change in entropy of universe during 900g of ice at 0 degree celcus to water at 10 degree celcius at room temp=30 degree celcius

Answers

Answer 1

Answer:

4519.60 J/K

Explanation:

Change in entropy is expressed as ΔS = ΔQ/T where;

ΔQ is the total heat change during conversion of ice to water.

T is the room temperature

First we need to calculate the total change in heat using the conversion formulae;

ΔQ = mL + mcΔθ (total heat energy absorbed during phase change)

m is the mass of ice/water = 900g = 0.9kg

L is the latent heat of fusion of ice = 3.33 x 10⁵J/kg

c is the specific heat capacity of water = 4200J/kgK

Δθ is the change in temperature of water = 10°C - 0C = 10°C = 283K

Substituting the given values into ΔQ;

ΔQ = 0.9(333000)+0.9(4200)(283)

ΔQ = 299700 + 1069740

ΔQ = 1,369,440 Joules

Since Change in entropy ΔS = ΔQ/T

ΔS =  1,369,440/30+273

ΔS = 1,369,440/303

ΔS = 4519.60 J/K

Hence, the change in entropy of the universe is 4519.60 J/K


Related Questions

What is the minimum magnitude of an electric field that balances the weight of a plasticsphere of mass 5.4 g that has been charged to -3.0 nC

Answers

Answer:

E = 17.64 x 10⁶ N/C = 17.64 MN/C

Explanation:

The electric field is given by the following formula:

E = F/q

E= W/q

E = mg/q

where,

E = magnitude of electric field = ?

m = mass of plastic sphere = 5.4 g = 5.4 x 10⁻³ kg

g = acceleration due to gravity = 9.8 m/s²

= charge = 3 nC = 3 x 10⁻⁹ C

Therefore,

E = (5.4 x 10⁻³ kg)(9.8 m/s²)/(3 x 10⁻⁹ C)

E = 17.64 x 10⁶ N/C = 17.64 MN/C

You indicate that a symbol
is a vector by drawing
A. through the symbol.
B. over the symbol.
c. under the symbol.
D. before the symbol.​

Answers

Answer:

B. over the symbol.

Explanation:

vectors are represented with a symbol carrying an arrow head with also indicates direction

A force acting on an object moving along the x axis is given by Fx = (14x - 3.0x2) N where x is in m. How much work is done by this force as the object moves from x = -1 m to x = +2 m?

Answers

Answer:

72J

Explanation:

distance moved is equal to 3m.then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

The answer is 72J.

Distance moved is equal to 3m.

Then just substitute x with 3m.

Fx = (14(3) - 3.0(3)2)) N

Fx =(42-18)N

Fx =24N

W=Fx *S

W=24N*3m

W=72J

Is there any definition of force?

A force is a push or pulls upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.

Learn more about force here https://brainly.com/question/25239010

#SPJ2

Two stars of masses M and 6M are separated by a distance D. Determine the distance (measured from M) to a point at which the net gravitational force on a third mass would be zero.

Answers

Answer:

0.29D

Explanation:

Given that

F = G M m / r2

F = GM(6m) / (D-r)2

G Mm/r2 = GM(6m) / (D-r)2

1/r2 = 6 / (D-r)2

r = D / (Ö6 + 1)

r = 0.29 D

See diagram in attached file

An alternating current is supplied to an electronic component with a warning that the voltage across it should never exceed 12 V. What is the highest rms voltage that can be supplied to this component while staying below the voltage limit in the warning?

Answers

Answer:

The highest rms voltage will be 8.485 V

Explanation:

For alternating electric current, rms (root means square) is equal to the value of the direct current that would produce the same average power dissipation in a resistive load

If the peak or maximum voltage should not exceed 12 V, then from the relationship

[tex]V_{rms} = \frac{V_{p} }{\sqrt{2} }[/tex]

where [tex]V_{rms}[/tex] is the rms voltage

[tex]V_{p}[/tex] is the peak or maximum voltage

substituting values into the equation, we'll have

[tex]V_{rms} = \frac{12}{\sqrt{2} }[/tex] = 8.485 V

Two positive charges are located at x = 0, y = 0.3m and x = 0, y = -.3m respectively. Third point charge q3 = 4.0 μC is located at x = 0.4 m, y = 0.
A) Make a careful sketch of decent size that illustrates all force vectors with directions and magnitudes.
B) What is the resulting vector of the total force on charge q1 exerted by the other two charges using vector algebra?

Answers

Answer:

0.46N

Explanation:

See attached file

You are pushing a 60 kg block of ice across the ground. You exert a constant force of 9 N on the block of ice. You let go after pushing it across some distance d, and the block leaves your hand with a velocity of 0.85 m/s. While you are pushing, the work done by friction between the ice and the ground is 3 Nm (3 J). Assuming that the ice block was stationary before you push it, find d.

Answers

Answer: d = 33 cm or 0.33 m

Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:

W = F.d.cosθ

F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.

For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:

W = F.d.cos(0)

W = F.d

To determine d:

d = [tex]\frac{W}{F}[/tex]

d = [tex]\frac{3}{9}[/tex]

d = 0.33 m

The distance d the block ice moved is 33 cm.

The copper wire to the motor is 6.0 mm in diameter and 1.1 m long. How far doesan individual electron travel along the wire while the starter motor is on for asingle start of the internal combustion engine

Answers

Answer:

0.306mm

Explanation:

The radius of the conductor is 3mm, or 0.003m

The area of the conductor is:

A = π*r^2 = π*(.003)^2 = 2.8*10^-5 m^2

The current density is:

J = 130/2.8*10^-5 = 4.64*10^6 A/m

According to the listed reference:

Vd = J/(n*e) = 4.64*10^6 / ( 8.46*10^28 * 1.6*10^-19 ) = 0.34*10^-6 m/s = 0.34mm/s

The distance traveled is:

x = v*t = 0.34 * .90 = 0.306 mm

To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable. Gauss's law is usually written
ΦE=∫E.dA =qencl/ϵ0
, where ϵ0=8.85×10−12C2/(N⋅m2) is the permittivity of vacuum.
How should the integral in Gauss's law be evaluated?
a. around the perimeter of a closed loop
b. over the surface bounded by a closed loop
c. over a closed surface

Answers

Answer:

Explanation:

jjjjjjjjjjjjjjjj

if a speed sound in air at o°c is 331m/s. what will be its value at 35 °c​

Answers

Answer:

please brainliest!!!

Explanation:

V1/√T1 =V2/√T2

V1 = 331m/s

T1 = 0°C = 273k

V2 = ?

T2 = 35°c = 308k

331/√273 = V2/√308331/16.5 = V2/17.520.06 = V2/17.5V2 = 20.06 x 17.5 V2 = 351.05m/s

Suppose a proton moves to the right and enters a uniform magnetic field into the page. It follows trajectory B with radius rp. An alpha particle (twice the charge and 4 times the mass) enters the same magnetic field in the same way and with the same velocity as the proton. Which path best represents the alpha particle’s trajectory?

Answers

Answer:

   R = r_protón / 2

Explanation:

The alpha particle when entering the magnetic field experiences a force and with Newton's second law we can describe its movement

      F = m a

Since the magnetic force is perpendicular, the acceleration is centripetal.

       a = v² / R

       

the magnetic force is

       F = q v x B = q v B sin θ

the field and the speed are perpendicular so the sin 90 = 1

we substitute

          qv B = m v² / R

          R = q v B / m v²

in the exercise they indicate

the charge  q = 2 e

the mass     m = 4 m_protón

        R = 2e v B / 4m_protón v²

we refer the result to the movement of the proton

         R = (e v B / m_proton) 1/2

the data in parentheses correspond to the radius of the proton's orbit

         R = r_protón / 2

Two long parallel wires are separated by 11 cm. One of the wires carries a current of 54 A and the other carries a current of 45 A. Determine the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current.

Answers

Explanation:

It is given that,

The separation between two parallel wires, r = 11 cm = 0.11 m

Current in wire 1, [tex]q_1=54\ A[/tex]

Current in wire 2, [tex]q_2=45\ A[/tex]

Length of wires, l = 4.3 m

We need to find the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current. The magnetic force per unit length is given by :

[tex]\dfrac{F}{l}=\dfrac{\mu_o I_1I_2}{2\pi r}\\\\F=\dfrac{\mu_o I_1I_2l}{2\pi r}\\\\F=\dfrac{4\pi \times 10^{-7}\times 54\times 45\times 4.3}{2\pi \times 0.11}\\\\F=0.0189\ N[/tex]

So, the magnetic force on a 4.3 m length of the wire  on both of currents is F=0.0189 N.

A light wave with an electric field amplitude of E0 and a phase constant of zero is to be combined with one of the following waves. Which of these combinations produces the greatest intensity?

a. Wave A has an amplitude of E0 and a phase constant of zero.
b. Wave B has an amplitude of E0 and a phase constant of π.
c. Wave C has an amplitude of 2E0 and a phase constant of zero.
d. Wave D has an amplitude of 2E0 and a phase constant of π.
e. Wave E has an amplitude of 3E0 and a phase constant of π.

Answers

Answer:

the greatest intensity is obtained from   c

Explanation:

An electromagnetic wave stagnant by the expression

           E = E₀ sin (kx -wt)

when two waves meet their electric fields add up

           E_total = E₁ + E₂

the intensity is

           I = E_total . E_total

           I = E₁² + E₂² + 2E₁ E₂ cos θ

where θ  is the phase angle between the two rays

       

Let's examine the two waves

in this case E₁ = E₂ = E₀

          I = Eo2 + Eo2 + 2 E₀ E₀ coasts

         I = E₀² (2 + 2 cos θ )

         I = 2 I₀ (1 + cos θ )

     let's apply this expression to different cases

a) In this case the angle is zero therefore the cosine is worth 1 and the intensity is I_total = 4 I₀

b) cos π = -1     this implies that     I_total = 0

c) the cosine is  1,

         I = E₀² + 4E₀² + 2 E₀ (2E₀) cos θ

         I = E₀² (5 +4 cos θ)

         I = E₀² 9

         I = 9 Io

d) in this case the cos pi = -1

          I = E₀² (5 -4)

          I = I₀

e) we rewrite the equation

         I = E₀² + 9 E₀² + 2 E₀ (3E₀) cos θ

         I = Eo2 (10 + 6 cos θ)

         cos π = -1

         I = E₀² (10-6)

         I = 4 I₀

the greatest intensity is obtained from   c

The combination that has the greatest intensity is C. Wave C has an amplitude of 2E0 and a phase constant of zero.

What is an amplitude?

An amplitude simply means the variable that meaures the change that occur in a single variable. It's the maximum diatance moved.

In this case, the combination that has the greatest intensity is Wave C since it has an amplitude of 2E0 and a phase constant of zero.

Learn more about amplitude on:

https://brainly.com/question/3613222

what is transmission of heat?​

Answers

Answer:

Heat transfer is the transmission of heat energy from a body at higher temperature to lower temperature. The three mechanisms of heat transfer are

Conduction ConvectionRadiation.

Example of Conduction:

Heating a metal

Example of Convection:

Sea Breeze

Example of Radiation:

Sun

Hope this helps ;) ❤❤❤

Answer:

Transmission of heat is the movement of thermal energy from one thing to another thing of different temperature.

There are three(3) different ways heat can transfer and they are:

a) Conduction (through direct contact).

b) Convection (through fluid movement).

c) Radiation (through electromagnetic waves).

Examples: 1.Heating a saucepan of water using a coalpot.(conduction&convection).

2. Baking a pie in an oven(radiation).

Hope it helps!!Please mark me as the brainliest!!!

Thanks!!!!

Why would physics be used to study light emitted by a star?
O A. Stars form interesting shapes in the sky.
B. Light is very pretty.
O C. The positions of stars control our lives.
O D. Light is a form of energy.

Answers

Answer:

O D.

Explanation:

Physics has an aspect that deals with the study of energy

Answer:

D. Light is a form of energy

Explanation:

You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2

Answers

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 u s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 u s  = 75 n s

TL = T - Th = 100 ns - 75 n s = 25 n s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

You are fixing a transformer for a toy truck that uses an 8.0-V emf to run it. The primary coil of the transformer is broken; the secondary coil has 40 turns. The primary coil is connected to a 120-V wall outlet.
(a) How many turns should you have in the primary coil?
(b) If you then connect this primary coil to a 240-V source, what emf would be across the secondary coil?
Comments: The relevant equation is N1/N2 = V1/V2 where N is the number of turns and V is the voltage. I'm just not sure how to get the voltage of the secondary coil using emf.

Answers

Answer:

a. The primary turns is 60 turns

b. The secondary voltage will be 360 volts.

Explanation:

Given data

secondary turns N2= 40 turns

primary turns N1= ?

primary voltage V1= 120 volts

secondary voltage V2= 8 volts

Applying the transformer formula which is

[tex]\frac{N1}{N2} =\frac{V1}{V2}[/tex]

we can solve for N1 by substituting into the equation above

[tex]\frac{N1}{40} =\frac{120}{8} \\\ N1= \frac{40*120}{8} \\\ N1= \frac{4800}{8} \\\ N1= 60[/tex]

the primary turns is 60 turns

If the primary voltage is V1 240 volts hence the secondary voltage V2 will be (to get the voltage of the secondary coil using emf substitute the values of the previously gotten N1 and N2 using V1 as 240 volts)

[tex]\frac{40}{60} =\frac{240}{V2}\\\\V2= \frac{60*240}{40} \\\\V2=\frac{ 14400}{40} \\\\V2= 360[/tex]

the secondary voltage will be 360 volts.

(a) In the primary coil, you have "60 turns".

(b) The emf across the secondary coil would be "360 volts".

Transformer and Voltage

According to the question,

Primary voltage, V₁ = 120 volts

Secondary voltage, V₂ = 8 volts

Secondary turns, N₂ = 40 turns

(a) By applying transformer formula,

→ [tex]\frac{N_1}{N_2} = \frac{V_1}{V_2}[/tex]

or,

   N₁ = [tex]\frac{N_2\times V_1}{V_2}[/tex]

By substituting the values,

        = [tex]\frac{40\times 120}{8}[/tex]

        = [tex]\frac{4800}{8}[/tex]

        = 60

(2) Again by using the above formula,

→ V₂ = [tex]\frac{60\times 240}{40}[/tex]

       = [tex]\frac{14400}{40}[/tex]

       = 360 volts.

Thus the above approach is correct.  

Find out more information about voltage here:

https://brainly.com/question/4389563

The angle between the axes of two polarizing filters is 41.0°. By how much does the second filter reduce the intensity of the light coming through the first?

Answers

Answer:

The  amount by which the second filter reduces the intensity of light emerging from the first filter is

     z =  0.60

Explanation:

From the question we are told that

    The angle between the axes is  [tex]\theta = 41^o[/tex]

The intensity of polarized light that emerges from the second filter is  mathematically represented as

         [tex]I= I_o cos^2 \theta[/tex]

 Where [tex]I_o[/tex] is the intensity of light emerging  from the first filter

        [tex]I = I_o [cos(41.0)]^2[/tex]

      [tex]I =0.60 I_o[/tex]

This means that the second filter reduced the intensity by z =  0.60

           

In the circuit shown, the galvanometer shows zero current. The value of resistance R is :


 
A)  1 W
B)  2 W
C)  4 W
D)  9 W​

Answers

Answer:

its supposed to be (a) 1W

The index of refraction of a certain material is 1.5. If I send red light (700 nm) through the material, what will the frequency of the light be in the material

Answers

Answer: [tex]4.29\times10^{14}\text{ Hz}[/tex]

Explanation:

Given: Speed of red light = 700 nm

= [tex]700\times10^{-9}[/tex] m

[tex]= 7\times10^{-7}[/tex] m

Frequency of red light = [tex]\dfrac{\text{Speed of light}}{\text{Speed of red light}}[/tex]

Speed of light = [tex]3\times10^8[/tex] m

Then, Frequency of red light = [tex]\dfrac{3\times10^8}{7\times10^{-7}}[/tex]

[tex]=0.429\times10^{8-(-7)}=0.429\times10^{15}\\\\=4.29\times10^{14}\ Hz[/tex]

Hence, Frequency of red light = [tex]4.29\times10^{14}\text{ Hz}[/tex]

The frequency of the light be in the material is [tex]4.29\times10^{14}\text{ Hz}[/tex].

A 25 kg box sliding to the left across a horizontal surface is brought to a halt in a distance of 15 cm by a horizontal rope pulling to the right with 15 N tension.

Required:
a. How much work is done by the tension?
b. How much work is done by gravity?

Answers

B)is pills everything to the surface of the earth not sure about A

The work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.

The given parameters;

mass of the box, m = 25 kgdistance traveled by the box, d = 15 cm = 0.15 mtension on the rope, T = 15 N

The work done by the tension is calculated as follows;

W = Fd

W = 15 x 0.15

W = 2.25 J

The work done by gravity is calculated as;

W = (25 x 9.8) x 0.15

W = 36.75 J

Thus, the work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.

Learn more here: https://brainly.com/question/19498865

A cylinder is closed by a piston connected to a spring of constant 2.20 10^3 N/m. With the spring relaxed, the cylinder is filled with 5.00 L of gas at a pressure of 1.00 atm and a temperature of 20.0°C. The piston has a cross sectional area of 0.0100 m^2 and negligible mass. What is the pressure of the gas at 250 °C?

Answers

Answer:

1.3515x10^5pa

Explanation:

Plss see attached file

If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the frequency is closest to:

Answers

Answer:

5.19 x 10³Hz

Explanation:

The capacitive reactance, [tex]X_{C}[/tex], which is the opposition given to the flow of current through the capacitor is given by;

[tex]X_C = \frac{1}{2\pi fC }[/tex]

Where;

f = frequency of the signal through the capacitor

C = capacitance of the capacitor.

Also, from Ohm's law, the voltage(V) across the capacitor is given by the product of current(I) and the capacitive reactance. i.e;

V = I x [tex]X_{C}[/tex]             [Substitute the value of

=> V = I x [tex]\frac{1}{2\pi fC}[/tex]      [Make f the subject of the formula]

=> f = [tex]\frac{I}{2\pi VC}[/tex]                    ---------------------(i)

From the question;

I = 3.33mA = 0.00333A

C = 8.50nF = 8.50 x 10⁻⁹F

V = 12.0V

Substitute these values into equation (i) as follows;

f = [tex]\frac{0.00333}{2 * 3.142 * 12.0 * 8.50 * 10^{-9}}[/tex]            [Taking [tex]\pi[/tex] = 3.142]

f = 5.19 x 10³Hz

Therefore, the frequency is closest to f = 5.19 x 10³Hz

A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust reversers in a distance of 425 m along the runway with constant deceleration. The total mass of the aircraft is 140 Mg with mass center at G. Compute the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking. At lower speed, aerodynamic forces on the aircraft are small and may be neglected.

Answers

Answer:

257 kN.

Explanation:

So, we are given the following data or parameters or information in the following questions;

=> "A jet transport with a landing speed

= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"

= > The distance = 425 m along the runway with constant deceleration."

=> "The total mass of the aircraft is 140 Mg with mass center at G. "

We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"

Step one: determine the acceleration;

=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.

=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.

Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).

= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).

= 257 kN.

The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Given data :

Landing speed of Jet = 200 km/h

Distance = 425 m

Total mass of aircraft = 140 Mg  with mass center at G

Determine the reaction N under the nose of wheel B First step : calculate the value of the Jet acceleration

  Jet acceleration = 1 / (2 *425) * (200²  - 60² ) *  1 / (3.6)²

                              = 3.3 m/s²

Next step : determine the reaction N under the nose of Wheel

Reaction N = Total mass of aircraft * jet acceleration* 1.2 = 15N - (9.8*2.4* 140).   ----- ( 1 )

∴ Reaction N = 140 * 3.3 * 1.2 = 15 N - ( 9.8*2.4* 140 )  

 Hence Reaction N = 257 KN

                     

We can conclude that the The reaction N under the nose wheel B towards the end of the braking interval =  257 kN

Learn more about : https://brainly.com/question/15776281

what is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates

Answers

Answer:

 m = 3,265 10⁻²⁰  E

Explanation:

For this exercise we can use Newton's second law applied to our system, which consists of a capacitor that creates the uniform electric field and the drop of oil with two extra electrons.

             ∑ F = 0

             [tex]F_{e}[/tex] - W = 0

             

the electric force is

             F_{e} = q E

   

as they indicate that the charge is two electrons

             F_{e} = 2e E

The weight is given by the relationship

             W = mg

we substitute in the first equation

               2e E = m g

         

               m = 2e E / g

     

let's put the value of the constants

              m = (2 1.6 10⁻¹⁹ / 9.80) E

 

               m = 3,265 10⁻²⁰  E

 The value of the electric field if it is a theoretical problem must be given and if it is an experiment it can be calculated with measures of the spacing between plates and the applied voltage, so that the system is in equilibrium

An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a temperature of 1950 K. (kb is Boltzmann's constant, 1.38x10-23 J/K).

Answers

Answer:

The de Broglie wavelength of electron βe = 2.443422 × 10⁻⁹ m

The de Broglie wavelength of proton βp = 5.70 × 10⁻¹¹ m

Explanation:

Thermal kinetic energy of electron or proton = KE

∴ KE = 3kbT/2

given that; kb = 1.38 x 10⁻²³ J/K , T = 1950 K

so we substitute

KE = ( 3 × 1.38 x 10⁻²³ × 1950 ) / 2

kE = 4.0365 × 10⁻²⁰ (  is the kinetic energy for both electron and proton at temperature T )

Now we know that

mass of electron M'e = 9.109 ×  10⁻³¹

mass of proton M'p = 1.6726 ×  10⁻²⁷

We also know that

KE = p₂ / 2m

from the equation, p = √ (2mKE)

{ p is momentum, m is mass }

de Broglie wavelength = β

so β = h / p = h / √ (2mKE)

h = Planck's constant = 6.626 ×  10⁻³⁴

βe =  h / √ (2m'e × KE)

βe = 6.626 ×  10⁻³⁴ / √ (2 × 9.109 ×  10⁻³¹ × 4.0365 × 10⁻²⁰ )

βe = 6.626 ×  10⁻³⁴ / √  7.3536957 × 10⁻⁵⁰

βe = 6.626 × 10⁻³⁴  / 2.71176984642871 × 10⁻²⁵

βe = 2.443422 × 10⁻⁹ m

βp =  h / √ (2m'p ×KE)

βp = 6.626 ×  10⁻³⁴ / √ (2 × 1.6726 ×  10⁻²⁷ × 4.0365 × 10⁻²⁰ )

βp = 6.626 ×  10⁻³⁴ / √ 1.35028998 × 10⁻⁴⁶

βp =  6.626 ×  10⁻³⁴ / 1.16201978468527 ×  10⁻²³

βp = 5.702140 × 10⁻¹¹ m

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. Calculate the magnitude of the electrostatic force, when each of the spheres has lost half of its initial charge. (Your answer will be a function of F, since no values are giving)

Answers

Answer:

1/4F

Explanation:

We already know thatThe electrostatic force is directly proportional to the product of the charge, from Coulomb's law.

So F α Qq

But if it is now half the initial charges, then

F α (1/2)Q *(1/2)q

F α (1/4)Qq

Thus the resultant charges are each halved is (1/4) and the first initial force experienced at full charge.

Thus the answer will be 1/4F

A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and returns to Hither. The time for this round trip is 2 hours. The magnitude of the average velocity of the car for this round trip is:
A. 0
B. 50 km/hr
C. 100 km/hr
D. 200 km/hr
E. cannot be calculated without knowing the acceleration

Answers

Answer:

The average velocity for this trip is 0 km/hr

Explanation:

We know that average velocity = total displacement/total time.

Now, its displacement is d = final position - initial position.

Since the  car starts and ends at its initial position at Hither, if we assume its initial position is 0 km, then its final position is also 0 km.

So, its displacement is d = 0 km - 0 km = 0 km.

Since the total time for the round trip is 2 hours, the average velocity is

total displacement/ total time = 0 km/2 hr = 0 km/hr.

So the average velocity for this trip is 0 km/hr  

A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 26 m/s when a 60 kg skydiver drops out by releasing his grip on the glider.
What is the glider's speed just after the skydiver lets go?

Answers

Answer:

The glider’s speed after the skydiver lets go is 26 m/s

Explanation:

To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum

Mathematically;

mv = mv + mv

so 680 * 26 = (680-60)v + 60 * 26

17680 = 620v + 1560

17680-1560 = 620v

16120 = 620v

v = 16120/620

v = 26 m/s

A ​46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this​ causeway?

Answers

Answer:

2.9tons

Explanation:

Note that On an incline of angle a from horizontal, the parallel and perpendicular components of a downward force F are:

parallel ("tangential"): F_t = F sin a

perpendicular ("normal"): F_n = F cos a

At a=3.7 degrees, sin a is about 0.064 and with F = 46tons:

F sin a ~~ (46 tons)*0.064 ~~ 2.9tons

Also see attached file

The required force parallel to the incline to hold the monolith on this​ causeway will be "2.9 tons".

Angle and Force

According to the question,

Angle, a = 3.7 degrees or,

Sin a = 0.064

Force, F = 46 tons

We know the relation,

Parallel (tangential), [tex]F_t[/tex] = F Sin a

By substituting the values,

                                       = 46 × 0.064

                                       = 2.9 tons

Thus the response above is appropriate answer.

Find out more information about Force here:

https://brainly.com/question/25239010

Other Questions
Blue ribbon taxis offers shuttle service to the nearest airport. You loop up online reviews for blue ribbon taxis and find that there are 17 reviews, six of which report that the taxi never showed up. Is this a biased sampling method for obtaining customer opinion on the taxi service? If so, what is the likely direction of bias? explain your reasoning carefully. Read this line from the text: Perhaps almost as narrowly as a man with a microscope might scrutinise the transient creatures that swarm and multiply in a drop of water. What idea does the word transient suggest in this text? Humans are as temporary as insects that live only a few days. Human behavior is much like that of insects. Like insects, humans have not spent ample time securing their future. Unlike insects, humans need water to survive their harsh environment. please helllppppp........ An antacid tablet has a pH of about 9.5 whichmeans it is considered to be in the _____range.Acidic or basic A sonata is a large-scale composition for a solo instrument or a solo instrument with piano accompaniment. True False HELP NOW A dartboard has 20 equally divided wedges, and you are awarded the number of points in the section your dart lands in. If you are equally likely to land in any wedge, what is the probability you will score more than 10 points? Cerrone Inc. has provided the following data for the month of July. The balance in the Finished Goods inventory account at the beginning of the month was $79,000 and at the end of the month was $72,000. The cost of goods manufactured for the month was $361,600. The actual manufacturing overhead cost incurred was $118,400 and the manufacturing overhead cost applied to jobs was $112,000. The adjusted cost of goods sold that would appear on the income statement for July is: Solve for x : 2^x+4^x+8^x=14 What happens to mRNA after transcription Would you participate in an e-mail-writing campaign against a shoe company that pays its foreign workers starvation wages? If so, what would you say in your e-mail? If not, why not? Please help me!!! Describe the government of Myanmar. How has the government attempted to control the people of Myanmar? The better-off test for evaluating whether a particular diversification move is likely to generate added value for shareholders involves determining whether the proposed diversification move Group of answer choices provides the company with additional resource strengths. provides additional ways to build the entrepreneurial skills of the company's senior managers. spreads stockholders' risks across a greater number of lines of business. has competitively valuable value chain match-ups with the company's present businesses such that its businesses can perform better together than apart. has good potential for increasing the company's rate of return on invested capital. Jackie notices everyone wearing Converse sneakers on the first day of school. Ever the fashionista, this will likely affect: Multiple Choice Jackie's income, as she now needs to buy Converse and will have less to spend on other goods. Jackie's preferences for shoes, since she feels as though she needs them now. Jackie's expectations of future prices, since the price of Converse will likely go up because they're getting so popular. the prices of related goods, since other shoes will be less popular and cost less now. While having a discussion, Technician A says that you should never install undersized tires on a vehicle. The vehicle will be lower, and the speedometer will no longer be accurate. Technician B says that the increase in engine rpm for a given speed will result in a decrease in fuel economy. Who is correct PLEASEEEEANSWERWhich of the following linear equations represents the data chart below? y = 3x + 5 y = x 5 y = 3x + 11 None of these choices are correcT Harpeth Valley Water District has a bond outstanding with a coupon rate of 3.63 percent and semiannual payments. The bond matures in 23 years, with a yield to maturity of 4.17 percent, and a par value of $5,000. What is the market price of the bond What is the molarity of 0.25 moles of FeCl3 dissolved in 120 ml of solution? what is the value of [3.6] help me please and remember to double check yo answerLook at these details from a paragraph about the same topic: Graham crackers are used to make a sweet treat called a s'more. Crushed graham crackers can be used in brownies instead of flour. Graham cracker crumbs can be used to make pie crusts.Choose the main idea that ties all the details together.A. You can mix graham crackers with cereal and marshmallows for a sweet treat.B. Graham crackers are used in different desserts.C. Graham crackers can be used to make pie crusts and cookies.D. All kinds of desserts are easy to make at home. What is the result of adding these two equations?