2x2x7
Step-by-step explanation:
On a ski lift, the distance between chairs is inversely proportional to the number of chairs. At a
ski resort, one lift has 80 chairs spaced 16 meters apart. What is the constant of variation.
A.1280 B.5 C.1/5 D.1/1280
Constant of variation = number of chairs/ spacing.
80/16 = 5
The answer is B.5
Starting at sea level, a submarine descended at a constant rate to a depth of −5/6 mile relative to sea level in 4 minutes. What was the submarine's depth relative to sea level after the first minute? Answer with a fraction :3
Answer:
-5/24 miles
Step-by-step explanation:
The submarine descends at a rate of -5/6 miles every 4 minutes.
To find the depth of the submarine relative to sea level after the first minute, we have to multiply the rate of descent by he time spent (1 minute). That is:
[tex]\frac{\frac{-5}{6} }{4} * 1[/tex]
=> D = -5 / (6 * 4) = -5/24 miles
Therefore, the submarine's depth is -5/24 miles.
Answer:
-1 1/5
Step-by-step explanation:
I took the test and this was the correct answer :D
Susan purchased 9/10 of a pound of shrimp for a dinner party. Her plan is to serve 1/6 of a pound of shrimp to herself and each guest. Including herself, how many people can Susan serve at her dinner party? (Remember that you can't have a fraction of a person.)
Answer:
Susan and 4 quests
5 people
Step-by-step explanation:
Take 9/10 and divide by 1/6
9/10 ÷1/6
Copy dot flip
9/10 * 6/1
54/10
50/10 + 4/10
5 4/10
We can only serve whole numbers
5 people
Susan and 4 quests
The Acme Candy Company claims that 60% of the jawbreakers it produces weigh more than 0.4 ounces. Suppose that 800 jawbreakers are selected at random from the production lines. Would it be significant for this sample of 800 to contain 494 jawbreakers that weigh more than 0.4 ounces? Consider as significant any result that differs from the mean by at least 2 standard deviations. That is, significant values are either less than or equal to muminus2sigma or greater than or equal to muplus2sigma.
Answer:
Yes, it would be statistically significant
Step-by-step explanation:
The information given are;
The percentage of jawbreakers it produces that weigh more than 0.4 ounces = 60%
Number of jawbreakers in the sample, n = 800
The mean proportion of jawbreakers that weigh more than 0.4 = 60% = 0.6 = [tex]\mu _ {\hat p}[/tex] =p
The formula for the standard deviation of a proportion is [tex]\sigma _{\hat p} =\sqrt{\dfrac{p(1-p)}{n} }[/tex]
Solving for the standard deviation gives;
[tex]\sigma _{\hat p} =\sqrt{\dfrac{0.6 \cdot (1-0.6)}{800} } = 0.0173[/tex]
Given that the mean proportion is 0.6, the expected value of jawbreakers that weigh more than 0.4 in the sample of 800 = 800*0.6 = 480
For statistical significance the difference from the mean = 2×[tex]\sigma _{\hat p}[/tex] = 2*0.0173 = 0.0346 the equivalent number of Jaw breakers = 800*0.0346 = 27.7
The z-score of 494 jawbreakers is given as follows;
[tex]Z=\dfrac{x-\mu _{\hat p} }{\sigma _{\hat p} }[/tex]
[tex]Z=\dfrac{494-480 }{0.0173 } = 230.94[/tex]
Therefore, the z-score more than 2 ×[tex]\sigma _{\hat p}[/tex] which is significant.
Answer:
Step-by-step explanation:
min 452, max 507, so 494 is not unusual.
simplify (5 √2 - 1) ^2
Find the value of x.
Answer:
8.8Option A is the correct option.
Step-by-step explanation:
As PW is the median.
PW = [tex] \frac{1}{2} [/tex] ( YZ + TM )
Plug the values
x = [tex] = \frac{1}{2} (5.5 + 12.1)[/tex]
Calculate the sum
x = [tex] = \frac{1}{2} \times 17.6[/tex]
Calculate the product
x = [tex] = 8.8[/tex]
Hope this helps...
Best regards!
Please give me the correct answer her please
Answer:
9.3 inStep-by-step explanation:
m∠UTV = 112° ⇒ m∠WTV = 180° - 112° = 68°
sin(68°) ≈ 0.9272
sin(∠WTV) = WV/TV
WV/10 ≈ 0.9272
WV ≈ 9.272
WV ≈ 9.3
Please help I don't understand
Answer:
£531.52
Step-by-step explanation:
We are given the profit in week 1 and information about week 2. We are asked for the difference between week 2 profit and week 1 profit.
__
In week 2, pizza is sold 4 ways. The diagram shows the numbers of pizzas sold each way. The table shows the profit made for each way the pizza was sold. We need to add up the profits from each of the sales to find the profit for week 2.
10-inch/normal price: profit = 407×£3.72 = £1514.0410-inch/offer price: profit = 358×(-£0.49) = -£175.4212-inch/normal price: profit = 169×£5.26 = £888.9412-inch/offer price: profit = 142×(-£0.04) = -£5.68Then the total profit in week 2 is ...
£1514.04 -175.42 +888.94 -5.68 = £2221.88
So, profit in week 2 exceeds profit in week 1 by ...
£2221.88 -1690.36 = £531.52 . . . more profit in week 2
Please help me with this answer!! I am really stuck...No nonsense answers please.
Answer:
19
Step-by-step explanation:
Inscribed Angle = 1/2 Intercepted Arc
< DBG = 1/2 ( DG)
< DBG = 1/2 ( 360 - BD - BG)
= 1/2 ( 360 - 172 - 150)
= 1/2 (38)
= 19
Evaluate 7m + 2n - 8p/n for m = –4, n = 2, and p = 1.5.
Answer:
-30
Step-by-step explanation:
7m + 2n - 8p/n
Let m = –4, n = 2, and p = 1.5
7(-4) + 2 ( 2) -8*(1.5)/2
-28 + 4 - 4*1.5
-28+ 4 - 6
-30
Answer:
-30
Step-by-step explanation:
Hey there!
Well given,
m = -4
n = 2
p = 1.5
We need to plug those number into,
7m + 2n - 8p/n
7(-4) + 2(2) - 8(1.5)/(2)
-28 + 4 - 12/2
-28 + 4 - 6
-24 - 6
-30
Hope this helps :)
Use the interactive number line to find the sum.
-5.5 + 3.7 =
Answer: -1.8
Step-by-step explanation:
Start at -5.5 and move the point on the number line up 3.7 spaces.
Hope it helps <3
Answer:
Your correct answer is -1.8
Step-by-step explanation:
−5.5 + 3.7
= −5.5+3.7
= −1.8
FInd the Slope and y-intercept
3y-x=18
Answer:
The slope is 1/3 and the y intercept is 6
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
3y -x =18
Add x to each side
3y = x+18
Divide each side by 3
3y/3 = x/3 +18/3
y = 1/3x +6
The slope is 1/3 and the y intercept is 6
We need to solve for y (y = mx + b):
3y - x = 18
~Add x to both sides
3y = 18 + x
~Divide 3 to everything
y = 6 + x/3 or y = 6 + 1/3/x
So... 1/3 is the slope and 6 is the y-intercept.
Best of Luck!
Determine the value of x.
Answer:
B. 6sqrt(2).
Step-by-step explanation:
Since the two legs of the right triangle are congruent, this is a 45-45-90 triangle. That means that the hypotenuse will measure xsqrt(2) units, and each leg will measure x units.
In this case, x = 6.
So, the hypotenuse is B. 6sqrt(2).
Hope this helps!
Sarah serves at a restaurant and makes 20% of what she sells as tips. Her base salary is $10.20an hour. Each hour she sells an average of $60 of food and drinks. She also makes time and a half when she works over 8 hours during a single shift. Her work week contains three 10-hour shifts, one 5-hour shift, and one 11-hour shift. Using the same income deductions as stated in the previous question, what is Sarah's annual gross income and annual net incom
Sara works 46 hours per week
9 hours are overtime and 37 hours are regular time
pay rate at time and a half: 10.20∗1.5=15.30
regular hours plus overtime pay
37∗10.20=377.40
9∗15.30=137.70
Income due to tips
Total hours worked∗60per hour∗20%
46∗60∗.20=552
Weekly Income=Hourly income + tips
Weekly Income=377.40+137.70+552.00
Weekly Income=1067.10
Annual income=Weekly income∗52
Annual income=55489.20