Answer:
[tex]m=0.395mol/kg[/tex]
Explanation:
Hello,
This is a problem about boiling point elevation which is modeled via:
[tex]\Delta T=i*m*Kb[/tex]
Whereas for this solvent (nonpolar, nonionizing), the van't Hoff factor is one. In such a way, the molality of the solute is simply computed as shown below:
[tex]m=\frac{\Delta T}{Kb}=\frac{(81.10-80.10)\°C}{2.53\°C/m} \\\\m=0.395mol/kg[/tex]
In this manner, we can also compute the molar mass of the solute by noticing 20.0 g (0.020 kg) of benzene were used:
[tex]n=0.395mol/kg*0.020kg=7.9x10^{-3} mol[/tex]
And considering the 2.15 g of the solute:
[tex]Molar\ mass=\frac{2.15g}{7.9x10^{-3}mol}\\ \\Molar\ mass=271.975g/mol[/tex]
Best regards.
Diluting sulfuric acid with water is highly exothermic:
(Use data from the Appendix to find for diluting 1.00 mol of H2SO4(l) (d = 1.83 g/mL) to 1 L of 1.00 MH2SO4(aq) (d = 1.060 g/mL). )
Suppose you carry out the dilution in a calorimeter. The initial T is 25.2°C, and the specific heat capacity of the final solution is 3.458 J/gK. What is the final T in °C ?
Answer:
The correct answer is 51.2 degree C.
Explanation:
The standard enthalpy for H₂SO₄ (l) is -814 kJ/mole and the standard enthalpy for H₂SO₄ (aq) is -909.3 kJ/mole.
Now the dHreaction = dHf (product) - dHf (reactant)
= -909.3 - (-814)
dHreaction or q = -95.3 kJ of energy will be used for dissociating one mole of H₂SO₄.
The heat change in calorimetry can be determined by using the formula,
q = mass * specific heat capacity * change in temperature -----------(i)
Based on the given information, the density of H₂SO₄ is 1.060 g/ml
The volume of H₂SO₄ is 1 Liter
Therefore, the mass of H₂SO₄ will be, density/Volume = 1.060 g/ml / 1 × 10⁻³ ml = 1060 grams
The initial temperature given is 25.2 degrees C, or 273+25.2 = 298.2 K, let us consider the final temperature to be T₂.
ΔT = T₂ -T₁ = T₂ - 298.2 K
Now putting the values in equation (i) we get,
95.3 kJ = 1060 grams × 3.458 j/gK (T₂ - 298.2 K) (the specific heat capacity of the final solution is 3.458 J/gK)
(T₂ - 298.2 K) = 95300 J / 1060 × 3.458 = 26 K
T₂ = 298.2 K + 26 K
T₂ = 324.2 K or 324.2 - 273 = 51.2 degree C.
18. Sucralose contains which two functional groups: (2 points)
A) benzene
B) halogen
C) carboxyl
D) hydroxy!
Answer:
The correct answer is option B and D, that is, halogen (chlorine) and hydroxyl.
Explanation:
An artificial sweetener and sugar substitute is sucralose. It is noncaloric as the majority of the sucralose ingested does not get dissociated within the body. The generation of sucralose takes place by the chlorination of sucrose. It is about 300 to 1000 times sweeter in comparison to sucrose.
The consumption of sucralose is safe for both nondiabetics and diabetics, it is used in various food and beverage components due to non-caloric sweetener characteristics. It does not affect the levels of insulin and does not affect dental health. As it is produced by chlorination of sucrose, thus, the functional groups present in it are a halogen (chlorine) and a hydroxyl.
If a gas is initially at a pressure of nine ATM and a volume at 21 L at a temperature of 253K and the pressure is raise to 15 ATM and the temperature is raised to 302K what will be the resulting volume of the gas
Answer:
15.0L
Explanation:
p/v = constan
(9*21)/253 =(15v)/ 302
v = (9*21*302)/(15*253)
v=15.0
A chemistry student weighs out of lactic acid into a volumetric flask and dilutes to the mark with distilled water. He plans to titrate the acid with solution. Calculate the volume of solution the student will need to add to reach the equivalence point. Round your answer to significant digits
Answer:
28.0mL of the 0.0500M NaOH solution
Explanation:
0.126g of lactic acid diluted to 250mL. Titrated with 0.0500M NaOH solution.
The reaction of lactic acid, H₃C-CH(OH)-COOH (Molar mass: 90.08g/mol) with NaOH is:
H₃C-CH(OH)-COOH + NaOH → H₃C-CH(OH)-COO⁻ + Na⁺ + H₂O
Where 1 mole of the acid reacts per mole of the base.
You must know the student will reach equivalence point when moles of lactic acid = moles NaOH.
the student will titrate the 0.126g of H₃C-CH(OH)-COOH. In moles (Using molar mass) are:
0.126g ₓ (1mol / 90.08g) = 1.40x10⁻³ moles of H₃C-CH(OH)-COOH
To reach equivalence point, the student must add 1.40x10⁻³ moles of NaOH. These moles comes from:
1.40x10⁻³ moles of NaOH ₓ (1L / 0.0500moles NaOH) = 0.0280L of the 0.0500M NaOH =
28.0mL of the 0.0500M NaOH solutionA four carbon chain; the second carbon is also single bonded to CH3. Spell out the full name of the compound
Answer:
This description shows a methyl group.
Explanation:
1. Rank the following compounds in order of decreasing acid strength using periodic trends. Rank the acids from strongest to weakest.
A. HCl
B. H2S
C. HBr
D. BH3
2. Without consulting the table of acid-dissociation constants, match the following acids to the given Ka1 values.
1. H2S
2. H2SO3
3. H2SO4
A. Kal = 1.7 x 10^-7
B. Kal = 1.7 x 10^-2
C. Kal = very large
Answer:
ESCALAS MAYORES (D, E, G, A, B) Porfavor necesito ayuda,te lo agradecería muchísimo!!
Es urgente
1)The average lethal dose of Valium is 1.52 mg/kg of body weight. Estimate how many grams of Valium would be lethal for a 200.-lb woman. Show all your calculations. (1lb = 453.6 g)
2) A patient in hospital is receiving the antibiotic amoxcillin IV at the rate of 50. mL/h. The IV contains 1.5 g of the antibiotic in 1000. mL. (IV stands for intravenous). Calculate the mg/min of the drip. Show all your calculations
Answer:
1. 0.138g of valium would be lethel in the woman
2. 125mg/min is the drip of the patient
Explanation:
1. In a body, an amount of Valium > 1.52mg / kg of body weight would be lethal.
A person that weighs 200lb requires:
200lb × (453.6g / 1lb) × (1kg / 1000g) = 90.72kg (Weight of the woman in kg)
90.72kg × (1.52mg / kg) =
137.9mg ≡
0.138g of valium would be lethel in the woman2. The IV contains 1.5g = 1500mg/mL.
If the patient is receiving 5.0mL/h, its rate in mg/h is:
5.0mL/h × (1500mg/mL) = 7500mg/h
Now as 1h = 60min:
7500mg/h × (1h / 60min) =
125mg/min is the drip of the patientConsider the reaction 2N2(g) O2(g)2N2O(g) Using the standard thermodynamic data in the tables linked above, calculate Grxn for this reaction at 298.15K if the pressure of each gas is 22.20 mm Hg.
Answer:
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
ΔG ≅ 199.91 kJ
Explanation:
Consider the reaction:
[tex]2N_{2(g)} + O_{2(g)} \to 2N_2O_{(g)}[/tex]
temperature = 298.15K
pressure = 22.20 mmHg
From, The standard Thermodynamic Tables; the following data were obtained
[tex]\Delta G_f^0 \ \ \ N_2O_{(g)} = 103 .8 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ N_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ O_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times \Delta G_f^0 \ N_2O_{(g)} - ( 2 \times \Delta G_f^0 \ N_2{(g)} + \Delta G_f^0 \ O_{2(g)})[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times 103.8 \ kJ/mol - ( 2 \times 0 + 0)[/tex]
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
The equilibrium constant determined from the partial pressure denoted as [tex]K_p[/tex] can be expressed as :
[tex]K_p = \dfrac{(22.20)^2}{(22.20)^2 \times (22.20)}[/tex]
[tex]K_p = \dfrac{1}{ (22.20)}[/tex]
[tex]K_p[/tex] = 0.045
[tex]\Delta G = \Delta G^0 _{rxn} + RT \ lnK[/tex]
where;
R = gas constant = 8.314 × 10⁻³ kJ
[tex]\Delta G =207.6 + 8.314 \times 10 ^{-3} \times 298.15 \ ln(0.045)[/tex]
[tex]\Delta G =207.6 + 2.4788191 \times \ ln(0.045)[/tex]
[tex]\Delta G =207.6+ (-7.687048037)[/tex]
[tex]\Delta G =[/tex] 199.912952 kJ
ΔG ≅ 199.91 kJ
This pluton occurs deep in Earth and does not cause any changes to the surface of Earth . True or False
Answer:
The given statement is false.
Explanation:
However, if the pluton exists beneath the ground, this could be conveniently shown in the illustration something from the peak such pluton appears convex in form resembling a lopolith and perhaps diapir, which would be a particular form of statistically significant pluton recognized as the sill.Mostly from the figure it could also be shown that subsurface sheets are lined or curved, throughout the pluton mold. And therefore it is inferred that such a pluton creates adjustment to something like the ground atmosphere by altering the form of the levels above it.So that the given is incorrect.
We wear cotton clothes in summer.
Answer:
we wear cotton clothes because it helps to cool us down and remove the excess heat that causes us to feel hot.
Answer:
[tex]\boxed{\mathrm{view \: explanation}}[/tex]
Explanation:
We wear cotton clothes in the summer beacuse cotton absorbs and removes body moisture caused by the sweat and allows better air circulation than fabric clothes.
6. Potassium hydrogen phthalate (KHP, KHC8H4O4) is also a good primary standard. 20 mL of NaOH was titrated with 0.600 M KHC8H4O4 solution. The data was graphed and the equivalence point was found when 15.5 mL of the standard 0.600 M KHP solution was added. The reaction equation is: a. What is the molar ratio of NaOH:KHC8H4O4? b. What is the molarity of the NaOH solution?
Answer:
a. 1
b. 0.465M NaOH
Explanation:
KHP reacts with NaOH as follows:
KHP + NaOH → KP⁻ + Na⁺ + H₂O
a. Molar ratio represents how many moles of NaOH reacts per mole of KHP. As you can see in the reaction, 1 mole of NaOH reacts with 1 mole of KHP. Molar ratio is:
1/1 = 1
b. With volume and molar concentration of the KHP solution you can find how many moles of KHP were added until equivalence point, thus:
15.5mL = 0.0155L ₓ (0.600 moles KHP / L) = 0.0093 moles of KHP
In equivalence point, moles of NaOH = Moles KHP. That means moles of NaOH titrated are 0.0093 moles NaOH.
The volume of the NaOH solution was 20mL = 0.020L. Molarity of the solution is:
0.0093 moles NaOH / 0.020L =
0.465M NaOHa. The balanced equation shows a 1:1 molar ratio between NaOH and KHC₈H₄O₄. This means that for every 1 mole of NaOH, we require 1 mole of KHC₈H₄O₄. Therefore, the molar ratio of NaOH:KHC₈H₄O₄ is 1:1.
The balanced equation for the reaction:
NaOH + KHC₈H₄O₄ → NaKC₈H₄O₄ + H₂O
b. Molarity of KHP solution × volume of KHP solution = Molarity of NaOH solution × volume of NaOH solution at the equivalence point
Molarity of KHP solution = 0.600 M
Volume of KHP solution = 15.5 mL = 0.0155 L
Volume of NaOH solution at the equivalence point = 20 mL = 0.0200 L
Molarity of NaOH solution = (Molarity of KHP solution × volume of KHP solution) / volume of NaOH solution at the equivalence point
Molarity of NaOH solution = (0.600 M × 0.0155 L) / 0.0200 L
Molarity of NaOH solution ≈ 0.465 M
To learn more about the balanced equation, follow the link:
https://brainly.com/question/12192253?referrer=searchResults
#SPJ6
Consider a triangle ABC like the one below. Suppose that C=83°, a = 43, and b = 44. Solve the triangle.
Carry your intermediate computations to at least four decimal places, and round your answers to the nearest tenth.
If there is more than one solution, use the button labeled "or".
Answer:
Explanation:
In a triangle
a / sin A = b / sinB = c / sinC
Putting the values
43 / sin A = 44 / sinB
sinA / sinB = 43 / 44 = 1 / 1.023
A + B = 180 - 83 = 97
sinA / sin ( 97 - A ) = 1 / 1.023
sin 97 cos A - cos 97 sin A = 1.023 sin A
= .9925 cos A + .122 sin A = 1.023 sin A
.9925 cos A = .901 sin A
squaring
.985 cos²A = .8118 sin²A
.985 - .985 sin²A = .8118 sin²A
.985 = 1.7968 sin²A
sinA = .74
A = 47.73
B = 49.27
c / sin C = b / sin B
c = b sinC / sinB
= 44 x sin 83 / sin 49.27
= 44 x .9925 / .7578
= 57.62
What is the percent yield for a chemical reaction if the actual yield is 36 g and the theorical yield is 45 g.
Answer:
⇒ Percent yield = 80 %
Explanation:
Given:
Actual yield = 36 g
Theoretical yield = 45 g
Find:
Percent yield
Computation:
⇒ Percent yield = [Actual yield / Theoretical yield] 100%
⇒ Percent yield = [36 / 45] 100%
⇒ Percent yield =[0.8] 100%
⇒ Percent yield = 80 %
A 40.80 gram sample of copper is heated in the presence of excess sulfur. A metal sulfide is formed with a mass of 51.09 g. Determine the empirical formula of the metal sulfide.
Answer:
Cu₂S
Explanation:
From the question,
Cu S
Mass: 40.80 g 51.09-40.80 = 10.29 g
Mole ratio: 40.80/63.5 10.29/32.1
0.64 : 0.32
Divide by the smallest,
0.64/0.32 : 0.32/0.32
2 : 1
Therefore,
Empirical formula = Cu₂S.
What is the name of this molecule?
Answer:
[tex]\boxed{Butyne}[/tex]
Explanation:
Triple Bonds => So it is an alkyne
The suffix used will be "-yne"
4 Carbons => The prefix used will be "But-"
Combining the prefix and suffix, we get:
=> Butyne
Answer:
[tex]\boxed{\mathrm{Butyne}}[/tex]
Explanation:
Alkynes have triple bonds ≡. The molecule has one triple bond.
Suffix ⇒ yne
The molecule has 4 carbon atoms and 6 hydrogen atoms.
Prefix ⇒ But (4 carbons)
The molecule is Butyne.
[tex]\mathrm{C_4H_6}[/tex]
Fructose-2,6-bisphosphate is a regulator of both glycolysis and gluconeogenesis for the phosphofructokinase reaction of glycolysis and the fructose-1,6-bisphosphatase reaction of gluconeogenesis. In turn, the concentration of fructose-2,6-bisphosphate is regulated by many hormones, second messengers, and enzymes.
How do the following affect glycolysis and gluconeogenesis?
Activate glycolysis Inhibit gluconeogenesis Activate gluconeogenesis Inhibit glycolysis
1. increased levels of fructose-2,6-bisphosphatase
2. activation of fructose-2,6-bisphosphate (FBPase-2)
3. increased glucagon levels
4. activation of PFK-2
5. increased levels of CAMP
Answer:
1. Increased levels of fructose-2,6-bisphosphatase : Activate gluconeogenesis Inhibit glycolysis
2. Activation of fructose-2,6-bisphosphate (FBPase-2) : Activate glycolysis Inhibit gluconeogenesis
3. Increased glucagon levels : Activate gluconeogenesis Inhibit glycolysis
4. Activation of PFK-2 : Activate glycolysis Inhibit gluconeogenesis
5. Increased levels of CAMP : Activate gluconeogenesis Inhibit glycolysis
Explanation:
Glycolysis is the breakdown of glucose molecules in order to release energy in the form of ATP in response to the energy needs of the cells of an organism.
Gluconeogenesis is the process by which cells make glucose from other molecules for other metabolic needs of the cell other than energy production.
Glycolysis and gluconeogenesis are metabolically regulated in the cell by various enzymes and molecules.
The following shows the various regulatory methods and their effects on both processes:
1. The enzyme fructose-2,6-bisphosphatase functions in the regulation of both processes. It catalyzes the breakdown of the molecule fructose-2,6-bisphosphate which is an allosteric effector of two enzymes phosphofructokinasse-1, PFK-1 and fructose-1,6-bisphosphatase, FBPase-1 which fuction in glycolysis and gluconeogenesis respectively.
Increased levels of fructose-2,6-bisphosphatase activates gluconeogenesis and inhibits glycolysis by its breakdown of fructose-2,6-bisphosphate.
2. Fructose-2,6-bisphosphate increases the activity of PFK-1 and inhibits the the activity of FBPase-1. The effect is that glycolysis is activated while gluconeogenesis is inhibited.
3. Glucagon is a hormone that stimulates the synthesis of cAMP. It fuctions to activate gluconeogenesis and inhibit glycolysis.
4. Phosphosfructikinase-2, PFK-2 is an enzyme that catalyzes the formation of fructose-2,6-bisphosphate. Activation of PFK-2 results the activation of glycolysis and inhibition of gluconeogenesis.
5. Cyclic-AMP (cAMP) synthesis in response to glucagon release serves to activate a cAMP-dependent protein kinase which phosphorylates the bifunctional protein PFK-2/FBPase-2. This phosphorylation enhances the activity of FBPase-2 while inhibiting the activity of PFK-2, resulting in the activation of gluconeogenesis and inhibition of glycolysis.
What does the period number tell about the energy levels occupied by
electrons in an atom?
A. The period number tells how many electrons are in the highest
energy level of the atom.
B. The period number tells which is the highest energy level occupied
by the electrons.
C. The period number tells how many electrons are in each sublevel
of the atom.
D. The period number tells how many energy sublevels are occupied
in the atom.
Answer: B. The period number tells which is the highest energy level occupied by the electrons
Explanation:
The period number ( denoted by 'n' ) is the outer energy level that is occupied by electrons in an atom. The period number that an element is in, is the number of energy levels that the element has.When we move across a period from left to right in a periodic table the number of electrons in atoms increases within the same orbit.Thus, we can say that the period number tells which is the highest energy level occupied by the electrons in an atom.
hence, the correct option is B. The period number tells which is the highest energy level occupied by the electrons.
The period number tell about the energy levels occupied by electrons in an atom B. The period number tells which is the highest energy level occupied by the electrons. option B , second option is correct.
What are energy levels ?The fixed distances from an atom's nucleus where electrons may be found are referred to as energy levels (also known as electron shells). Higher energy electrons have greater energy as you move out from the nucleus. A region of space within an energy level known as an orbital is where an electron is most likely to be found.
When a quantum mechanical system or particle is bound, or spatially constrained, it can only take on specific discrete energy values, or energy levels. Classical particles, on the other hand, can have any energy level.
Therefore, option B , second option is correct.
Learn more about energy levels at;
https://brainly.com/question/20561440
#SPJ6
An aqueous solution is 40.0 % by mass hydrochloric acid, HCl, and has a density of 1.20 g/mL. The mole fraction of hydrochloric acid in the solution is
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
Molar concentration = mass of HCl/ molar mass of HCl
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
The mass of HCl Present is 40% of 1.2 = 0.48 g.
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3
A. Identify the structure drawn below.
Answer:
Hexane
Explanation:
You have a carbon structure with only single bonds. This means that the name will end in -ane.
There are 6 carbon atoms. This means that the name will begin with hex-.
The structure is hexane.
A hot lump of 27.4 g of aluminum at an initial temperature of 69.5 °C is placed in 50.0 mL H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water, given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.
Answer:
[tex]\large \boxed{29.7 \,^{\circ}\text{C}}[/tex]
Explanation:
There are two heat transfers involved: the heat lost by the aluminium and the heat gained by the water.
According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.
Let the Al be Component 1 and the H₂O be Component 2.
Data:
For the Al:
[tex]m_{1} =\text{27.4 g; }T_{i} = 69.5 ^{\circ}\text{C; }\\C_{1} = 0.903 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
For the water:
[tex]m_{2} =\text{50.0 g; }T_{i} = 25.0 ^{\circ}\text{C; }\\C_{2} = 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
Calculations
(a) The relative temperature changes
[tex]\begin{array}{rcl}\text{Heat lost by Al + heat gained by water} & = & 0\\m_{1}C_{1}\Delta T_{1} + m_{2}C_{2}\Delta T_{2} & = & 0\\\text{27.4 g}\times 0.903 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times\Delta T_{1} + \text{50.0 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}\Delta \times T_{2} & = & 0\\24.74\Delta T_{1} + 209.2\Delta T_{2} & = & 0\\\end{array}[/tex]
(b) Final temperature
[tex]\Delta T_{1} = T_{\text{f}} - 69.5 ^{\circ}\text{C}\\\Delta T_{2} = T_{\text{f}} - 25.0 ^{\circ}\text{C}[/tex]
[tex]\begin{array}{rcl}24.74(T_{\text{f}} - 69.5 \, ^{\circ}\text{C}) + 209.2(T_{\text{f}} - 25.0 \, ^{\circ}\text{C}) & = & 0\\24.74T_{\text{f}} - 1719 \, ^{\circ}\text{C} + 209.2T_{\text{f}} -5230 \, ^{\circ}\text{C} & = & 0\\233.9T_{\text{f}} - 6949\, ^{\circ}\text{C} & = & 0\\233.9T_{\text{f}} & = & 6949 \, ^{\circ}\text{C}\\T_{\text{f}}& = & \mathbf{29.7 \, ^{\circ}}\textbf{C}\\\end{array}\\\text{The final temperature is $\large \boxed{\mathbf{29.7 \,^{\circ}}\textbf{C}}$}[/tex]
Check:
[tex]\begin{array}{rcl}27.4 \times 0.903 \times (29.7 - 69.5) + 50.0 \times 4.184 (29.7 - 25.0)& = & 0\\24.74(-39.8) +209.2(4.7) & = & 0\\-984.6 +983.2 & = & 0\\-985 +983 & = & 0\\0&=&0\end{array}[/tex]
The second term has only two significant figures because ΔT₂ has only two.
It agrees to two significant figures
Which of the following statements about water is not true?
Answer:
Water has a low specific heat capacity and so large bodies of water moderate temperatures on Earth.
Explanation:
Water has a very high specific heat capacity, meaning that it has to absorb a lot of energy to raise the temperature by one degree. Because water has a high specific heat capacity, large bodies of water can moderate the temperature of nearby land.
Hope this helps.
Write electron configurations for the following ion: Cd2 Cd2 . Express your answer in order of increasing orbital energy. For example, the electron configuration of LiLi would be entered in complete form as 1s^22s^1 or in condensed form as [He]2s^1.
Answer:
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Explanation:
Before proceeding to write out the electron configuration of Cd2+, we have to obtain the electron configuration of Cadmium (Cd),
Cadmium has an atomic number of 48, this means that a neutral cadmium atom will have a total of 48 electrons surrounding its nucleus.
The electronic configuration of Cadmium is;
Cd: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10
The shorthand notation is given as;
Cd: [Kr] 4d¹⁰5s²
Cd2+ means that it has two less electrons, hence it's electron configuration is given as;
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Which accurately describes one impact of the atmosphere on Earth’s cycles?
Answer:
Produces Wind Currents
Explanation:
Answer:
produces wind currents
Explanation:
i just took the test and got it right :}
A gas mixture containing N2 and O2 was kept inside a 2.00 L container at a temperature of 23.0°C and a total pressure of 1.00 ATM the partial pressure of oxygen was 0.722 ATM how many grams of nitrogen are present in the gas mixture
Answer:
0.641 g of Nitrogen are present in the mixture.
Explanation:
We use the Ideal Gases Law, to solve this question.
For the mixture:
P mixture . V mixture = mol mixture . R . T
We convert the T° to K → 23°C + 273 = 296 K
R = Ideal gases constant → 0.082 L.atm/mol.K
1 atm . 2L = mol mixture . 0.082 L.atm/mol.K . 296K
2 atm.L / ( 0.082 mol /L.atm) . 296 = 0.0824 moles
We know that sum of partial pressure = 1
Partial pressure N₂ + Partial pressure O₂ = 1
1 - 0.722 atm = Partial pressure N₂ → 0.278 atm
We apply the mole fraction concept:
Partial pressure N₂ / Total pressure = Moles N₂ / Total moles
Moles N₂ = (Partial pressure N₂ / Total pressure) . Total moles
Moles N₂ = (0.278 atm / 1 atm) . 0.0824 mol → 0.0229 moles
We convert the moles to mass → 0.0229 mol . 28 g/mol = 0.641 g
641 mg
Which of the following elements is in the same family as fluorine?
a. silicon
b. antimony
O c. iodine
O d. arsenic
e. None of these.
Answer:
c iodine
Explanation:
fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride
A general chemistry student found a chunk of metal in the basement of a friend's house. To figure out what it was, she tried the following experiment. First she measured the mass of the metal to be 385.8 grams. Then she dropped the metal into a measuring cup and found that it displaced 17.8 mL of water. Calculate the density of the metal. Density = _______ g/mL Use the table below to decide the identity of the metal. This metal is most likely _________.
substances density g/cm3
water 1.00
aluminium 2.72
chromium 7.25
nickel 8.91
silver 10.50
lead 11.34
1. 21.67g/ml
2. aluminium
Explanation:
1. density = mass/volume
385.8/17.8= 21.67ml
2. 1g/ml=0.1g/cm^3
21.67g/ml = 2.167g/cm^3
..... substance is probably aluminium
1. the density of the metal is 21.67g/ml
2. This metal is most likely aluminum
The calculation is as follows;
1.
[tex]density = mass \div volume[/tex]
[tex]385.8\div 17.8= 21.67ml[/tex]
2.
1g/ml=0.1g/cm^3
So,
21.67g/ml = 2.167g/cm^3
Therefore, substance is probably aluminum
Learn more: https://brainly.com/question/17429689?referrer=searchResults
identify the correct acid/conjugate base pair in this equation:
NaHCO3 + H20 = + H2CO3 + OH
+ Na
H20 is an acid and H2CO3 is its conjugate base.
HCO3 is an acid and OH is its conjugate base.
H20 is an acid and HCO3 is its conjugate base.
H20 is an acid and OH is its conjugate base.
Answer:
H20 is an acid and OH is its conjugate base.
Explanation:
Chemical reactions involving acids and bases occur. An acid is a substance that dissociates in water i.e. lose an hydrogen ion/proton. According to the Bronsted-Lowry acid-base theory, when an acid dissociates in water and loses its hydrogen ion, the resulting substance that forms is the CONJUGATE BASE. A conjugate base is the compound formed as a result of the removal of an H+ ion from an acid.
Based on the chemical reaction in the question, NaHCO3 + H20 = H2CO3 + OH- + Na+
The H20 loses its hydrogen ion (H+) to form an anion OH-. This anion formed is the conjugate base while H20 is its acid.
Given that Ag-107 (51.839% abundance) and the mass ratio: Ag-109/Ag-107=1.0187.
Calculate the mass of Ag-107. (Atomic mass of Ag = 107.87 amu)
Answer:
Atomic mass of Ag-107 = 106.94 amu
Explanation:
Let the mass of Ag-107 be y
Since the mass ratio of Ag-109/Ag-107 is 1.0187, the mass of Ag-109 is 1.0187 times heavier than the mass of Ag-107
Mass of Ag-109 = 1.0187y
Relative atomic mass of Ag = sum of (mass of each isotope * abundance)
Relative atomic mass of Ag = 107.87
Abundance of Ag-107 = 51.839% = 0.51839
Abundance of Ag-109 = 41.161% = 0.48161
107.87 = (y * 0.51839) + (1.018y * 0.48161)
107.87 = 0.51838y + 0.49027898y
107.87 = 1.00865898y
y = 107.87/1.00865898
y = 106.94 amu
Therefore, atomic mass of Ag-107 = 106.94 amu
Which is the electron configuration for bromine?
Answer:
The answer below would be written in a straight line from left to right but I wrote it as a list to make it easier to read.
Explanation:
1s^2
2s^2
2p^6
3s^2
3p^6
4s^2
3d^10
4p^5
Calculate the standard enthalpy change for the reaction at 25 ∘ C. Standard enthalpy of formation values can be found in this list of thermodynamic properties.HCl(g)+NaOH(s)⟶NaCl(s)+H2O(l)
Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ