Answer:
Step-by-step explanation:
Find the vertical asymptote of f(x)=2x^2+3x+6/x^2-1 I'm having trouble with this one, seems simple tho I just don't want to make a stupid mistake,,, And here are the choices:
Answer:
x = - 1, x = 1
Step-by-step explanation:
Given
f(x) = [tex]\frac{2x^2+3x+6}{x^2-1}[/tex]
The denominator cannot be zero as this would make f(x) undefined.
Equating the denominator to zero and solving gives the values that x cannot be and if the numerator is non zero for these values then they are vertical asymptotes.
x² - 1 = 0 ← difference of squares
(x - 1)(x + 1) = 0
x - 1 = 0 ⇒ x = 1
x + 1 = 0 ⇒ x = - 1
x = - 1 and x = 1 are vertical asymptotes
PLEASE HELP NOW WILL MARK BRAINLEST FOR CORRECT ANSWER A Brazilian town near the Amazon River has experienced 7% annual decrease in size of rainforest as trees are cut down and forest is converted to farmland. In the year 2009, there were about 28,000 acres of rainforest in town. a. Write an exponential model that relates the number of acres of rainforest y as a function of t years since 2009. b. How many acres of rainforest remained in 2013 (that is, in year 4)? Show work.
Answer:
a. y = 28,000×(1 - 0.07)^t
b. 20,945.46 acres
Step-by-step explanation:
a. The annual percentage decrease in in size of rainforest = 7%
The size of the rainforest in 2009 = 28,000 acres
The exponential decay formula is y = C×(1 - r)^t
Where:
y = Final Amount
C = Initial amount = 28,000 acres
r = Rate of Change = 0.07
t = Time
Which gives;
y = 28,000×(1 - 0.07)^t
b. In 2013 (year 4, t = 4), the amount of rainforest remaining is therefore;
y = 28,000×(1 - 0.07)^(4) = 28,000×0.93^4 = 20,945.46 acres
The size of the rainforest that remained in 2013 is 20,945.46 acres.
Answer:
20(-3)
Step-by-step explanation:
Examine the graph and the map.
On the left, a bar graph titled Deforestation Trend in the Amazon Rainforest. The x-axis is labeled Acres in kilometers squared of Rainforest Lost. The y-axis is labeled Year from 2004 to 2016. 2004 lost 27,772 acres. 2005 lost 19,014 acres. 2010 lost 7,000 acres. 2012 lost 4.571 acres. 2016 lost 7,989 acres. On the right, a map titled Deforestation of the Amazon Rainforest by 2016. The Amazon River is labeled. A key notes deforestation by 2016, amazon forest in 2016, and non-forest vegetation. Labeled clockwise are Roraima, Amapá, Maranhäo, Pará, Tocantins, Mato Grosso, Rondônia, Acre, and Amazonas. Acre, Amazonas, Roraima, Amapá, Maranhäo, Mato Grosso and Rondônia are deforested by 2016. Pará, Maranhäo, Tocantins, Mato Grosso, and Rondônia have the Amazon forest in 2016. Mato Grosso, Tocantins and Maranhäo have majority of non-forest vegetation.
Which is the best conclusion about the Amazon rainforest that can be drawn from these sources?
Deforestation in the Amazon has accelerated since 2004.
Deforestation in the Amazon is no longer an important issue.
Despite population growth, the Amazon rainforest is increasing in size.
Despite positive trends, the Amazon rainforest remains in danger of destruction.
Select the correct answer.
This table defines a function.
Х
13
16
7
21
10
30
y
39
48
Which table represents the inverse of the function defined above?
Answer:
B.
Step-by-step explanation:
To get the inverse of the function defined by the table given, all you need to do is to interchange the coordinate pairs.
That is, the coordinates pair on a table that defines a function is usually given as (x, y). The inverse of the function would be (y, x).
The following are the coordinate pairs given and the inverse of the function represented:
(x, y) => inverse = (y, x)
(7, 21) => inverse = (21, 7)
(10, 30) => inverse = (30, 10)
(13, 39) => inverse = (39, 13)
(16, 48) => inverse = (48, 16)
The table that represents the inverse of the function given in the question is option B
The incorrect work of a student to solve an equation 2(y + 4) = 4y is shown below: Step 1: 2(y + 4) = 4y Step 2: 2y + 6 = 4y Step 3: 2y = 6 Step 4: y = 3 Which of the following explains how to correct Step 2 and shows the correct value of y? The equation should be y + 4 = 4y after division by 2; y = 5 The equation should be y + 4 = 4y after division by 2; y = 2 2 should be distributed as 2y + 8; y = 4 2 should be distributed as 2y + 8; y = 2
Answer:
2 should be distributed as 2y + 8; y = 4
Step-by-step explanation:
Step 2 is wrong.
2(y + 4) = 4y
The step to solve is to expand brackets or distribute 2, not divide both sides by 2.
2y + 8 = 4y
Subtract both sides by 2y.
8 = 2y
Divide both sides by 2.
4 = y
Find the perimeter of the shaded figure. Please help,thanks!
Answer:
I believe its 40
Step-by-step explanation:
Answer:
Hey there!
The perimeter can be expressed as 10+7+2+2+6+2+2+7, or 38.
Hope this helps :)
Is y = 75 x + 52 increasing or decreasing.
Answer:
Increasing if X is positive decreasnig if X is negative
Step-by-step explanation:
Answer:
increasing
Step-by-step explanation:
positive slope of 75 so line goes up to the right
Usando uma régua informe as medidas de um dos seus cômodos ( banheiro) abaixo:
COMPRIMENTO: 2,30 METROS LARGURA: 1,46 METROS
Determine a área desse cômodo
Temos ai um retangulo. Para usa area, basta multiplicar a medidas - que no caso sao 2,3m e 1,46m
Area Comodo = 2,3 x 1,46
Area Comodo = 3,358m²find the value of x in the triangle shown below
Answer:
46°
Step-by-step explanation:
We can tell that this triangle is an isosceles triangle because 2 of it's sides are the same, therefore, two of it's angles are the same.
Looking at it, we can assume that the two angles not defined (x and the other one) are the two angles that are the same because they look similar.
Now, the angles of all triangles add up to 180°. So, we can subtract 88° from 180 to see what the two angles add up to.
[tex]180-88=92[/tex]
So both of these angles add up to 92 degrees. Since there are two, we divide 92 by 2.
[tex]92 \div 2 = 46[/tex]
Hope this helped!
Help please!! Thank you
Answer:
25 ( A)
pls mark me as BRAINLIEST
stay at home stay safe
and keep rocking
Answer:
A
Step-by-step explanation:
The first ten primes are
2,3,5,7,11,13,17,19,23,27
so the number is
2*3*5*7*11*13*17*23*27
so
2*11 is 22, so 22 divides the number
2*3 is 6, so 6 divides the number
2 is there so 2 divides the number
So the only one is 25.
What is the 4th tearm to this?
b(n)=4−6(n−1)
Answer:
If you wish to find any term (also known as the {n^{th}}n
th
term) in the arithmetic sequence, the arithmetic sequence formula should help you to do so. The critical step is to be able to identify or extract known values from the problem that will eventually be substituted into the formula itself.
Step-by-step explanation:
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Answer:
4x-2
Step-by-step explanation:
4x(3x+5)-2(3x+5)
(4x-2)(3x+5)
you can see that 4x-2 is a factor
Express 429 as a product of its prime factors
Answer:
The answer is 429 = 3×11×13.
Step-by-step explanation:
You have to divide by prime number :
429 ÷ 3 = 143
143 ÷ 11 = 13
13 ÷ 13 = 1
Answer:
3×11×13
Step-by-step explanation:
Start dividing by prime numbers. Since the number is even two won't work so next is three. If you divide 429 by 3 you get 143. You continue doing this with primes going up (5, 7, 11, 13, etc.) until you get to the final prime. 5 and 7 don't work if you try dividing them by 143 individually so next up is 11. If you divide 11 by 143 you get 13 which is also a prime number. Therefore, 3×11×13 is a product of prime factors.Find the total surface area.
The pyramid consists of 4 congruent triangular faces, and 1 square base.
Area of 1 triangular face:
1/2 * (5 in)/2 * (5.6 in) = 7 in^2
Area of base:
(5 in)^2 = 25 in^2
Then the total surface area is
4 * (7 in^2) + 25 in^2 = (28 + 25) in^2 = 53 in^2
Just need to know the elements of (A n B)
Answer:
{ 1,2}
Step-by-step explanation:
The ∩ means intersection, or what is in common for the two sets
The intersection of A and B is what is in the overlapping circles
The intersection of A and B is { 1,2}
3) The Buendorf family has agreed to let their children get some animals. The kids said they
want chickens and goats, so the parents told them the number of chickens could be four
times that of the number of goats. They are allowed to have no more than 30 total animals.
What are the possible number of chickens and goats?
Answer:
The possible number of goats is 6 and the possible number of chicken is 24
Step-by-step explanation:
Let
chicken=c
Goat=g
the number of chickens could be four times the number of goats
c=4g
Total number of animals=30
c+g=30
Recall, c=4g
So,
c+g=30
4g+g=30
5g=30
Divide both sides by 5
5g/5=30/5
g=6
Recall,
c+g=30
c+6=30
c=30-6
=24
c=24
The possible number of goats is 6 and the possible number of chicken is 24 making a total of 30 animals
Help me plz? Plllzzzz?
The roof of a cabin is to be shingles at a cost of $70 of a square ( a square, shingling, is a region with an area of 100 sq. ft.) Find the cost of the shingling the roof shown, assuming the roof is symmetrical
Answer:
Just multiply 2 by (36*15) which equals 1080
Than divide 1080 by 100
1080/100
Which would give us 10.8 10.8 * 70 = $756.00
So, the answer is $756.00
Step-by-step explanation:
Simplify [tex]$\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$[/tex] $\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$
Answer:
[tex]3 -\sqrt[2]3[/tex]
Step-by-step explanation:
Given
[tex]\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}[/tex]
Required
Simplify
Rewrite the given expression in index form
[tex]\frac{2 * 9 ^\frac{1}{3}}{1 + 3^{\frac{1}{3}} + 9^{\frac{1}{3}}}[/tex]
Express 9 as 3²
[tex]\frac{2 * 3^2^*^\frac{1}{3}}{1 + 3^{\frac{1}{3}} + 3^2^*^{\frac{1}{3}}}[/tex]
[tex]\frac{2 * 3^\frac{2}{3}}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}}}[/tex]
Multiply the numerator and denominator by [tex]1 - 3^{\frac{1}{3}}[/tex]
[tex]\frac{2 * 3^\frac{2}{3}}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}}} * \frac{1 - 3^{\frac{1}{3}}}{1 - 3^{\frac{1}{3}}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) (1 - 3^{\frac{1}{3}})}{(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})(1 - 3^{\frac{1}{3}})}[/tex]
Open the bracket
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{2}{3})(3^{\frac{1}{3}})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Simplify the Numerator using Laws of Indices
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{2+1}{3})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Further Simplify
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^\frac{3}{3})}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3^1)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}}(1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}})}[/tex]
Simplify the denominator
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - (3^{\frac{1}{3}})(3^{\frac{1}{3}}) - (3^{\frac{1}{3}})(3^{\frac{2}{3}})}[/tex]
Further Simplify Using Laws of Indices
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - (3^{\frac{1+1}{3}}) - (3^{\frac{1+2}{3}})}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3^{\frac{3}{3}}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3^1}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 + 3^{\frac{1}{3}} + 3^{\frac{2}{3}} - 3^{\frac{1}{3}} - 3^{\frac{2}{3}} - 3}}[/tex]
Collect Like Terms
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{1 - 3+ 3^{\frac{1}{3}} - 3^{\frac{1}{3}}+ 3^{\frac{2}{3}} - 3^{\frac{2}{3}} }}[/tex]
Group Like Terms for Clarity
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{(1 - 3) + (3^{\frac{1}{3}} - 3^{\frac{1}{3}}) + (3^{\frac{2}{3}} - 3^{\frac{2}{3}} )}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{(- 2)+ (0) + (0)}}[/tex]
[tex]\frac{2 (3^\frac{2}{3}) -2 (3)}{-2}}[/tex]
Divide the fraction
[tex]-(3^\frac{2}{3}) + (3)[/tex]
Reorder the above expression
[tex]3 -3^\frac{2}{3}[/tex]
The expression can be represented as
[tex]3 -\sqrt[2]3[/tex]
Hence;
[tex]\frac{2\sqrt[3]{9}}{1 + \sqrt[3]{3} + \sqrt[3]{9}}[/tex] when simplified is equivalent to [tex]3 -\sqrt[2]3[/tex]
Use the zero product property to find the solutions to the equation 2x2 + x - 1 = 2
a) x= -1/2 or x =2
b) x= -2 or x =1/2
c) x= -3/2 or x =1
d) x= 1 or x= 3/2
Answer:
C
Step-by-step explanation:
Given
2x² + x - 1 = 2 ( subtract 2 from both sides )
2x² + x - 3 = 0
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term.
product = 2 × - 3 = - 6 and sum = + 1
The factors are - 2 and + 3
Use these factors to split the x- term
2x² - 2x + 3x - 3 = 0 ( factor the first/second and third/fourth terms )
2x(x - 1) + 3(x - 1) = 0 ← factor out (x - 1) from each term
(x - 1)(2x + 3) = 0
Equate each factor to zero and solve for x
x - 1 = 0 ⇒ x = 1
2x + 3 = 0 ⇒ 2x = - 3 ⇒ x = - [tex]\frac{3}{2}[/tex]
What is the length of the line?
Answer:
[tex]\boxed{\sf B. \ \sqrt{61} }[/tex]
Step-by-step explanation:
The line can be made into a hypotenuse of a right triangle.
Find the length of the base and the height of the right triangle.
The base (leg) is 6 units.
The height (leg) is 5 units.
Apply Pythagorean theorem.
[tex]\sf c=\sqrt{a^2 +b^2 }[/tex]
[tex]\sf c=\sqrt{6^2 +5^2 }[/tex]
[tex]\sf c=\sqrt{36+25 }[/tex]
[tex]c=\sqrt{61}[/tex]
Answer:
[tex] \sqrt{61} [/tex]Option B is the correct option
Step-by-step explanation:
Assuming center of co-ordinate axes at lower left corner at the line. So end points are:
( x1 , y1 ) = ( 0 , 0 ) and ( x2 , y2 ) = ( 6 , 5 )
Distance between two points is given by formula:
D [tex] = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
[tex] = \sqrt{ {6 - 0)}^{2} + {(5 - 0)}^{2} } [/tex]
[tex] = \sqrt{ {6}^{2} + {5}^{2} } [/tex]
[tex] = \sqrt{36 + 25} [/tex]
[tex] = \sqrt{61} [/tex]
Hope this helps..
Best regards!!
Which point satisfies the system of equations y = 3x − 2 and y = -2x + 3? A. A B. B C. C D. D
Which could be used to solve this equation?
3 and one-fifth + n = 9
Subtract 3 and one-fifth from both sides of the equation.
3 and one-fifth minus 3 and one-fifth + n = 9 + 3 and one-fifth
Add 3 and one-fifth to both sides of the equation.
9 + 3 and one-fifth = 12 and one-fifth
Answer:
Subtract 3 and one-fifth from both sides of the equation
Step-by-step explanation:
Well to find n you gotta separate it.
3 1/5 + n = 9
-3 1/5
n = 5.8
Thus,
to seperate it you subtract 3 1/5 from both sides.
Answer:
Subtract 3 and one-fifth from both sides of the equation
Step-by-step explanation:
first correct answer gets best marks
Answer:
option three!!!!!
Step-by-step explanation:
its closed circle
on 6
and pointing left
Please answer in two minutes
Answer:
Toa
48/55
Step-by-step explanation:
O/A
48/55
If y is a positive integer, for how many different values of y is RootIndex 3 StartRoot StartFraction 144 Over y EndFraction EndRoot a whole number? 1 2 6 15
Answer:
2 possible values
Step-by-step explanation:
The given expression is:
[tex]\sqrt[3]{\frac{144}{y} }[/tex]
In order for this to result in a whole number, 144/y must be a perfect cube, the possible perfect cubes (under 144) are:
1, 8, 27, 64, 125
The values of y that would result in those numbers are:
[tex]y=\frac{144}{1}=144 \\y=\frac{144}{8}=18 \\y=\frac{144}{27}=5.333\\y=\frac{144}{64}=2.25\\y=\frac{144}{125}=1.152[/tex]
Only two values of y are integers, therefore, there are only two possible values of y for which the given expression results in a whole number.
Answer:it’s b
Step-by-step explanation:
Just took quiz on edge 2020
Triangle ABC is rotated about the origin by 270° to form the triangle A′B′C′, then translated upward 10 units to form triangle A″B″C″. Which of the following statements is true for ΔABC and ΔA″B″C″? A)There isn't enough information to identify whether ΔABC and ΔA″B″C″ are congruent or similar. B)ΔABC and ΔA″B″C″ are neither similar nor congruent. C)ΔABC and ΔA″B″C″ are similar triangles. D)ΔABC and ΔA″B″C″ are congruent triangles.
Answer:
The correct answer is option:
D) ΔABC and ΔA″B″C″ are congruent triangles.
Step-by-step explanation:
Given
ΔABC is first rotated about the origin by 270° to form the triangle A′B′C′.[tex]\triangle A'B'C'[/tex] is then translated upwards 10 units to form [tex]\triangle A''B''C''[/tex]To find: The true statement among the given options.
Solution:
Let the triangle be situated in 1st quadrant.
It is rotated about the origin by [tex]270^\circ[/tex].
Now, it moves towards quadrant 2 if it is rotated clockwise. It is termed as
[tex]\triangle A'B'C'[/tex].
It is given that now it is translated 10 units upwards. i.e. 10 units added to x coordinate of each vertex to form [tex]\triangle A''B''C''[/tex].
Now, we can see that there is no change in the dimensions of the triangle. We are just changing the location of the triangle.
So, all its angles will be equal to each other and all the sides will be equal to each other.
i.e.
[tex]\angle A = \angle A''\\\angle B = \angle B''\\\angle C = \angle C''\\Side\ AB = Side\ A''B''\\Side\ BC = Side\ B''C''\\Side\ AC = Side\ A''C''[/tex]
Hence, the correct option is:
D)ΔABC and ΔA″B″C″ are congruent triangles.
Answer:A-B
Step-by-step explanation:
calculate EG if a=5 and b=15
a box of tickets has an average of 100, and an SD of 20. Four hundred draws will be made at random with replacement from this box. a) Estimate the chance that the average of the draws will be in the range 80 to 120. b) estimate the chance that the average of the draws will be in the range 99 to 101
Answer:
(a) The probability that the average of the draws will be in the range 80 to 120 is 1.
(b) The probability that the average of the draws will be in the range 99 to 101 is 0.6827.
Step-by-step explanation:
According to the Central Limit Theorem if we have an unknown population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the distribution of the sample mean will be approximately normally distributed.
Then, the mean of the sample means is given by,
[tex]\mu_{\bar x}=\mu[/tex]
And the standard deviation of the sample means is given by,
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}[/tex]
As the sample selected is quite large, i.e. n = 400 > 30, then the sampling distribution of sample means will be approximately normally distributed.
Compute the mean and standard deviation of sample mean as follows:
[tex]\mu_{\bar x}=\mu=100\\\\\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}}=\frac{20}{\sqrt{400}}=1[/tex]
So, [tex]\bar X\sim N(100, 1)[/tex]
(a)
Compute the probability that the average of the draws will be in the range 80 to 120 as follows:
[tex]P(80<\bar X<120)=P(\frac{80-100}{1}<\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}<\frac{120-100}{1})[/tex]
[tex]=P(-20<Z<20)\\\\=P(Z<20)-P(Z<-20)\\\\=(\approx1)-(\approx0)\\\\=1[/tex]
Thus, the probability that the average of the draws will be in the range 80 to 120 is 1.
(b)
Compute the probability that the average of the draws will be in the range 99 to 101 as follows:
[tex]P(99<\bar X<101)=P(\frac{99-100}{1}<\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}<\frac{101-100}{1})[/tex]
[tex]=P(-1<Z<1)\\\\=P(Z<1)-P(Z<-1)\\\\=0.6827[/tex]
Thus, the probability that the average of the draws will be in the range 99 to 101 is 0.6827.
Eight people are going for a ride in a boat that seats eight people. One person will drive, and only three of the remaining people are willing to ride in the two bow seats. How many seating arrangements are possible?
Answer:
720 seating arrangments
Step-by-step explanation:
There are eight people but driver is always the same so we only have to deal with combinations of the other 7 seats.
the combination of the five seats has 5! times 2 combinations for each of the 3 passengers willing to ride in the two boat seats thus the total number of different seating arrangements is 5! times 3! or 720
hope this helps :)
Using the Fundamental Counting Theorem, it is found that there are 5760 possible seating arrangements.
What is the Fundamental Counting Theorem?It is a theorem that states that if there are n things, each with [tex]n_1, n_2, \cdots, n_n[/tex] ways to be done, each thing independent of the other, the number of ways they can be done is:
[tex]N = n_1 \times n_2 \times \cdots \times n_n[/tex]
In this problem:
For the driver, there are 8 outcomes, hence [tex]n_1 = 8[/tex].For the bow seats, there are [tex]n_2 = 3 \times 2 = 6[/tex] outcomes.For the other 5 seats, there are [tex]n_3 = 5![/tex] possible outcomes.Hence:
[tex]N = 8 \times 6 \times 5! = 5760[/tex]
There are 5760 possible seating arrangements.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/24314866
Find m
A. 82
B. 32
C. 98
D. 107
Answer: A. 82
Step-by-step explanation:
The measure of <BAD can be found by simply adding 25(<BAC)+57(<CAD) = 82.
[tex]\mathrm{BAD}=\mathrm{BAC}+\mathrm{CAD}=25^{\circ}+57^{\circ}=82^{\circ}[/tex].
Hope this helps.