Answer:
[tex]\boxed{\sf Option \ 4}[/tex]
Step-by-step explanation:
[tex]\sqrt{2x-3} +x=3[/tex]
Subtract x from both sides.
[tex]\sqrt{2x-3} +x-x=-x+3[/tex]
[tex]\sqrt{2x-3}=-x+3[/tex]
Square both sides.
[tex]( \sqrt{2x-3})^2 =(-x+3)^2[/tex]
[tex]2x-3=x^2-6x+9[/tex]
Subtract x²-6x+9 from both sides.
[tex]2x-3-(x^2-6x+9 )=x^2-6x+9-(x^2-6x+9)[/tex]
[tex]-x^2 +8x-12=0[/tex]
Factor left side of the equation.
[tex](-x+2)(x-6)=0[/tex]
Set factors equal to 0.
[tex]-x+2=0\\-x=-2\\x=2[/tex]
[tex]x-6=0\\x=6[/tex]
Check if the solutions are extraneous or not.
Plug x as 2.
[tex]\sqrt{2(2)-3} +2=3\\ \sqrt{4-3} +2=3\\\sqrt{1} +2=3\\3=3[/tex]
x = 2 works in the equation.
Plug x as 6.
[tex]\sqrt{2(6)-3} +6=3\\ \sqrt{12-3} +6=3\\\sqrt{9} +6=3\\3+6=3\\9=3[/tex]
x = 6 does not work in the equation.
Answer:
option d
Step-by-step explanation:
[tex]\sqrt{2x-3}+x = 3\\\\\sqrt{2x-3} = 3 -x\\[/tex]
Square both sides
[tex](\sqrt{2x-3})^{2}=(3-x)^{2}\\\\\\2x-3=9-6x+x^{2}\\\\0=x^{2}-6x + 9 - 2x + 3\\[/tex] {Add like terms}
[tex]x^{2} - 8x + 12 = 0[/tex]
Sum = -8
Product = 12
Factors = -2 , - 6
x² - 2x - 6x + (-2) * (-6) = 0
x(x -2) - 6(x -2) = 0
(x -2) (x - 6) = 0
x - 2 =0 ; x - 6 = 0
x = 2 ; x = 6
roots of the equation : 2 , 6
But when we put x = 6, it doesn't satisfies the equation.
When x = 6,
[tex]\sqrt{2x-3} + x = 3\\\\\sqrt{2*6-3}+6 = 3\\\\\sqrt{12-3}+6=3\\\\\sqrt{9}+6=3\\\\[/tex]
3 + 6≠ 3
Therefore, x = 2 but x = 6 is extraneous
What number is 16% of 80?
Write and solve an equation to answer the question.
Answer:
The answer is 12
Step-by-step explanation:
Trust me, kay? Please mark Brainliest!!!!
Answer:
12.8
Step-by-step explanation:
16% of 80
[tex]\frac{16}{100}[/tex] × 80
[tex]\frac{16}{10}[/tex] × 8
[tex]\frac{16}{5}[/tex] × [tex]\frac{4}{1}[/tex]
16 × 4
5
12[tex]\frac{4}{5}[/tex] = 12.8
How do I solve: 2 sin (2x) - 2 sin x + 2√3 cos x - √3 = 0
Answer:
[tex]\displaystyle x = \frac{\pi}{3} +k\, \pi[/tex] or [tex]\displaystyle x =- \frac{\pi}{3} +2\,k\, \pi[/tex], where [tex]k[/tex] is an integer.
There are three such angles between [tex]0[/tex] and [tex]2\pi[/tex]: [tex]\displaystyle \frac{\pi}{3}[/tex], [tex]\displaystyle \frac{2\, \pi}{3}[/tex], and [tex]\displaystyle \frac{4\,\pi}{3}[/tex].
Step-by-step explanation:
By the double angle identity of sines:
[tex]\sin(2\, x) = 2\, \sin x \cdot \cos x[/tex].
Rewrite the original equation with this identity:
[tex]2\, (2\, \sin x \cdot \cos x) - 2\, \sin x + 2\sqrt{3}\, \cos x - \sqrt{3} = 0[/tex].
Note, that [tex]2\, (2\, \sin x \cdot \cos x)[/tex] and [tex](-2\, \sin x)[/tex] share the common factor [tex](2\, \sin x)[/tex]. On the other hand, [tex]2\sqrt{3}\, \cos x[/tex] and [tex](-\sqrt{3})[/tex] share the common factor [tex]\sqrt[3}[/tex]. Combine these terms pairwise using the two common factors:
[tex](2\, \sin x) \cdot (2\, \cos x - 1) + \left(\sqrt{3}\right)\, (2\, \cos x - 1) = 0[/tex].
Note the new common factor [tex](2\, \cos x - 1)[/tex]. Therefore:
[tex]\left(2\, \sin x + \sqrt{3}\right) \cdot (2\, \cos x - 1) = 0[/tex].
This equation holds as long as either [tex]\left(2\, \sin x + \sqrt{3}\right)[/tex] or [tex](2\, \cos x - 1)[/tex] is zero. Let [tex]k[/tex] be an integer. Accordingly:
[tex]\displaystyle \sin x = -\frac{\sqrt{3}}{2}[/tex], which corresponds to [tex]\displaystyle x = -\frac{\pi}{3} + 2\, k\, \pi[/tex] and [tex]\displaystyle x = -\frac{2\, \pi}{3} + 2\, k\, \pi[/tex].[tex]\displaystyle \cos x = \frac{1}{2}[/tex], which corresponds to [tex]\displaystyle x = \frac{\pi}{3} + 2\, k \, \pi[/tex] and [tex]\displaystyle x = -\frac{\pi}{3} + 2\, k \, \pi[/tex].Any [tex]x[/tex] that fits into at least one of these patterns will satisfy the equation. These pattern can be further combined:
[tex]\displaystyle x = \frac{\pi}{3} + k \, \pi[/tex] (from [tex]\displaystyle x = -\frac{2\,\pi}{3} + 2\, k\, \pi[/tex] and [tex]\displaystyle x = \frac{\pi}{3} + 2\, k \, \pi[/tex], combined,) as well as[tex]\displaystyle x =- \frac{\pi}{3} +2\,k\, \pi[/tex].Identifying relationships from diagrams
Answer: <CED is the right angle, which measures 90 degrees. Since the measure of a straight angle is 180 degrees. <CEA must also be 90 degrees by the Definition of Right Angle. A bisector cuts the angle measure in half. m<AEB is 45 degrees.
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Answer:
The function has two real roots and crosses the x-axis in two places.
The solutions of the given function are
x = (-0.4495, 4.4495)
Step-by-step explanation:
The given quadratic equation is
[tex]G(x) = -x^2 + 4x + 2[/tex]
A quadratic equation has always 2 solutions (roots) but the nature of solutions might be different depending upon the equation.
Recall that the general form of a quadratic equation is given by
[tex]a^2 + bx + c[/tex]
Comparing the general form with the given quadratic equation, we get
[tex]a = -1 \\\\b = 4\\\\c = 2[/tex]
The nature of the solutions can be found using
If [tex]b^2- 4ac = 0[/tex] then we get two real and equal solutions
If [tex]b^2- 4ac > 0[/tex] then we get two real and different solutions
If [tex]b^2- 4ac < 0[/tex] then we get two imaginary solutions
For the given case,
[tex]b^2- 4ac \\\\(4)^2- 4(-1)(2) \\\\16 - (-8) \\\\16 + 8 \\\\24 \\\\[/tex]
Since 24 > 0
we got two real and different solutions which means that the function crosses the x-axis at two different places.
Therefore, the correct option is the last one.
The function has two real roots and crosses the x-axis in two places.
The solutions (roots) of the equation may be found by using the quadratic formula
[tex]$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$[/tex]
[tex]x=\frac{-(4)\pm\sqrt{(4)^2-4(-1)(2)}}{2(-1)} \\\\x=\frac{-4\pm\sqrt{(16 - (-8)}}{-2} \\\\x=\frac{-4\pm\sqrt{(24}}{-2} \\\\x=\frac{-4\pm 4.899}{-2} \\\\x=\frac{-4 + 4.899}{-2} \: and \: x=\frac{-4 - 4.899}{-2}\\\\x= -0.4495 \: and \: x = 4.4495 \\\\[/tex]
Therefore, the solutions of the given function are
x = (-0.4495, 4.4495)
A graph of the given function is also attached where you can see that the function crosses the x-axis at these two points.
I don't know this question. Help.
Answer:
-60
Step-by-step explanation:
-3 · 2 = -6 and 10⁴ · 10⁻³ = 10⁽⁴⁺⁽⁻³⁾⁾ = 10¹ = 10 so the answer is -6 · 10 = -60.
first correct answer gets best marks
Answer:
the answer would be x is less than 6.
Step-by-step explanation:
the reason why it would not be x is less than or equal to 6 is that the circle is not filled in.
Answer:
B
Step-by-step explanation:
x≤6
We can see from the graph that it starts from 6 and goes to 5, 4, 3, 2.
Hope this helps ;) ❤❤❤
What is (5+5×5÷5-5)⁵/5
Answer:
625.
Step-by-step explanation:
(5+5×5÷5-5)⁵/5
=[ ( 5 + 25 / 5 - 5)^5] / 5
= [(5 + 5 - 5)^5] / 5
= [ (10 - 5)^5] / 5
= 5^5 / 5
= 5^4
= 625.
Answer:
625
Step-by-step explanation:
The rule is to do Parentheses/Brackets, then Exponents/Orders, followed by doing Multiplication and Division from left to right, and finally Addition and Subtraction from left to right. The answer is 625
The perpendicular distance of (2, -4) from x axis is
Answer:
hope it helps
Step-by-step explanation:
ans = -4
Answer:
4
Step-by-step explanation:
Let A be the point wich coordinates are (2, -4)
-4 is the ordinate (y)
To find the distance from the x axis use the absolute value.
D (the distance) = | -4| = 4
The distance from the x-axis is 4
Which graph represents the solution set for the system x+y greater than or equal to 5 and -3x+2y less than or equal than to -2
Step-by-step explanation:
in each equation once substitute the value of x as 0 and again y as zero by this way you will get two values of X and y .
then again find the slope for each equation by the formula
slope= -coefficient of x / coefficient of y
for example,
X+y is greater or equals to 5
or, X+y= 5
or, X=5-y
or, when y is equals to zero
X= 5
and when X is equals to zero
y= 5
then plot the above point in the graph with respect to its slope and the shaded part is the solution
help me Please!!!!!!!
Answer:
[tex]2\sqrt{14\\}[/tex] = q
Step-by-step explanation:
use geometric mean method
4/s = s/10
s^2 = 40
s = 2[tex]\sqrt{10}[/tex]
consider the triangle STR and using the Pythagorean theorem
[tex]s^{2} +16 = q^{2} \\[/tex]
[tex](2\sqrt{10})^{2} +16 = q^{2}[/tex]
40 + 16 = q^2
56 = q^2
[tex]2\sqrt{14\\}[/tex] = q
Please answer the question in the image below ASAP
Answer:
B
Step-by-step explanation:
Here, we have a grain silo having 2 shapes fused together to make it.
A cylinder and then a hemisphere ( half sphere)
Now, we want to calculate the volume of grain that could completely fill the silo.
Mathematically, to do that, we will need to add the volume of the cylinder to the volume of the hemisphere.
Mathematically,
Volume of cylinder is;
pi * r^2 * h
From the question, r = 6 ft and h = 168 with pi = 22/7
Substituting these values, we have
Volume of cylinder= pi * 6^2 * 168 = 6,048 pi
The volume of the sphere will be;
4/3* pi * r^3= 4/3 * pi * 6^3 = 288 pi
So the total volume of the silo will be;
288 pi + 6,048 pi = 6336 pi
So to have the final result, let’s multiply by value of pi
6336 * 22/7 = 19,193 ft^3
The closest answer here probably due to previous approximations is 19,008 ft^3
30 POINTS!!!
Suppose f(x) = x2 and
g(x) = (1/3)^2. Which statement best compares the graph of g(x) with the graph of f(x)?
Image attached
Please help!!!
Answer:
A. The graph of g(x) is vertically compressed by a factor of 3.
Step-by-step explanation:
When there is a fraction, that means that there is a veritcal dilation.
Hope this helps! Good luck!
A cube has a side length of 5 cm. Determine the surface area of the largest pyramid that will fit inside the cube. Round if necessary.
Answer:
The surface area of the pyramid is 80.9 cm²
Step-by-step explanation:
The side length, s of the cube is given as 5 cm
Therefore, the largest pyramid that can fit into the cube will have a base side length, s = The side length of the cube = 5 cm
The height, h of the largest pyramid = The height of the cube = 5 cm.
The surface area of a pyramid = Area of base, A + 1/2 × Perimeter of base, P × Slant height, S
The slant height of the pyramid = √(h² + (s/2)²) = √(5² + (5/2)²) = (5/2)×√5
The perimeter of the base = 4×5 = 20 cm
The area of the base = 5×5 = 25 cm²
The surface area of a pyramid = 25 + 1/2×20×(5/2)×√5 = 80.9 cm².
The surface area of a pyramid = 80.9 cm².
Solve the following 2 + 8 ÷ 2 x 3
Answer:
14Step-by-step explanation:
Solution,
Use the BODMAS Rule:
B = Bracket
O = Of
D = Division
M= Multiplication
A = Addition
S = Subtraction
Now,
Let's solve,
[tex]2 + 8 \div 2 \times 3[/tex]
First we have to divide 8 by 2
[tex] = 2 + 4 \times 3[/tex]
Calculate the product
[tex] = 2 + 12[/tex]
Calculate the sum
[tex] = 14[/tex]
Hope this helps...
Good luck on your assignment..
Answer:
14
Step-by-step explanation:
2 + 8 ÷ 2 x 3 =
There is an addition, a division, and a multiplication. According to the correct order of operations, we do first the multiplications and divisions in the order they appear from left to right.
= 2 + 4 x 3
= 2 + 12
Now we do the addition.
= 14
what are the like terms??? 5x2+3x-10+7x2-8x+11 PLEASE HELP!!!! ASAP!!!!
Answer:
5x² and 7x² are like terms because they contain x².
3x and 8x are like terms because they contain x.
10 and 11 are like terms because they are constants.
Step-by-step explanation:
Let's recall that the definition of like terms is that they are terms that contain the same variables raised to the same power and only like terms can be combined.
Upon saying that, we have:
5x² and 7x² are like terms because they contain x²
3x and 8x are like terms because they contain x
10 and 11 are like terms because they are constants.
Write the number in standard notation. 4.16 × (10) ^–5
Answer:
.0000416
Step-by-step explanation:
Since 10 is squared by a negative number, the number (4.16) will be smaller. To find the answer, move the decimal 5 places to the left
Answer:
0.0000416.
Step-by-step explanation:
When 10 is raised to a negative power, that means that the decimal point will be moved to the left a certain number of units.
In this case, it is 10^-5, so the decimal point will move to the left by 5 units.
4.16 * 10^-5 = 000004.16 * 10^-5 = 0.0000416.
Hope this helps!
Mike ran 2 km in 13 minutes. If he continues at this same pace, how long will it take Mike to run 7 km? Round your answer to the nearest minute.
minutes
Answer:
46 minutes.
Step-by-step explanation:
2 km in 13 minutes would equal to 6 minutes and 30 seconds per km.
minutes: 6 x 7 = 42
seconds: 30 x 7 = 210
seconds pt 2: 210/60 = 3 minutes 30 seconds
adding altogether: 42 minutes + 3 minutes 30 seconds + 45 minutes 30 seconds, rounded would equal to 46 minutes
Bao can eat 12 chicken wings in 3 minutes.She eats the chicken wings at a constant rate how many chicken wings can bao eat in 12 minutes
Answer:
48 wings
Step-by-step explanation:
12:3 is the ratio. So multiply both of it by 4. Then it would be 48:12
Answer:
48 chicken wings
Step-by-step explanation:
If Bao can eat 12 chicken wings in 3 minutes and 12 minutes is 3 minutes times 4, then the answer would be 12 chicken wings times 4, so 12 times 4, which is 48, so the answer would be 48 chicken wings.
What is the value of this expression when a = 2 and b = -3?
5
Answer:
5 is the answer..
Step-by-step explanation:
simply by calculating
PLZ HELP ASAP!!! I WILL NAME BRAINLIEST!! 65 POINTS!! (:
Answer:
1. 44 + 3x
2. 2y - 8
3. x - 6
15. [tex]5\frac{7}{8}[/tex]
16. [tex]6\frac{1}{3}[/tex]
17. [tex]3\frac{7}{9}[/tex]
Step-by-step explanation:
1. 7² + 2² - 5 - 4 + 3x
49 + 4 - 5 - 4 + 3x
53 - 5 - 4 + 3x
48 - 4 + 3x
44 + 3x
2. - y - 5 + y + 2(2y-y) - 3
-y - 5 + y + 4y - 2y -3
-y - 5 + 5y - 2y - 3
4y - 2y - 5 - 3
2y - 8
3. 5x -3 - x - 3(x + 1²)
5x - 3 - x - 3x - 3
4x - 3x - 3 -3
x - 3 -3
x - 6
15. [tex]7\frac{1}{4} - 1\frac{3}{8}[/tex]
= [tex]7 \frac{2}{8} - 1\frac{3}{8}[/tex]
= [tex]\frac{58}{8} - \frac{11}{8}[/tex]
= [tex]\frac{47}{8}[/tex] → [tex]5\frac{7}{8}[/tex]
16. [tex]9 - 2\frac{2}{3}[/tex]
= [tex]\frac{54}{6} - 2\frac{4}{6}[/tex]
= [tex]\frac{54}{6} - \frac{16}{6}[/tex]
= [tex]\frac{38}{6}[/tex] → [tex]6\frac{2}{6}[/tex] → [tex]6\frac{1}{3}[/tex]
17. [tex]10\frac{1}{3} - 6\frac{5}{9}[/tex]
= [tex]10 \frac{3}{9} - 6\frac{5}{9}[/tex]
= [tex]\frac{93}{9} - \frac{59}{9}[/tex]
= [tex]\frac{34}{9}[/tex] → [tex]3\frac{7}{9}[/tex]
Hope this helps.
How much did Angelo pay for his online purchase
Answer:
Step-by-step explanation:
please include a picture of the question! :)
How many x-intercepts does the graph of y=2x^2-8x+15 have?
The graph of y=2x^2-8x+15 has no x-intercepts.
At 3:30 p.m., Berto’s train was 34 miles past the egg farm, traveling at an average speed of 85 miles per hour. At the same time on a nearby track, Eduardo’s train was traveling at an average speed of 110 miles per hour and had 12 miles to go before it reached the egg farm. To the nearest hundredth of an hour, after how much time will the trains meet up? 0.11 hours 0.25 hours 0.88 hours 1.84 hours green t-shirts
Answer:
Step-by-step explanation:
Berto’s train was 34 miles past the egg farm .
Eduardo’s train had 12 miles to go before it reached the egg farm.
Distance between two trains = 34 + 12 = 46 miles
This distance has to be reduced to zero for their crossing each other .
Rate at which this distance is reduced = their relative velocity
= 110 - 85
= 25 miles / h [ They are moving in the same direction ]
So, time taken for them to meet each other
= 46 / relative velocity
= 46 / 25
= 1.84 hours .
Answer:
The answer is D or 1.84 hours.
Step-by-step explanation:
I got 100% on this quiz.
Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions: 2ab-6a+5b+___ Please include an explanation too!
Answer:
[tex]2ab - 6a + 5b - 15[/tex]
Step-by-step explanation:
Given
[tex]2ab - 6a + 5b + \_[/tex]
Required
Fill in the gap to produce the product of linear expressions
[tex]2ab - 6a + 5b + \_[/tex]
Split to 2
[tex](2ab - 6a) + (5b + \_)[/tex]
Factorize the first bracket
[tex]2a(b - 3) + (5b + \_)[/tex]
Represent the _ with X
[tex]2a(b - 3) + (5b + X)[/tex]
Factorize the second bracket
[tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
To result in a linear expression, then the following condition must be satisfied;
[tex]b - 3 = b + \frac{X}{5}[/tex]
Subtract b from both sides
[tex]b - b- 3 = b - b+ \frac{X}{5}[/tex]
[tex]- 3 = \frac{X}{5}[/tex]
Multiply both sides by 5
[tex]- 3 * 5 = \frac{X}{5} * 5[/tex]
[tex]X = -15[/tex]
Substitute -15 for X in [tex]2a(b - 3) + 5(b + \frac{X}{5})[/tex]
[tex]2a(b - 3) + 5(b + \frac{-15}{5})[/tex]
[tex]2a(b - 3) + 5(b - \frac{15}{5})[/tex]
[tex]2a(b - 3) + 5(b - 3)[/tex]
[tex](2a + 5)(b - 3)[/tex]
The two linear expressions are [tex](2a+ 5)[/tex] and [tex](b - 3)[/tex]
Their product will result in [tex]2ab - 6a + 5b - 15[/tex]
Hence, the constant is -15
Help me to solve this problem ASAP please, also {} is incorrect.
Answer:
8/9
Step-by-step explanation:
2/3 + 1 / ( 2 2/5) - 1/x = 1/3 - 1 / ( 2 2/3)
Changing to improper fractions
2 2/5 = ((5*2+2) / 5 = 12/5
2 2/3 = ( 3*2+2) /3 = 8/3
2/3 + 1 / ( 12/5) - 1/x = 1/3 - 1 / ( 8/3)
1 over and improper fraction flips the improper fraction 1 / ( a/b) = b/a
2/3 + 5/12 - 1/x = 1/3 -3/8
Subtract 2/3 from each side
5/12 -1/x = 1/3 -2/3 -3/8
5/12 -1/x = -1/3 -3/8
Subtract 5/12 from each side
-1/x = -1/3 -3/8-5/12
Multiply each side by 24 to get rid of the fractions
-24/x = -24/3 -3*24/8 -5*24/12
-24/x = -8 -9 -10
-24/x = -27
Multiply each side by x
-24 = -27x
Divide by -27
-24/-27 =x
8/9 =x
a cord of a circle is a line segment connecting any point on the circle to the center of a circle. true or false?
Answer:
true if I'm wrong I'm so sorry:/
Katya has $20.00 to spend at her college bookstore, where all students receive a 20% discount . katya wants to purchase a copy of a book that normally sells for $22.50 plus 10% sales tax. how much dose the book sell for dose katya have enough money bc bc?
Answer:
here you go :)
Step-by-step explanation:
You would take 20% of $22.50 (22.5 multiplied by .2). You would get $4.50 off of the book with the discount. So you would subtract 4.5 from 22.5 and get $18. Then you would take 10% of $18 for the sales tax. (18 multiplied by .1). You would get $1.80 towards sales tax. you would then add $1.80 to $18 and get $19.80.
PLEASE ANSWER FAST.What is the probability that only girls bought lunches? 25% 41.6% 75% 50%
Answer:
The correct answer is 50.6195
Step-by-step explanation:
The probability that only girls bought lunches is given as D. 50%
How to solve
To find the probability that only girls bought lunches, we solve:
We can see that the total number of girls is 30 and the total number of both boys and girls is 60
So, to solve, it becomes:
30/60= 50%
Probability is a mathematical concept used to measure the likelihood of an event occurring, ranging from 0 (impossible) to 1 (certain), and is calculated using ratios, frequencies, or subjective judgments.
Read more about probability here:
https://brainly.com/question/23417919
#SPJ2
Solve by the quadratic formula: x^2= 6x-4
Answer:
3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Step-by-step explanation:
x^2 = 6x - 4
x^2 - 6x + 4 = 0
Now, we can use the quadratic formula to solve.
[tex]\frac{-b\pm\sqrt{b^2 - 4ac} }{2a}[/tex], where a = 1, b = -6, and c = 4.
[tex]\frac{-(-6)\pm\sqrt{(-6)^2 - 4 * 1 * 4} }{2 * 1}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 4 * 4} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{36 - 16} }{2}[/tex]
= [tex]\frac{6\pm\sqrt{20} }{2}[/tex]
= [tex]\frac{6\pm2\sqrt{5} }{2}[/tex]
= 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex]
x = 3 [tex]\pm[/tex] [tex]\sqrt{5}[/tex].
Hope this helps!
When deriving the quadratic formula by completing the square, what expression can be added to both sides of the equation to create a perfect square trinomial?
Answer:
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Step-by-step explanation:
Let consider a second-order polynomial of the form [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex], [tex]\forall \,x \in\mathbb{R}[/tex]. The procedure is presented below:
1) [tex]a\cdot x^{2} + b\cdot x + c = 0[/tex] (Given)
2) [tex]a\cdot x^{2} + b \cdot x = -c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
3) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x = -4\cdot a \cdot c[/tex] (Compatibility with multiplication)
4) [tex]4\cdot a^{2}\cdot x^{2} + 4\cdot a \cdot b \cdot x + b^{2} = b^{2}-4\cdot a \cdot c[/tex] (Compatibility with addition/Existence of additive inverse/Modulative property)
5) [tex](2\cdot a \cdot x + b)^{2} = b^{2}-4\cdot a \cdot c[/tex] (Perfect square trinomial)
According to steps 2 and 4. The second-order polynomial must be added by [tex]-c[/tex] and [tex]b^{2}[/tex] to create a perfect square trinomial.
Answer: D
Step-by-step explanation:
EDGE 2023