An old Magi cube camera flash bulb (1960s) used Mg metal sealed in bulb with oxygen. Calculate ∆G for its reaction Mg + 1/2 O2= MgO. Where S° Mg= 32. 7, 1/2 O2= 205. 0, MgO= 26. 9 J/mol/K, ΔΗf° -601. 2 kJ/mol

Answers

Answer 1

The value of ∆G for the reaction Mg + 1/2 O₂ = MgO is -557.7 kJ/mol.

To determine ∆G for the reaction, we can use the Gibbs free energy equation;  ∆G = ∆H - T∆S

where; ∆H will be the enthalpy change

T will be the temperature in Kelvin

∆S will bethe entropy change

First, we need to find the values of ∆H and ∆S for the reaction. We can use the enthalpy of formation (∆Hf°) values to calculate ∆H;

∆Hf°(Mg) = 0 kJ/mol

∆Hf°(O₂) = 0 kJ/mol

∆Hf°(MgO) = -601.2 kJ/mol

∆H = ∆Hf°(MgO) - ∆Hf°(Mg) - (1/2)∆Hf°(O₂)

∆H = -601.2 kJ/mol - 0 kJ/mol - (1/2)(0 kJ/mol)

∆H = -601.2 kJ/mol

Next, we need to calculate the entropy change (∆S) for the reaction;

∆S = S°(MgO) - S°(Mg) - (1/2)S°(O₂)

∆S = 26.9 J/mol/K - 32.7 J/mol/K - (1/2)(205.0 J/mol/K)

∆S = -147.2 J/mol/K

Now we can calculate ∆G for the reaction at room temperature (298 K);

∆G = ∆H - T∆S

∆G = -601.2 kJ/mol - (298 K)(-147.2 J/mol/K)

∆G = -601.2 kJ/mol + 43.5 kJ/mol

∆G = -557.7 kJ/mol

Negative sign, indicates that the reaction is spontaneous and will proceed in the forward direction.

To know more about Gibbs free energy here

https://brainly.com/question/20358734

#SPJ4


Related Questions

what happened to the cell potential when you added aqueous ammonia to the half-cell containing 0.001 m cuso4? how does ammonia react with copper ions in aqueous solution? (think back to coordination complexes in exp

Answers

When aqueous ammonia is added to the half-cell containing 0.001 M CuSO4, the cell potential is likely to change. The reason for this is that ammonia can form coordination complexes with copper ions, which can affect the concentration of copper ions in the solution, and hence the concentration gradient that drives the redox reaction in the cell.

Ammonia can react with copper ions in aqueous solution to form a series of coordination complexes. The most common complex is Cu(NH3)42+, which is a tetraamminecopper(II) complex. The formation of this complex reduces the concentration of free Cu2+ ions in solution, which can shift the equilibrium of the redox reaction in the cell.

If the reduction half-reaction is Cu2+ + 2e- → Cu, the addition of ammonia can reduce the concentration of Cu2+ ions in the solution and shift the equilibrium to the left, decreasing the cell potential. On the other hand, if the oxidation half-reaction is Cu → Cu2+ + 2e-, the addition of ammonia can increase the concentration of Cu2+ ions and shift the equilibrium to the right, increasing the cell potential.

Learn more about aqueous ammonia

https://brainly.com/question/14672082

#SPJ4

what is a possible set of quantum numbers m, l, ml, ms for the electron configuration of cobalt g

Answers

One possible set of quantum numbers for cobalt's electron configuration is:

m = -2, -1, 0, 1, 2, 1, 0

l = 2

ml = -2, -1, 0, 1, 2, 0, 1

ms = +1/2, -1/2, +1/2, -1/2, +1/2, -1/2, +1/2

The electron configuration of cobalt in its ground state is:

1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7

To determine the possible set of quantum numbers, we need to first fill the orbitals in the order of increasing energy and the Pauli exclusion principle, Hund's rule, and the aufbau principle.

The last electron enters the 3d subshell, which has five orbitals (dxy, dyz, dxz, dx2-y2, and dz2). The possible quantum numbers for the last electron in the 3d subshell are:

ml can have values from -2 to +2, corresponding to the five d orbitals.

l = 2 since d orbitals have an azimuthal quantum number of 2.

ms can have values of +1/2 or -1/2, corresponding to the electron's spin.

Since there are seven electrons in the 3d subshell, we can have up to seven sets of quantum numbers for the seven electrons. One possible set of quantum numbers for cobalt's electron configuration is:

m = -2, -1, 0, 1, 2, 1, 0

l = 2

ml = -2, -1, 0, 1, 2, 0, 1

ms = +1/2, -1/2, +1/2, -1/2, +1/2, -1/2, +1/2

Note that the last three electrons must have opposite spins (Pauli exclusion principle), and each orbital can have at most two electrons (Hund's rule).

Click the below link, to learn more about Electron Configuration of cobalt:

https://brainly.com/question/19863670

#SPJ11

For a mechanical change in an isolated system, the mechanical
energy at the beginning equals the mechanical energy at the
end of the process, as long as friction is negligible.
O True
O False

Answers

For a mechanical change in an isolated system, the mechanical energy at the beginning equals the mechanical energy at the end of the process, as long as friction is negligible. This statement is true.

The combination of kinetic energy, meaning energy of motion, with potential energy, meaning energy retained by a system as a result of the arrangement of its components, is known as mechanical energy. A system with solely gravitational forces or one that is otherwise idealized.

For a mechanical change in an isolated system, the mechanical energy at the beginning equals the mechanical energy at the end of the process, as long as friction is negligible. This statement is true.

To know more about mechanical energy, here:

https://brainly.com/question/29509191

#SPJ1

why do you think the procedure directed you to perform each of the tests on a sample of distilled water in addition to the carbohydrate samples?

Answers

The purpose of performing the tests on a sample of distilled water is to establish a baseline or control in order to compare the results of the tests on the carbohydrate samples.

The results of the tests on the distilled water should indicate the presence of only a few components such as hydrogen and oxygen and no other compounds. This allows scientists to compare the results of the tests on the carbohydrate samples and easily identify any compounds that are present in the sample that are not present in the control.

This way, the presence of any contaminants can be detected and the results of the tests can be accurately interpreted.

Know more about distilled water here.

https://brainly.com/question/23802525#

#SPJ11

Calculate the standard free-energy change at 25 ∘C for the following reaction: Mg2+(aq) + Zn(s) → Mg(s) + Zn2+(aq) Express your answer to three significant figures and in units of kJ/mol.
Consider constructing a voltaic cell with one compartment containing a Zn(s) electrode immersed in a Zn2+ aqueous solution and the other compartment containing an Al(s) electrode immersed in an Al3+ aqueous solution. What is the spontaneous reaction in this cell?
Group of answer choices
Zn + Al3+ → Al + Zn2+
Al + Zn2+ → Zn + Al3+
3 Zn + 2 Al3+ → 2 Al + 3 Zn2+
2 Al + 3 Zn2+ → 3 Zn + 2 Al3+
Nickel and iron electrodes are used to build a voltaic cell. Based on the standard reduction potentials of Ni2+ and Fe3+, what is the shorthand notation for this voltaic cell?
Group of answer choices
Ni2+(aq)|Ni(s)||Fe(s)|Fe3+(aq)
Fe3+(aq)|Fe(s)||Ni(s)|Ni2+(aq)
Ni(s)|Ni2+(aq)||Fe3+(aq)|Fe(s)
Fe(s)|Fe3+(aq)||Ni2+(aq)|Ni(s)

Answers

For the voltaic cell with nickel and iron electrodes, the shorthand notation is:
Ni(s)|Ni2+(aq)||Fe3+(aq)|Fe(s)

To calculate the standard free-energy change at 25°C for the reaction Mg2+(aq) + Zn(s) → Mg(s) + Zn2+(aq), we need to use the formula:

ΔG° = -nFE°
where ΔG° is the standard free-energy change, n is the number of moles of electrons transferred, F is Faraday's constant (96,485 C/mol), and E° is the standard cell potential.

Step 1: Determine the half-reactions and their standard reduction potentials.
Mg2+(aq) + 2e- → Mg(s)  E° = -2.37 V
Zn2+(aq) + 2e- → Zn(s)  E° = -0.76 V

Step 2: Determine the overall cell potential.
E°(cell) = E°(reduction) - E°(oxidation)
E°(cell) = (-0.76 V) - (-2.37 V) = 1.61 V

Step 3: Calculate the standard free-energy change.
ΔG° = -nFE°
ΔG° = -2 mol e- * 96,485 C/mol e- * 1.61 V
ΔG° = -310.44 kJ/mol

The standard free-energy change for this reaction at 25°C is -310 kJ/mol (rounded to three significant figures).

For the voltaic cell with Zn(s) and Al(s) electrodes, the spontaneous reaction is:
2 Al + 3 Zn2+ → 3 Zn + 2 Al3+

For the voltaic cell with nickel and iron electrodes, the shorthand notation is:
Ni(s)|Ni2+(aq)||Fe3+(aq)|Fe(s)

To know more about voltaic cell :

https://brainly.com/question/1370699

#SPJ11

For the voltaic cell with nickel and iron electrodes, based on the standard reduction potentials of Ni2+ and Fe3+, the shorthand notation for this voltaic cell is:
Ni(s)|Ni2+(aq)||Fe3+(aq)|Fe(s)

To calculate the standard free-energy change at 25°C for the reaction Mg2+(aq) + Zn(s) → Mg(s) + Zn2+(aq), we can use the following equation:
ΔG° = -nFE°
Where ΔG° is the standard free-energy change, n is the number of moles of electrons transferred in the reaction, F is Faraday's constant (96,485 C/mol), and E° is the standard cell potential.
First, we need to determine E°. We do this by looking up the standard reduction potentials for both half-reactions:
Mg2+(aq) + 2e- → Mg(s)  E° = -2.37 V
Zn2+(aq) + 2e- → Zn(s)  E° = -0.76 V
We can find the overall E° by subtracting the reduction potential of the reaction we need to reverse (Zn(s) → Zn2+(aq) + 2e-):
E° = -2.37 V - (-0.76 V) = -1.61 V
In this reaction, n = 2 since there are 2 moles of electrons transferred. Now we can calculate ΔG°:
ΔG° = -2 × 96,485 C/mol × (-1.61 V) = 310 kJ/mol (rounded to three significant figures)
For the voltaic cell with Zn(s) and Al(s) electrodes, the spontaneous reaction is:
2 Al + 3 Zn2+ → 3 Zn + 2 Al3+
For the voltaic cell with nickel and iron electrodes, based on the standard reduction potentials of Ni2+ and Fe3+, the shorthand notation for this voltaic cell is:
Ni(s)|Ni2+(aq)||Fe3+(aq)|Fe(s)

learn more about electrodes here

https://brainly.com/question/17060277

#SPJ11

which method would you use to perform these reactions, grignard carboxylation or nitrile hydrolysis?

Answers

Choose the method based on your starting material: Grignard carboxylation for alkyl halide and Nitrile hydrolysis for nitriles

If the desired reactions involve the conversion of a nitrile functional group to a carboxylic acid, then the method that should be used is nitrile hydrolysis. Grignard carboxylation is a different chemical process that involves the addition of a Grignard reagent to a carbonyl group to form a carboxylic acid. Therefore, nitrile hydrolysis would be the appropriate method for the conversion of a nitrile to a carboxylic acid.
Hi! To determine the appropriate method for your reactions, let's briefly discuss each one:

1. Grignard carboxylation: This reaction involves the use of a Grignard reagent (an organomagnesium compound, typically R-MgX) reacting with carbon dioxide (CO2) to produce a carboxylic acid. It's a useful method for preparing carboxylic acids from alkyl halides.

2. Nitrile hydrolysis: This reaction involves the conversion of a nitrile (RC≡N) to a carboxylic acid (RCOOH) by reacting with water in the presence of an acid or a base as a catalyst. This method is suitable for preparing carboxylic acids from nitriles.

If your starting material is a nitrile, the appropriate method to perform the reaction would be nitrile hydrolysis. If your starting material is an alkyl halide, you would use the Grignard carboxylation method.

In summary, choose the method based on your starting material:
- Grignard carboxylation for alkyl halides
- Nitrile hydrolysis for nitriles

Learn more about Grignard carboxylation here:

https://brainly.com/question/9322175

#SPJ11

The process chosen is determined on the starting material and the intended product. Grignard carboxylation is a better procedure if the starting material is an alkyl or aryl halide and the target product is a carboxylic acid. If the starting material is a nitrile and the desired product is a carboxylic acid, nitrile hydrolysis is the procedure to use.

Grignard carboxylation is a useful method for the synthesis of carboxylic acids from alkyl and aryl halides. In this reaction, a Grignard reagent (an organomagnesium compound) is first prepared by reacting an alkyl or aryl halide with magnesium metal.

The resulting Grignard reagent is then reacted with carbon dioxide to form a carboxylate intermediate, which is subsequently hydrolyzed with an acid to produce the carboxylic acid.

Nitrile hydrolysis, on the other hand, is a process that involves the conversion of a nitrile functional group (-CN) to a carboxylic acid functional group (-COOH).

In this reaction, the nitrile is typically reacted with an acid or base in the presence of water to produce an amide intermediate, which is then further hydrolyzed to form the carboxylic acid.

For more question on Grignard carboxylation click on

https://brainly.com/question/9322175

#SPJ11

4. describe the relationship between the metal and water in terms of which is exothermic and which is endothermic.

Answers

Answer:

The relationship between metal and water is highly dependent on the specific metal and the conditions under which they react with water. In general, however, the reaction between metals and water can be either exothermic or endothermic.

For highly reactive metals like sodium or potassium, the reaction with water is highly exothermic, meaning that it releases a large amount of heat. This is because these metals readily react with water to produce hydrogen gas and a highly alkaline solution of metal hydroxide. For example, the reaction between sodium and water can be represented as:

2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g) + heat

On the other hand, for less reactive metals like copper or silver, the reaction with water is usually endothermic, meaning that it absorbs heat from the surroundings. In these cases, the reaction occurs very slowly or not at all, and the metal may simply become coated with a layer of metal oxide or hydroxide. For example, the reaction between copper and water is relatively slow and can be represented as:

2 Cu(s) + O2(g) + 2 H2O(l) → 2 Cu(OH)2(s)

In summary, the relationship between metal and water in terms of exothermic and endothermic reactions is highly dependent on the specific metal and the conditions under which they react. Highly reactive metals tend to have exothermic reactions with water, while less reactive metals tend to have endothermic reactions or no reaction at all.

A buffer solution contains 0.10 mol of acetic acid and 0.14 mol of sodium acetate in 1.00 L. What is the pH of the buffer after the addition of 0.03 mol of KOH?

Answers

The pH of the buffer after the addition of 0.03 mol of KOH is 5.04.

To answer this question, we need to use the Henderson-Hasselbalch equation, which relates the pH of a buffer solution to the concentration of the acid and its conjugate base:

pH = pKa + log([A-]/[HA])

where pKa is the dissociation constant of the acid, [A-] is the concentration of the conjugate base (in this case, sodium acetate), and [HA] is the concentration of the acid (acetic acid).

First, we need to calculate the initial concentrations of acetic acid and sodium acetate:

[HA] = 0.10 mol/L
[A-] = 0.14 mol/L

Next, we need to calculate the new concentrations of acetic acid and sodium acetate after the addition of 0.03 mol of KOH. Since KOH is a strong base, it will react completely with the acetic acid to form acetate ion:

CH3COOH + KOH -> CH3COO- + H2O

The amount of acetic acid that reacts with KOH is:

0.03 mol KOH / 1 L = 0.03 M

Since acetic acid and KOH react in a 1:1 ratio, the concentration of acetic acid is now:

[HA] = 0.10 mol/L - 0.03 mol/L = 0.07 mol/L

The amount of acetate ion that is formed is also 0.03 mol/L, since acetic acid and acetate ion are in equilibrium:

CH3COOH <--> CH3COO- + H+

Since the buffer initially contained 0.14 mol/L of sodium acetate, the new concentration of acetate ion is:

[A-] = 0.14 mol/L + 0.03 mol/L = 0.17 mol/L

Now we can calculate the pH of the buffer using the Henderson-Hasselbalch equation:

pH = 4.76 + log(0.17/0.07) = 5.04

To learn more about Henderson-Hasselbalch equation click here

brainly.com/question/13423434

#SPJ11

2 NO(g)+Cl2(g)⇌2 NOCl(g) Kc=2000
A mixture of NO(g) and Cl
2
(g) is placed in a previously evacuated container and allowed to reach equilibrium according to the chemical equation shown above When the system reaches equilibrium, the reactants and products have the concentrations listed in the following table:
Species Concentration (M)
NO(g) 0.050
C12(g) 0.050
NOCl(g) 0.50
Which of the following is true if the volume of the container is decreased by one-half?
A. Q = 100, and the reaction will proceed toward reactants.
B. Q = 100, and the reaction will proceed toward products.
C. Q = 1000, and the reaction will proceed toward reactants.
D. Q = 1000, and the reaction will proceed toward products.

Answers

Neither A, B, C nor D. The equilibrium position will not be affected by the change in volume.

To determine how the equilibrium of the reaction 2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g) will shift if the volume of the container is decreased by one-half, we first need to calculate the reaction quotient Q.

The balanced chemical equation for the reaction is:

2 NO(g) + Cl₂(g) ⇌ 2 NOCl(g)

At equilibrium, the concentrations of the species are:

[NO] = 0.050 M

[Cl2] = 0.050 M

[NOCl] = 0.50 M

Using these values, we can calculate the value of the reaction quotient Q:

Q [tex]= [NOCl]^2 / ([NO]^2[Cl2])[/tex]= [tex](0.50)^2 / ((0.050)^2 x 0.050)[/tex] = 1000

Now we compare the value of Q to the equilibrium constant Kc:

Kc =[tex][NOCl]^2 / ([NO]^2[Cl2])[/tex] = 2000

Since Q < Kc, we can conclude that the reaction has not yet reached equilibrium and that the forward reaction will proceed to reach equilibrium.

When the volume of the container is decreased by one-half, the concentration of all species will increase due to the decrease in volume. According to Le Chatelier's principle, the reaction will shift in the direction that reduces the total number of moles of gas.

In this case, the reaction produces two moles of gas on the left-hand side and two moles of gas on the right-hand side, so the total number of moles of gas does not change. Therefore, the volume change will not have an effect on the equilibrium position.

Learn more about  equilibrium here:

https://brainly.com/question/30807709

v

#SPJ11

The correct answer is: C. Q = 1000, and the reaction will proceed toward reactants.

How to determine the reactions at equilibrium?



To determine which statement is true if the volume of the container is decreased by one-half, we need to calculate the reaction quotient (Q) for the new conditions.

When the volume is decreased by half, the concentrations of all species will double:

NO(g): 0.050 * 2 = 0.100 M
Cl2(g): 0.050 * 2 = 0.100 M
NOCl(g): 0.50 * 2 = 1.00 M

Now, calculate Q using the new concentrations:

Q = [NOCl]^2 / ([NO]^2 * [Cl2])
Q = (1.00)^2 / ((0.100)^2 * (0.100))
Q = 1 / 0.001
Q = 1000

So, Q = 1000. Now, compare Q to Kc:

Q > Kc, meaning the reaction will proceed toward the reactants to reach equilibrium.

To know more about Reaction Quotient:

https://brainly.com/question/24202150

#SPJ11

rade 11 Text Books Exercise 5.4 Answer the following questions: 1. 5.0 mole of ammonia were introduced into a 5.0 L reaction chamber in which it is partially decomposed at high temperatures. CHEMISTRY GRADE 11 267 2NH₂(g) 3H₂(g) + N₂(g) At equilibrium at a particular temperature, 80.0% of the ammonia had reacted. Calculate K for the reaction.​

Answers

At the given temperature, the equilibrium constant K for the reaction is 0.5625 mol/L.

How to determine equilibrium constant?

The balanced chemical equation for the reaction is:

2NH₃(g) ⇌ 3H₂(g) + N₂(g)

The equilibrium expression for the reaction is:

K = [H₂]³[N₂] / [NH₃]²

Given that 5.0 moles of NH₃ were introduced into a 5.0 L reaction chamber, the initial concentration of NH₃ is:

[NH₃]₀ = 5.0 mol / 5.0 L = 1.0 mol/L

At equilibrium, 80.0% of the NH₃ had reacted, which means that 20.0% of NH₃ remains. Therefore, the equilibrium concentration of NH₃ is:

[NH₃] = 0.20 x 1.0 mol/L = 0.2 mol/L

The equilibrium concentrations of H₂ and N₂ can be calculated from the balanced equation:

[H₂] = (3/2) x [NH₃] = 0.3 mol/L

[N₂] = [NH₃] / 2 = 0.1 mol/L

Substituting these values into the equilibrium expression gives:

K = [H₂]³[N₂] / [NH₃]²

K = (0.3 mol/L)³ x (0.1 mol/L) / (0.2 mol/L)²

K = 0.5625 mol/L

Therefore, the equilibrium constant K for the reaction at the given temperature is 0.5625 mol/L.

Find out more on equilibrium constant here: https://brainly.com/question/19340344

#SPJ1

a solution is 0.0300m in both cro42- and so42-. slowly, pb(no3)2 is added to this solution. what is the concentration of cro42- that remains in solution when pbso4 first begins to precipitate? ksp of pbcro4

Answers

The concentration of  [tex](CrO_4)^{2-[/tex]that remains in solution when [tex]PbSO_4[/tex] first begins to precipitate is zero.

When [tex]PbSO_4[/tex] is added to the solution containing 0.0300 M of both  [tex](CrO_4)^{2-[/tex]and [tex](SO_4)^{2-[/tex], a precipitation reaction occurs where [tex]PbCrO_4[/tex] (lead chromate) and PbSO4 (lead sulfate) are formed.

The Ksp (solubility product constant) of [tex]PbCrO_4[/tex] is 1.8 x 10^-14 at 25°C. As more [tex]Pb(NO_3)^2[/tex]is added, the concentration of Pb2+ increases until it reaches a point where the Ksp of[tex]PbCrO_4[/tex] is exceeded and precipitation occurs.

At this point, all of the [tex](CrO_4)^{2-[/tex]  ions have reacted with [tex]Pb^{2+[/tex] to form [tex]PbCrO_4[/tex], and the concentration of [tex](CrO_4)^{2-[/tex] in solution is zero. The precipitation of [tex]PbCrO_4[/tex] will continue until all of the [tex]Pb^{2+[/tex] ions have reacted with [tex](CrO_4)^{2-[/tex]  ions, at which point [tex]PbSO_4[/tex] will begin to precipitate.

To learn more about : concentration

https://brainly.com/question/28564792

#SPJ11

A vinegar solution of unknown concentration was prepared by diluting 10. 00 mL of vinegar to a total volume of 50. 00 mL with deionized water. A 25. 00-mL sample of the diluted vinegar solution required 20. 24 mL of 0. 1073 M NaOH to reach the equivalence point in the titration. Calculate the concentration of acetic acid, CH3COOH, (in M) in the original vinegar solution (i. E. , before dilution)

Answers

The concentration of acetic acid in the original vinegar solution is 0.0435M.

Balanced chemical equation for the reaction between acetic acid (CH₃COOH) and sodium hydroxide (NaOH) is:

CH₃COOH + NaOH → CH₃COONa + H₂O

The number of moles of NaOH used in the titration will be calculated as;

moles NaOH = Molarity × Volume (in L)

moles NaOH = 0.1073 M × 0.02024 L

moles NaOH = 0.002174872

Therefore, the concentration of CH₃COOH in the diluted vinegar solution is;

C₁V₁ = C₂V₂

C₁ × 10.00 mL = C₂ × 50.00 mL

C₁ = (C₂ × 50.00 mL) ÷ 10.00 mL

C₁ = 5 × C₂

where C₁ is the concentration of CH₃COOH in the diluted vinegar solution, and C₂ is the concentration of CH₃COOH in the original vinegar solution.

The number of moles of CH₃COOH in the diluted vinegar solution is;

moles CH₃COOH = C₁ × V₁ (in L)

moles CH₃COOH = (5 × C₂) × 0.01000 L

moles CH₃COOH = 0.05000 × C₂

The concentration of CH₃COOH in the original vinegar solution can be calculated;

moles CH₃COOH in original vinegar = moles CH₃COOH in diluted vinegar

0.05000 × C₂ = 0.002174872

C₂ = 0.002174872 ÷ 0.05000

C₂ = 0.043

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

what is the effect on the half-potential at 35 c when the ph of the solution is decreased by one unit

Answers

When the pH of a solution is decreased by one unit, the concentration of H+ ions increases This, in turn, can affect the half-potential of the solution. In acidic solutions,

The half-potential of a solution is a measure of its tendency to either gain or lose electrons. the concentration of H+ ions is high, leading to a decrease in the half-potential. When the pH of a solution is decreased by one unit, the half-potential of the solution will likely decrease if the solution is acidic.

Conversely, in alkaline solutions, the concentration of OH- ions is high, leading to an increase in the half-potential. The effect of pH on the half-potential is significant in electrochemical reactions,

as it can influence the overall reaction rate and the efficiency of the reaction. It is important to carefully monitor the pH of a solution in electrochemical experiments to ensure accurate results.

To learn more about : half-potential

https://brainly.com/question/18917494

#SPJ11

a 35.0-ml sample of 0.20 m lioh is titrated with 0.25 m hcl. what is the ph of the solution after 23.0 ml of hcl have been added to the base? group of answer choices 1.26 12.74 12.33 13.03 1.67

Answers

The pH of the solution after 23.0 mL of 0.25 M HCl have been added to the 35.0 mL of 0.20 M LiOH is 12.74.


1. Calculate the initial moles of LiOH and HCl:
  LiOH: 35.0 mL * 0.20 mol/L = 7.00 mmol
  HCl: 23.0 mL * 0.25 mol/L = 5.75 mmol

2. Determine the limiting reactant and find the moles of unreacted LiOH:
  Since HCl is the limiting reactant, subtract its moles from LiOH moles:
  7.00 mmol - 5.75 mmol = 1.25 mmol of unreacted LiOH

3. Calculate the new concentration of LiOH in the solution:
  Total volume: 35.0 mL + 23.0 mL = 58.0 mL
  New concentration: 1.25 mmol / 58.0 mL = 0.02155 mol/L

4. Calculate the pOH of the solution:
  pOH = -log10(0.02155) = 1.66

5. Find the pH of the solution:
  pH = 14 - pOH = 14 - 1.66 = 12.74

To know more about pH click on below link:

https://brainly.com/question/491373#

#SPJ11

A sample of oxygen (O2) gas occupies a volume of 251 mL at 735 torr of pressure. Calculate the volume the oxygen will occupy if the pressure changes to 825 torr.

Answers

The volume the oxygen will occupy if the pressure changes to 825 torr is 223.62 mL.

How to calculate volume?

The volume of a gas with a changing pressure can be calculated in accordance to Boyle's law as follows;

P₁V₁ = P₂V₂

Where;

P₁ and V₁ = initial pressure and volumeP₂ and V₂ = final pressure and volume

According to this question, a sample of oxygen gas occupies a volume of 251 mL at 735 torr of pressure. If the pressure changes to 825 torr, the new volume can be calculated as follows:

251 × 735 = V × 825

V = 184,485 ÷ 825

V = 223.62 mL

Learn more about volume at: https://brainly.com/question/24189159

#SPJ1

What is the mass of ether(0. 71) which can be put into a beaker holding 130ml

Answers

The mass of ether that can be put into a 130 mL beaker is approximately 92.3 grams.

How to find the mass of the ether

To calculate the mass of ether that can be put into a 130 mL beaker, we need to know the density of ether.

The density of ether varies depending on the specific type of ether, but assuming you are referring to diethyl ether, the density is approximately 0.71 g/mL.

Using the density and the volume of the beaker, we can calculate the maximum mass of ether that can be put into the beaker as follows:

Mass of ether = Density x Volume

Mass of ether = 0.71 g/mL x 130 mL

Mass of ether = 92.3 grams

Therefore, the maximum mass of diethyl ether that can be put into a 130 mL beaker is approximately 92.3 grams.

Learn more about density at

https://brainly.com/question/26364788

#SPJ1

Phosphorus tei chloride gas and chlorine gas react to form phosphorus pentachloride gas. A 7.5 L gas vessel is charged with a mixture of PCL3 (g) and Cl2, which is allowed to equilibrate at 450 K. At equilibrium the partial pressure of the three gases are P- PCL3 = 0.124 atm, Cl2- 0.157 atm, and PCl5= 1.30 atm. (A) what is the value of Kp at this temperature? (b) does the equilibrium favor reactants or products? (C) calculate K, for this reaction at 450 K

Answers

(a). The value of Kp at 450 K is 54.5.

(b). Kp = 54.5 > 1, we can conclude that the equilibrium favors products

(C). the value of Kc for this reaction at 450 K is also 54.5.

Chemical equation:

The balanced chemical equation for the reaction between phosphorus trichloride ([tex]PCL_{3}[/tex]) and chlorine ([tex]CL_{2}[/tex]) to form phosphorus pentachloride ([tex]PCL_{5}[/tex]) is:

[tex]PCL_{3}[/tex](g) + [tex]CL_{2}[/tex](g) ⇌ [tex]PCL_{5}[/tex](g)

What is athe value of Kp ?

(a) To find the value of Kp at 450 K, we can use the equilibrium partial pressures of the gases:

Kp = ([tex]PCL_{5}[/tex]) / (P-[tex]PCL_{3}[/tex])([tex]PCL_{2}[/tex])

Kp = (1.30 atm) / (0.124 atm)(0.157 atm)

Kp = 54.5

Therefore, the value of Kp at 450 K is 54.5.

equilibrium favors:

(b) To determine whether the equilibrium favors reactants or products, we can compare the calculated value of Kp to 1. If Kp > 1, the equilibrium favors products, and if Kp < 1, the equilibrium favors reactants.

Since Kp = 54.5 > 1, we can conclude that the equilibrium favors products.

What is the value of Kc?

(c) To calculate Kc for this reaction at 450 K, we need to use the following equation that relates Kp and Kc:

Kp = Kc(RT)Δn

where R is the gas constant (0.0821 L·atm/mol·K), T is the temperature in Kelvin (K), and Δn is the difference in the number of moles of gaseous products and reactants in the balanced chemical equation.

In this case, the equation is:

[tex]PCL_{3}[/tex](g) + [tex]Cl_{2}[/tex](g) ⇌ [tex]PCL_{5}[/tex](g)

Δn = (1-1) = 0

Substituting the values, we get:

Kc = Kp / [tex](RT)^{Δn}[/tex]

Kc = 54.5 / [tex](0.0821 L·atm/mol·K * 450 K)^{0}[/tex]

Kc = 54.5

Therefore, the value of Kc for this reaction at 450 K is also 54.5.

To know more about equilibrium, visit:

https://brainly.com/question/14721811

#SPJ9

according to the ismp, which of the following is appropriate? select one: a. 100000 units b. 0.9% sodium chloride c. .9% sodium chloride d. 1.0 mg

Answers

According to the ISMP, the appropriate option is "0.9% sodium chloride" as it is written in the correct format with the percentage symbol and the correct concentration of sodium chloride.

The other options do not relate to the given terms or are not written in the appropriate format. The option "1.0 mg" is written in the correct format but does not relate to sodium chloride or the given scenario.
According to the ISMP (Institute for Safe Medication Practices), the appropriate option among the given choices is:

b. 0.9% sodium chloride

This option is appropriate because it clearly specifies the concentration of the sodium chloride solution, which is essential for accurate and safe medication administration. The other options (a, c, and d) lack context or contain ambiguous information, which could lead to medication errors or incorrect dosing.

Learn more about sodium chloride here:

https://brainly.com/question/29801408

#SPJ11

According to the ISMP, the appropriate term would be "0.9% sodium chloride".

How to represent concentrations according to ISMP?


This is because the ISMP recommends using a leading zero before a decimal point for concentrations and avoiding the use of ambiguous or error-prone abbreviations, such as option C (.9% sodium chloride) which lacks a leading zero. Option A (100000 units) and option D (1.0 mg) are not relevant to the context of the question. Therefore, the correct format is "0.9%" rather than ".9%" or "1.0 mg".

To know more about ISMP:

https://brainly.com/question/31018598

#SPJ11

which of the following is true about the absorption and metabolism of alcohol? alcohol is metabolized by most tissue and organs in the body. the majority of alcohol is absorbed in the stomach. men and women do not metabolize alcohol at significantly different rates. acetaldehyde produced during alcohol metabolism is highly toxic.

Answers

The statement "acetaldehyde produced during alcohol metabolism is highly toxic" is true about absorption and metabolism of alcohol. Option 4 is correct.

Acetaldehyde is a byproduct of alcohol metabolism, and it is a toxic substance that can cause various symptoms such as facial flushing, nausea, and headache. Acetaldehyde is rapidly converted to acetate by the enzyme aldehyde dehydrogenase, which is then metabolized further to carbon dioxide and water.

However, if alcohol is consumed at a high rate, the liver may not be able to metabolize all of the acetaldehyde, leading to a buildup of this toxic substance in the body. This can result in more severe symptoms such as vomiting, rapid heartbeat, and difficulty breathing. Therefore, it is important to consume alcohol in moderation and allow enough time for the liver to metabolize the alcohol and its byproducts. Hence Option 4 is correct.

To learn more about absorption and metabolism of alcohol, here

https://brainly.com/question/14310421

#SPJ4

one kg of butane (c4h10) is burned with 25 kg of air that is at 30c and 90kpa. assuming the combustion is complete, determine the percentage of theoretical air used?

Answers

The percentage of theoretical air used is approximately 190.3%.

To determine the percentage of theoretical air used in the combustion of 1 kg of butane (C4H10), we need to calculate the amount of air required for complete combustion and compare it to the actual amount of air used.

The balanced chemical equation for the combustion of butane is:

[tex]C_4H_{10} + 13/2 O_2 - > 4 CO_2 + 5 H_2O[/tex]

This means that for every mole of butane that is burned, 13/2 moles of oxygen are required. The molar mass of butane is 58.12 g/mol, so 1 kg of butane is equivalent to 17.20 moles.

Therefore, the amount of oxygen required for complete combustion of 1 kg of butane is:

(13/2) mol O_2/mol butane x 17.20 mol butane = 111.4 mol O_2

Next, we need to calculate the amount of air required for complete combustion. Air is approximately 21% oxygen and 79% nitrogen by volume. Therefore, the volume of air required for complete combustion is:

111.4 mol O_2 / (0.21 mol O2/mol air) = 530.5 mol air

Assuming ideal gas behavior, the volume of air at 30°C and 90 kPa can be calculated using the ideal gas law

PV = nRT

where P is the pressure (90 kPa), V is the volume, n is the number of moles of air, R is the gas constant, and T is the temperature in Kelvin (303 K).

V = nRT/P = (530.5 mol x 0.08206 L atm K^-1 mol^-1 x 303 K) / (90 kPa x 101.3 kPa/atm) = 12,425 L

Therefore, the percentage of theoretical air used in the combustion of 1 kg of butane is:

(actual air used / theoretical air required) x 100%

= (25,000 g air / 12,425 L) / (530.5 mol air / 1 kg butane) x 100%

= 190.3

So, the percentage of theoretical air used is approximately 190.3%. This value is greater than 100% because the actual amount of air used is more than the theoretical amount due to the excess nitrogen present in air.

To learn more about : theoretical

https://brainly.com/question/14714924

#SPJ11

a student adds solid silver chloride (agcl) to each of two beakers: one containing 1.0 l of pure water, and one containing 1.0 l of 0.500 m nacl. in which will agcl be more soluble, and why?

Answers

AgCl will be more soluble in pure water than in 0.500 M NaCl solution. This is because the high concentration of Cl- ions in the NaCl solution will decrease the solubility of AgCl due to the common ion effect.

The solubility of solid silver chloride (AgCl) will be affected by the presence of other ions in the solution. When AgCl is added to pure water, it will dissociate into its constituent ions, Ag+ and Cl-.

However, in the presence of 0.500 M NaCl, the concentration of Cl- ions in the solution will increase. This increase in Cl- concentration will shift the equilibrium of AgCl dissociation towards the formation of more AgCl, making it less soluble.

The presence of other ions in the solution can affect the solubility of a solute, and this phenomenon is an important consideration in many chemical reactions and processes.

To learn more about : AgCl

https://brainly.com/question/31356036

#SPJ11

Precautions List precautions and explain why they were taken:
when adding water to the rock salt.
during the filtration stage.
during (i) evaporation to dryness and (ii) crystallisation.​

Answers

Precautions when adding water to rock salt: Add water slowly and carefully to avoid splashing ; Precautions during filtration stage: Use filter paper that fits the funnel properly ; Precautions during (i) evaporation to dryness and (ii) crystallization: Avoid overheating solution during evaporation and stirring the solution.

What is meant by evaporation?

Physical process by which a liquid substance is transformed into  gaseous state is called evaporation.

Precautions and their explanations:

Precautions when adding water to rock salt:

Add water slowly and carefully to avoid splashing or spilling.

Use a stirring rod to dissolve salt crystals completely.

Explanation: Rock salt can be quite reactive with water, and adding too much water too quickly can cause the solution to boil or splatter. Using a stirring rod helps to dissolve salt crystals completely without creating too much agitation.

Precautions during filtration stage:

Use a filter paper that fits the funnel properly and fold it properly.

Avoid touching filter paper with your fingers.

Explanation: The filter paper needs to fit the funnel properly to ensure that all of the liquid is filtered properly.

Precautions during (i) evaporation to dryness and (ii) crystallization:

Avoid overheating solution during evaporation and stirring the solution.

Use a clean glass rod to encourage crystallization and avoid scratching the walls of the container.

Explanation: Overheating the solution can cause the salt to decompose or change its chemical properties. Stirring the solution can also lead to the formation of smaller crystals.

To know more about evaporation, refer

https://brainly.com/question/9339710

#SPJ1

What type of change occurs at the molecular level?

Answers

When two or more molecules interact, chemical changes take place at the molecular level.

What transpires during a chemical change at the molecular level?

The molecules in the reactants interact during a chemical reaction to create new compounds. No new material is created during a physical change, such as a state shift or dissolution. You may also assert that no atoms are generated or destroyed during a chemical reaction, so explain this.

How do molecular shifts in phase happen?

The intermolecular interactions between the water molecules are weakening at the molecular level. The water molecules have access to enough energy from the heat to repel these forces. Intermolecular forces are either increased or decreased after every phase shift.

To know more about molecules interact visit:-

https://brainly.com/question/13770836

#SPJ1

How many liters of 2.07 M sulfuric acid are needed to make 57 milliliters of a 0.58 M solution of sulfuric acid?
**Round to FOUR places after the decimal.

Answers

We need 0.0161 liters of the 2.07 M sulfuric acid solution to make 57 milliliters of a 0.58 M solution of sulfuric acid.

To solve this problem

We need to use the formula:

C1V1 = C2V2

Where

C1 is the concentration of the initial solutionV1 is the volume of the initial solutionC2 is the concentration of the final solutionV2 is the volume of the final solution

We want to find the volume of the 2.07 M sulfuric acid solution needed to make 57 milliliters of a 0.58 M solution. Let's plug in the values we know:

2.07 M * V1 = 0.58 M * 57 mL

Simplifying the equation, we get:

V1 = (0.58 M * 57 mL) / 2.07 M

V1 = 16.0874 mL

To convert the volume to liters, we divide by 1000:

V1 = 16.0874 mL / 1000 mL/L

V1 = 0.0161 L

Therefore, we need 0.0161 liters of the 2.07 M sulfuric acid solution to make 57 milliliters of a 0.58 M solution of sulfuric acid.

Learn more about concentration here : brainly.com/question/28564792

#SPJ1

a 16.60 ml portion of 0.0969 m ba(oh)2 was used to titrate 25.0 ml of a weak monoprotic acid solution to the stoichiometric point. what is the molarity of the acid?

Answers

The molarity of the weak monoprotic acid solution is 0.0644 mol/L.

To find the molarity of the acid, we need to use the balanced chemical equation and the stoichiometry of the reaction between the acid and the base. The equation for the reaction is:

HA(aq) + Ba(OH)2(aq) → BaA2(aq) + 2H2O(l)

where HA is the weak monoprotic acid, Ba(OH)2 is the strong base, BaA2 is the barium salt of the acid, and H2O is water.

At the stoichiometric point, the moles of Ba(OH)2 used will be equal to the moles of acid present in the solution. Using the given volume and molarity of Ba(OH)2, we can calculate the moles of Ba(OH)2 used:

moles of Ba(OH)2 = volume × molarity = 16.60 ml × 0.0969 mol/L = 0.00161 mol

Since the acid is a monoprotic acid, the moles of acid present in the solution will be equal to the moles of Ba(OH)2 used. Therefore:

moles of HA = 0.00161 mol

Using the volume of the acid solution (25.0 ml), we can calculate the molarity of the acid:

molarity of HA = moles of HA / volume of HA solution in L

molarity of HA = 0.00161 mol / 0.0250 L

molarity of HA = 0.0644 mol/L

For such more questions on Molarity:

https://brainly.com/question/14469428

#SPJ11

calculate the volume of a stock solution, in liters and to the thousandths place, that has a concentration of 0.400 m koh and is diluted to 3.00 l of 0.130 m koh

Answers

The volume of the stock solution is approximately 0.975 liters, to the thousandths place.

To calculate the volume of the stock solution, you can use the dilution formula:

C₁V₁ = C₂V₂

where:
C₁ = concentration of the stock solution (0.400 M KOH)
V₁ = volume of the stock solution (unknown, in liters)
C₂ = concentration of the diluted solution (0.130 M KOH)
V₂ = volume of the diluted solution (3.00 L)

Rearrange the formula to solve for V1:

V1 = C₂V₂ / C₁

Now, plug in the given values:

V₁ = (0.130 M KOH * 3.00 L) / 0.400 M KOH

V₁ ≈ 0.975 L
know more about stock solution here

https://brainly.com/question/25256765#

#SPJ11

If 1 g of acetanilide (molecular mass is 135. 17 g/mol) is used, how much (in mol) of nitronium ion do you need?

Answers

0.0074 mol of nitronium ion is needed to react with 1 g of acetanilide

To determine the amount of nitronium ion needed for the reaction with 1 g of acetanilide, we will first calculate the moles of acetanilide and then apply stoichiometry.

Given that the molecular mass of acetanilide is 135.17 g/mol, we can calculate the moles of acetanilide:

moles = mass / molecular mass
moles = 1 g / 135.17 g/mol ≈ 0.0074 mol

Now, we need to determine the stoichiometry of the reaction between acetanilide and nitronium ion. Assuming the reaction is a 1:1 ratio (i.e., one mole of acetanilide reacts with one mole of nitronium ion), the amount of nitronium ion needed would be the same as the moles of acetanilide.

Thus, approximately 0.0074 mol of nitronium ion is needed to react with 1 g of acetanilide. Remember to consider the reaction's stoichiometry when applying this calculation to other scenarios or chemical reactions.

Know more about stoichiometry here:

https://brainly.com/question/14420683

#SPJ11  

the alkane c7h16 exhibits structural isomerism. in fact, 9 structural isomers have this same formula (but different bond arrangements). one such isomeric structure is:

Answers

Systematic name of this structure is 3-ethylpentane.

Chemical compounds known as isomers have identical chemical formulae but have different properties and atom arrangements inside the molecule. The term "isomer" refers to a substance that exhibits isomerism.

Structural isomers are substances with the same molecular formula but distinct atomic configurations. The way the atoms are attached in this instance is quite different, as seen by the different types of chains that are formed (straight versus branched), the placements of the atoms (such as middle versus end of the parent chain), and the presence of functional groups (e.g., aldehydes versus ketones).

For instance, although sharing the same molecular formula (C3H6O), propanal and propanone have very distinct chemical structures. They are structural isomers as a result.

Isomers of Heptane are:

Heptane (n-heptane)2-Methylhexane (iso-heptane)3-Methylhexane2,2-Dimethylpentane (neo-heptane)2,3-Dimethylpentane2,4-Dimethylpentane3,3-Dimethylpentane3-Ethylpentane2,2,3-Trimethylbutane

To learn more about isomers, refer:

brainly.com/question/12796779

#SPJ4

The complete question is: The alkane C7H16 exhibits structural isomerism. In fact, 9 structural isomers have this same formula (but different bond arrangements). One such isomeric structure is: What is the correct systematic name for this structure?

6. from the lab on solutions, what is the criterion for determining whether or not a solution is a conductor of electricity?

Answers

In the lab on solutions, the criterion for determining whether or not a solution is a conductor of electricity is the presence of free-moving ions within the solution. When a substance dissolves in water and releases ions, it allows the flow of electric current, making it a conductor of electricity.

The criterion for determining whether or not a solution is a conductor of electricity is whether or not it contains ions that are able to move freely and carry an electric charge. A solution that contains ions is considered a conductor of electricity, while a solution that does not contain ions is considered a non-conductor or insulator of electricity.

Learn more about conductors of electricity at https://brainly.com/question/3447552

#SPJ11

The criterion for determining whether or not a solution is a conductor of electricity is whether or not it contains ions that can carry an electric charge.

If the solution contains ions, it can act as a conductor of electricity. If it does not contain ions, it will not conduct electricity.

Use the following criterion:

A solution is considered a conductor of electricity if it contains ions that are free to move. These ions enable the flow of electrical current through the solution. Typically, this occurs when a solution has dissolved salts, acids, or bases, as they dissociate into ions when dissolved in a solvent like water. To test the conductivity of a solution, you can use a simple conductivity meter or a circuit with a light bulb, and observe if the light bulb lights up or if the meter shows any electrical current flow. If it does, the solution is a conductor of electricity.

Learn more about conductor here:

https://brainly.com/question/15320131

#SPJ11

What is one way someone could benefit from the non-separation of a colloid mixture? Explain.

Answers

An example are the emulsions used in the food industry.

How someone could benefit from the non-separation of a colloid mixture?

One way someone could benefit from the non-separation of a colloid mixture is in the case of emulsions, which are a type of colloid mixture. Emulsions are mixtures of immiscible liquids, such as oil and water, stabilized by an emulsifying agent.

The non-separation of emulsions can be beneficial in various practical applications, such as the food Industry, where emulsions are commonly used in the food industry to create a wide range of products, including salad dressings, mayonnaise, sauces, and margarine. Emulsions provide desirable texture, appearance, and taste properties to these food products, and their non-separation allows for long shelf life and consistent quality.

Learn moer about emulsions at:

https://brainly.com/question/6711819

#SPJ1

Other Questions
by the term takeover constraint, we mean group of answer choices constraints placed by the firm on raiders who want to take over the firm. legal constraints that limit the ability of the raiders to acquire a firm. provisions in the charter of a company that prevents it from attempting a takeover of other companies. the risk of being acquired by a hostile raider. if the after-tax cost of debt is 10%, what is the pretax cost for a firm in the 21% tax bracket? enter your answer as a percent rounded to two decimal places. Roget's Search Engine Limited plans to pay dividends of $2.00, $3.50, and then a liquidating dividend of $20.25 over the next three years. If investors expect a 10 percent return on their investment, what is the value of the company today? (Do not round intermediate calculations. Round the final answer to 2 decimal places.) Current value______$ Evaluate the following.Write an exponential function of the form y = ab^x that has the given points(1,6 3/4), (2, 1-4) Carnes Cosmetics Co.'s stock price is $35, and it recently paid a $1.75 dividend. This dividend is expected to grow by 28% for the next 3 years, then grow forever at a constant rate, g; and rs = 16%. At what constant rate is the stock expected to grow after Year 3? Do not round intermediate calculations. Round your answer to two decimal places. % Maverick Manufacturing has a target debt-equity ratio of 0.55. Its cost of equity is 11 %, and its cost of debt is 9 %.If the tax rate is 39 %, what is Maverick's WACC? (Report answer in percentage terms and round to 2 decimal places. Do not round intermediate calculations). active transport uses atp to move components in parallel with their concentration gradient, that is: from a high concentration to a low concentration Obtain at least two different codes of ethics for health professions by contacting professional organizations or searching the internet. Compare the codes of ethics what are the components of the crude oil mixture ? as firms simultaneously downsize and face the need for increased coordination across organizational boundaries, a control system based primarily on is dysfunctional. group of answer choices boundaries and constraints culture and rewards organizational loyalty innovation and risk taking economic thinking is concerned with assigning a current ____________________ to nature, allowing natural "things" to be integrated into a common framework of analysis. which of the following is an example of the law of demand? the amount of lumber that a certain region can produce is stable. the price of alpaca wool is increasing, so farmers offer more of it. the price of gas is decreasing, so vendors offer less of it. the price of gas is decreasing, so people buy more of it. Which of the following is NOT a health benefit of a "built environment"?O visible and well-lit stairsO increased levels of pollutionO designated bike paths and sidewalksO housing built in close proximity to schools, shops, and work sites 7. Please help yourselfs to drinks. 8. The mixture was gave a stir before heating. which one is not one of the functions of the screen pack and breaker plate at the die end of the extruder barrel? (q003) porosity decreases group of answer choices as sedimentary rock weathers. with decreasing compaction of sediments or rock. when rocks develop joints or faults. with the cementing of sediments by mineral grains from groundwater. 4. This number linenumber of minutes Diane readweek for 3 weeks.0200100300How many minutes did she read afterthe first week?minutesAfter the second week?After the third week?minutesminutesHow many minutes did she read eachweek? Explain how you know.5. Diane reads the same number of minuteseach week. How many minutes doesshe read after 4 weeks? After 5 weeks?Skip count on the number line above tofind the answers.After 4 weeks:After 5 weeks:minutesminutes The Founders of the United States wanted to establish a government based on the consentof the governed, but they did not believe in democracy. How did they address this paradoxin the way that they structured the government of the United States? What possiblyunintended consequences have resulted from their institutional design choices? the specified core capablitites that are contained in the national pllanning framworks are most accurately defined as How are unallocated overheads treated as per IAS 2? A. Recognise as an expense in the period in which they are incurred B. Recognise as an expense so long as there is a profit in the current period C. Treated as deferred expenditure D. Capitalised with the cost of inventories