Answer:
Perpendicular Slope: 8/5
Parallel Slope: -5/8
Step-by-step explanation:
First, let's rewrite the line into slope intercept form.
-5x - 8y = 3
-8y = 5x + 3
y = -5x/8 + -3/8
Okay, so now we know the slope, -5/8, and the y-intercept, -3/8.
For a line to be perpendicular, the slope needs to be opposite of the given line's slope. This will cause the two lines to cross at a 90-degree angle, and therefore be perpendicular.
So a perpendicular line could be as follows:
y = 8x/5 + -3/8
So the perpendicular slope would be 8/5.
For a line to be parallel, the slope needs to be the same so that the two lines will never cross.
So a parallel line could be as follows:
y = -5x/8 + 1
So the parallel slope would be -5/8.
Cheers.
Answer:
Perpendicular Slope: [tex]\boxed{\frac{8}{5}}[/tex]
Parallel Slope: [tex]\boxed{-\frac{5}{8}}[/tex]
Step-by-step explanation:
Part 1: Rewrite into slope-intercept form
Firstly, the equations are written in standard form and not slope-intercept form, so to change that, follow the steps below.
Note: Remember the slope-intercept form equation - [tex]\boxed{y=mx+b}[/tex]
[tex]-5x-8y=3\\\\5x + (-5x-8y)=3+5x\\\\-8y=5x+3\\\\\frac{-8y}{-8} =\frac{5x+3}{-8} \\[/tex]
[tex]y=-\frac{5}{8}x-\frac{3}{8}[/tex]
Add [tex]5x[/tex] to both sides of the equation to isolate the y-variable. Then, divide by the coefficient of y to isolate it entirely. The equation is now in slope-intercept form.
Part 2: Determine the perpendicular slope
Perpendicular slopes are reciprocals of the given slopes. To turn the original slope into its reciprocal counterpart, follow these steps:
If the current slope is positive, add a negative sign. If the current slope is negative, remove the negative sign.The denominator becomes the numerator and the numerator becomes the denominator.To follow this for the slope of the given equation:
[tex]\boxed{-\frac{5}{8} \dashrightarrow \frac{8}{5} }[/tex]Part 3: Determine the parallel slope
Parallel slopes are equal - otherwise, the lines would eventually intersect. Therefore, the given slope is also the parallel slope.
The parallel slope is [tex]\boxed{-\frac{5}{8}}[/tex].
A father's age is 4 times as that of his son's age. in 5 years time, the father will be 3 times as old as his son. what are their present ages?
Answer:
present age of son = 10 present age of father = 40Step-by-step explanation:
Let, present age of son be 'x'
present age of father be 'y'
y = 4x→ equation ( i )
After five years,
Son's age = x + 5
father's age = y + 5
According to Question,
[tex]y + 5 = 3(x + 5)[/tex]
Put the value of y from equation ( i )
[tex]4x + 5 = 3(x + 5)[/tex]
Distribute 3 through the parentheses
[tex]4x + 5 = 3x + 15[/tex]
Move variable to L.H.S and change it's sign
Similarly, Move constant to R.H.S. and change its sign
[tex]4x - 3x = 15 - 5[/tex]
Collect like terms
[tex]x = 15 - 5[/tex]
Calculate the difference
[tex]x = 10[/tex]
Now, put the value of X in equation ( i ) in order to find the present age of father
[tex]y = 4x[/tex]
plug the value of X
[tex] = 4 \times 10[/tex]
Calculate the product
[tex] = 40[/tex]
Therefore,
Present age of son = 10
present age of father = 40
Hope this helps..
Best regards!!
Find the perimeter of an equilateral triangle where area is 72cm.
Answer:
38.68 cm
Step-by-step explanation:
Perimeter of an equilateral triangle : P = 3a
Area of an equilateral triangle : A = [tex]\frac{\sqrt{3} }{4}a^2[/tex]
a = side length
The area is given, solve for a.
[tex]72= \frac{\sqrt{3} }{4}a^2[/tex]
[tex]a = 12.894839[/tex]
The side length is 12.894839 centimeters.
Find the perimeter.
P = 3a
P = 3(12.894839)
P = 38.684517 ≈ 38.68
The perimeter is 38.68 centimeters.
The circumference of C is 72cm. What is the length of AB (the minor arc)
Answer:
Step-by-step explanation:
Can you please include a image?
Thanks!!!
Solve the following rational equation for x.
1/4x-3/4=7/x
Answer:
x1= -4, x2 = 7
Step-by-step explanation:
Move expression to the left-hand side:
1/4x-3/4-7/x=0
Write all the numerators above a common denominator:
x^2 - 3x - 28 /4x =0
When the quotient of expressions equal 0, the numerator has to be 0
x^2 + 4x - 7x - 28 = 0
x(x+4) - 7(x+4) =0
(x+4) × (x-7) =0
Separate into possible cases:
x+4=0
x-7=0
Answer: -9
Step-by-step explanation:
Find the volume of the figure below. Round to the nearest tenth.
7 cm
7 cm
9 cm
20 cm
11 cm
Answer:
3057.6 cm³
Step-by-step explanation:
You have a cylinder and a rectangular prism. Solve for the area of each separately.
Cylinder
The formula for volume of a cylinder is V = πr²h. The radius is 7, and the height is 7.
V = πr²h
V = π(7)²(7)
V = π(49)(7)
V = 343π
V = 1077.57 cm³
Rectangular Prism
The formula for volume of a rectangular prism is V = lwh. The length is 20, the width is 11, and the height is 9.
V = lwh
V = (20)(11)(9)
V = (220)(9)
V = 1980 cm³
Add the areas of the two shapes.
1077.57 cm³ + 1980 cm³ = 3057.57 cm³
Round to the nearest tenth.
3057.57 cm³ ≈ 3057.6 cm³
A ball is thrown from a height of 20 meters with an initial downward velocity of 5 m/s. The ball's height h (in meters) after t seconds is given
by the following.
h=20-5t-5t²
How long after the ball is thrown does it hit the ground?
Round your answer(s) to the nearest hundredth.
(If there is more than one answer, use the "or" button.)
Answer:
1.56 seconds
Step-by-step explanation:
When the ball hits the ground, h = 0.
0 = 20 − 5t − 5t²
Divide both sides by -5.
0 = t² + t − 4
Solve with quadratic formula.
t = [ -1 ± √(1² − 4(1)(-4)) ] / 2(1)
t = (-1 ± √17) / 2
The time must be positive, so:
t = (-1 + √17) / 2
t ≈ 1.56
solve for the inequality ᵏ⁄₄ ≥ 6
Answer:
k ≥ 24
Step-by-step explanation:
ᵏ⁄₄ ≥ 6
Multiply each side by 4
ᵏ⁄₄ *4 ≥ 6*4
k ≥ 24
Answer:
k≥24
Step-by-step explanation:
k/4≥6
Use the multiplication property of equality by multiplying both sides by 4 to get
k≥24
If this is wrong or if I did something wrong, please tell me so I can learn the proper way, I am just treating this like a normal problem
Thank you
What is the range of the function f(x)=3/4|x|-3
Range is [tex]y\in[-3,+\infty)[/tex].
Hope this helps.
help (6)(-1)(-3)(10)(-2)
Answer:
The answer is
- 360Step-by-step explanation:
(6)(-1)(-3)(10)(-2)
Multiply the terms in the bracket
That's
(6)(-1) = - 6
(-3)(10) = - 30
So we have
(-6)(-30)(-2)
= 180( - 2)
= - 360
Hope this helps you
Solve 2x^2 + x - 4 = 0
X2 +
Answer:
[tex]\large \boxed{\sf \ \ x = -\dfrac{\sqrt{33}+1}{4} \ \ or \ \ x = \dfrac{\sqrt{33}-1}{4} \ \ }[/tex]
Step-by-step explanation:
Hello, please find below my work.
[tex]2x^2+x-4=0\\\\\text{*** divide by 2 both sides ***}\\\\x^2+\dfrac{1}{2}x-2=0\\\\\text{*** complete the square ***}\\\\x^2+\dfrac{1}{2}x-2=(x+\dfrac{1}{4})^2-\dfrac{1^2}{4^2}-2=0\\\\\text{*** simplify ***}\\\\(x+\dfrac{1}{4})^2-\dfrac{1+16*2}{16}=(x+\dfrac{1}{4})^2-\dfrac{33}{16}=0[/tex]
[tex]\text{*** add } \dfrac{33}{16} \text{ to both sides ***}\\\\(x+\dfrac{1}{4})^2=\dfrac{33}{16}\\\\\text{**** take the root ***}\\\\x+\dfrac{1}{4}=\pm \dfrac{\sqrt{33}}{4}\\\\\text{*** subtract } \dfrac{1}{4} \text{ from both sides ***}\\\\x = -\dfrac{1}{4} -\dfrac{\sqrt{33}}{4} \ \ or \ \ x = -\dfrac{1}{4} +\dfrac{\sqrt{33}}{4}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
How many solutions does the following equation have? 14(z+3)=14z+21
Answer:
No solutions
Step-by-step explanation:
14(z + 3) = 14z + 21
Expand brackets.
14z + 42 = 14z + 21
Subtract 14z on both sides.
42 = 21
There are no solutions.
Answer:
No solution
Step-by-step explanation:
First, We have to simplify the right side.
Distribute 14, 14z+42.
Now the equation stands as 14z+42=14z+21
Subtract 14z from both sides,
this makes it 42=21.
We know when the solution is #=#, our answer is no solution.
The perimeter of a rectangular field is 344m . If the width of the field is 75m, what is its length?
Answer:
97 m
Step-by-step explanation:
Perimeter = 2 * (length + width); perimeter = 344, width = 75 (solving for length)
344 = 2(length + 75)
172 = length + 75
length = 97
how many solutions does this linear system hacve y=2/3x+2 6x-4y=-10
Answer:
the linear system has two valid solution.
Answer:one solution
Step-by-step explanation:
A food concession owner in a mall sold 120 beef, vegetable, and pork sliders in 7 days. 20% of the sliders sold were beef and 15% were vegetable. How many pork sliders were sold?
Answer:
78 pork sliders
Step-by-step explanation:
The food concession owner sold 120 beef, vegetable and pork sliders.
20% were beef.
15% were vegetable.
The percentage of pork sliders sold is:
100 - (20 + 15) = 100 - 35 = 65%
The number of pork sliders sold is therefore:
65/100 * 120 = 78
78 pork sliders were sold.
"Radon: The Problem No One Wants to Face" is the title of an article appearing in Consumer Reports. Radon is a gas emitted from the ground that can collect in houses and buildings. At certain levels it can cause lung cancer. Radon concentrations are measured in picocuries per liter (pCi/L). A radon level of 4 pCi/L is considered "acceptable." Radon levels in a house vary from week to week. In one house, a sample of 8 weeks had the following readings for radon level (in pCi/L). 1.92.45.75.51.98.23.96.9 (a) Find the mean, median, and mode. (Round your answers to two decimal places.) mean 4.55 median 4.7 mode 1.9 (b) Find the sample standard deviation, coefficient of variation, and range. (Round your answers to two decimal places.) s CV % range (c) Based on the data, would you recommend radon mitigation in this house
Answer:
a) Mean = 4.55
Median = 4.7
Mode = 1.9
b) S = 2.3952
CV = 52.64 %
Range = 6.3
c) Yes, since the average and median values are both over "acceptable" ranges.
Step-by-step explanation:
Explanation is provided in the attached document.
if a 10 pound turkey cost 20.42 how much does 21 pound turkey cost
Answer:
$42.88
Step-by-step explanation:
We can set up a cross product fraction ratio to find how much 21 pounds of turkey costs.
[tex]\frac{10}{20.42} = \frac{21}{x}[/tex]
Let's apply the cross multiplication property.
[tex]20.42\cdot21=428.82[/tex]
Now we divide this by 10.
[tex]428.82\div10=42.882[/tex]
This simplifies down to [tex]42.88[/tex].
Hope this helped!
What is the value of the fourth term in a geometric sequence for which a1 =
30 and r= 1/2
Answer:
3¾
Step-by-step explanation:
Geometric sequence also known as geometric progression, can be said to be a sequence with a constant ratio between the terms.
Formula for geometric sequence:
[tex] a^n = a ( n-1 ) * r [/tex]
Given:
First term, a1 = 30
ratio, r = ½
Required:
Find the fourth term
Where, the first term, a¹ = 30
Second term: a² = 30 * ½ = 15
Third term: a³ = 15 * ½ = 7.5
Fourth term: a⁴ = 7.5 * ½ = 3.75 = 3¾
Therfore the fourth term of the geometric sequence is 3¾
A cash register has $10 and $50 dollars bills with total of $1080.there are 28 bills in total how many of each bills.
Hey there! I'm happy to help!
Let's set this up as a system of equations, where x is equal to the number of 10 dollar bills and y is equal to the number of 50 dollar bills.
10x+50y=1080
x+y=28
We want to solve for x or y. We can rearrange the second equation to find the value of one of the variables.
x+y=28
Subtract x from both sides.
y=28-x
Now, we have a value for y. So, we could replace the y in the first equation with 28-x and the solve for x.
10x+50(28-x)=1080
We use distributive property to undo the parentheses.
10x+1400-50x=1080
We combine like terms.
-40x+1400=1080
We subtract 1400 from both sides.
-40x=-320
We divide both sides by -40.
x=8
Since there are 28 total bills, this means that there must be 20 50 dollar ones because there are 8 10 dollar bills.
Have a wonderful day! :D
The letters "A", "B", "C", "D", "E", and "F" are written on six slips of paper, and the slips are placed into a hat. If the slips are drawn randomly without replacement, what is the probability that "E" is drawn first and "B" is drawn second?
Answer:
1/30
Step-by-step explanation:
The probability of getting ”E” is 1/6.
There is only 1 “E” out of 6 letters.
There is no replacement.
There are now 5 letters without “E”.
”A”, “B”, “C”, “D”, “F”
The probability of getting ”B” is 1/5.
There is only 1 “B” out of 5 letters.
⇒ 1/6 × 1/5
⇒ 1/30
A company finds that if they price their product at $ 35, they can sell 225 items of it. For every dollar increase in the price, the number of items sold will decrease by 5.
What is the maximum revenue possible in this situation? (Do not use commas when entering the answer) $
What price will guarantee the maximum revenue? $
The price that guarantees the maximum revenue is $40.
The maximum revenue possible in this situation is $8000.
Given that the company can sell 225 items at a price of $35, and for every dollar increase in price, the number of items sold decreases by 5, we can set up a relationship between price and quantity sold.
Let's denote the price as "P" and the quantity sold as "Q". We can express this relationship as follows:
Q = 225 - 5(P - 35)
This equation represents the decrease in quantity sold as the price increases.
To find the price that guarantees the maximum revenue, we need to find the price at which the quantity sold multiplied by the price is maximized. This is equivalent to finding the maximum value of the revenue function.
Revenue (R) is calculated as:
R = P × Q
To find the price that guarantees the maximum revenue, we need to maximize the revenue function R(P).
Let's substitute the expression for Q into the revenue function:
R(P) = P × (225 - 5(P - 35))
Now, simplify and expand the equation:
R(P) = P × (225 - 5P + 175)
= P × (400 - 5P)
To find the maximum revenue, we need to find the value of P that maximizes R(P). This can be done by finding the critical points of the function, which are the values of P where the derivative of R(P) equals zero.
Let's take the derivative of R(P) with respect to P:
dR(P)/dP = 400 - 10P
Setting the derivative equal to zero and solving for P:
400 - 10P = 0
10P = 400
P = 40
Therefore, the price that guarantees the maximum revenue is $40.
To find the maximum revenue, substitute P = 40 into the revenue function:
R(40) = 40 × (225 - 5(40 - 35))
= 40 × (225 - 5(5))
= 40 × (225 - 25)
= 40 × 200
= 8000
Hence, the maximum revenue possible in this situation is $8000.
To learn more about the derivative;
https://brainly.com/question/24898810
#SPJ12
A right triangle has legs with lengths equal to 10 inches and 9x inches. Its hypotenuse measures (x + 10) inches. What is the approximate value of the hypotenuse? 10 inches 10.25 inches 20.25 inches 81 inches
Answer:
10.25 inchesStep-by-step explanation:
Given,
Perpendicular ( p ) = 9x
Base ( b ) = 10
Hypotenuse ( h ) = x + 10
Now, let's find the value of x
Using Pythagoras theorem:
[tex] {h}^{2} = {p}^{2} + {b}^{2} [/tex]
Plug the values
[tex] {(x + 10)}^{2} = {(9x)}^{2} + {(10)}^{2} [/tex]
Using [tex] {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex] , expand the expression
[tex] {x}^{2} + 20x + 100 = {(9x)}^{2} + {10}^{2} [/tex]
To raise a product to a power , raise each factor to that power
[tex] {x}^{2} + 20x + 100 = 81 {x}^{2} + {10}^{2} [/tex]
Evaluate the power
[tex] {x}^{2} + 20x + 100 = 81 {x}^{2} + 100[/tex]
Cancel equal terms on both sides of the equation
[tex] {x}^{2} + 20x = 81 {x}^{2} [/tex]
Move x² to R.H.S and change its sign
[tex]20x = 81 {x}^{2} - {x}^{2} [/tex]
Calculate
[tex]20x = 80 {x}^{2} [/tex]
Swap both sides of the equation and cancel both on both sides
[tex]80x = 20[/tex]
Divide both sides of the equation by 80
[tex] \frac{80x}{80} = \frac{20}{80} [/tex]
Calculate
[tex]x = \frac{20}{80} [/tex]
Reduce the numbers with 20
[tex]x = \frac{1}{4} [/tex]
The value of X is [tex] \frac{1}{4} [/tex]
Now, let's replace the value of x to find the approximate value of hypotenuse
Hypotenuse = [tex] \frac{1}{4} + 10[/tex]
Write all numerators above the common denominator
[tex] \frac{1 + 40}{4} [/tex]
Add the numbers
[tex] \frac{41}{4} [/tex]
[tex] = 10.25[/tex] inches
Hope this helps..
best regards!!
Answer:
10.25
Step-by-step explanation:
because I said so ya skoozie
The local diner offers a meal combination consisting of an appetizer, a soup, a main course, and a dessert. There are three appetizers, three soups, three main courses, and three desserts. Your diet restricts you to choosing between a dessert and an appetizer. (You cannot have both.) Given this restriction, how many three-course meals are possible
Answer:
There are 2 * 32 = 64 possible ways for choosing three course meal.
Step-by-step explanation:
1-If we choose an appetizer, main course and a soup then there are 32 ways to choose this three course meal. 4 * 2 * 4 = 32 ways. There will be an appetizer, main course and a soup in the meal.
2-If we choose a soup, main course and a dessert then there are 32 ways to choose this three course meal. 4 * 2 * 4 = 32 ways. There will be a soup, main course and a dessert in the meal.
There are 2 possible ways to choose either an appetizer or dessert in a 3 course meal. There will be 64 ways in total for the three course meal.
A group of patients select from among 38 numbers, with 18 odd numbers (black) and 18 even
numbers (red), as well as 0 and 00 (which are green). If a doctor pays $7 that the outcome is an odd
number, the probability of losing the $7 is 20/38 and the probability of winning $14 (for a net gain of
only $7, given you already paid $7) is 18/38
If a doctor pays $7 that the outcome is an odd number, how would you figure out what is the doctors
expected value is?
Answer: $2.95
Step-by-step explanation:
Given: Probability of losing the $7 = [tex]\dfrac{20}{38}[/tex]
Probability of winning $14 = [tex]\dfrac{18}{38}[/tex]
Then, the expected value = (- $7) x ( Probability of losing the $7) + $14 x(Probability of winning $14)
= [tex](-\$ 7)\times\dfrac{20}{38}+(\$14)\times\dfrac{18}{38}[/tex]
= [tex]-\dfrac{70}{19}+\dfrac{126}{19}[/tex]
= [tex]\dfrac{56}{19}\times\approx\$2.95[/tex]
∴ If a doctor pays $7 that the outcome is an odd number, the doctor's
expected value is $2.95.
i have to write equations in standard form using integer coefficients for A,B, and, C Example: y= -8/15x + 1/20
Answer:
c
Step-by-step explanation:
P(x)=2x^5+9x^4+9x^3+3x^2+7x-6;x=i,-2
Answer:
The value of the polynomial function at P(1) and P(-2) is 24 and 0 respectively.
Step-by-step explanation:
We are given with the following polynomial function below;
[tex]\text{P}(x) = 2x^{5} +9x^{4} +9x^{3} +3x^{2}+7x-6[/tex]
Now, we have to calculate the value of P(x) at x = 1 and x = -2.
For this, we will substitute the value of x in the given polynomial and find it's value.
At x = 1;
[tex]\text{P}(1) = 2(1)^{5} +9(1)^{4} +9(1)^{3} +3(1)^{2}+7(1)-6[/tex]
[tex]\text{P}(1) = (2\times 1) +(9\times 1)+(9 \times 1)+(3\times 1)+(7\times 1)-6[/tex]
[tex]\text{P}(1) = 2 +9+9+3+7-6[/tex]
P(1) = 30 - 6
P(1) = 24
At x = -2;
[tex]\text{P}(-2) = 2(-2)^{5} +9(-2)^{4} +9(-2)^{3} +3(-2)^{2}+7(-2)-6[/tex]
[tex]\text{P}(-2) = (2\times -32) +(9\times 16)+(9 \times -8)+(3\times 4)+(7\times -2)-6[/tex]
[tex]\text{P}(-2) = -64 +144-72+12-14-6[/tex]
P(-2) = 156 - 156
P(-2) = 0
Hence, the value of the polynomial function at P(1) and P(-2) is 24 and 0 respectively.
I need some help, see the picture for the question. Solve for V
Answer:
the answer is A) h=3V/(Pi*r^2)
Step-by-step explanation:
This question is asking to solve for h, the equation is allready solved for V.
to solve for h means to get h by itself on one side of the equation.
1) V=(1/3)*pi*r^2*h. Divide 1/3*pi*r^2 to the other side of the equation
2) V/(1/3)*pi*r^2=h. 1/3 on the bottom denominator means we can multiply the reciprocal to the bottom and the top and get an equivalent answer. In short, move the 3 from the 1/3 onto the top.
3) (3*V)/(pi*r^2)=h. Simplify.
4) 3V/(Pi*r^2)=h.
WHOEVER ANSWERS FIRST GETS BRAINLIEST:) Which expression represents the surface area of the cone? A cone with diameter 12 inches, height 8 inches, and slant height 10 inches. S A = pi r l + pi r squared (pi) (6) (10) + (pi) (6 squared) (pi) (8) (10) + (pi) (8 squared) (pi) (12) (10) + (pi) (12 squared) (pi) (10) (12) + (pi) (10 squared)
Answer:
Step-by-step explanation:
The surface area of a cone is:
● Sa = Pi*r^2 +Pi*r*l
r is the radius and l is the slant heigth
The diameter of this cone is 12 inches so the radius is 6 (12/2=6).
●Sa = Pi*36 +Pi*6*10
●Sa = 301.59 in^2
Answer:
pi (6) * 10+ pi ( 6)^2
Step-by-step explanation:
The surface area of a cone is given by
SA = pi rl +pi r^2 where r is the radius and l is the slant height
We know the diameter is 12 so the radius is 12/2 = 6
SA = pi (6) * 10+ pi ( 6)^2
A college administrator predicts that the proportion of students that are nursing majors is greater than 40%. To test this, a group of 400 students are randomly selected and it's determined that 190 are nursing majors. The following is the setup for this hypothesis test:
H0:p=0.40
Ha:p>0.40
In this example, the p-value was determined to be 0.001. Find the conclusion and interpret the results for this hypothesis test for a proportion (use a significance level of 5%)
Answer:
Step-by-step explanation:
Using the following data:
H0:p=0.40 (null hypothesis)
Ha:p>0.40 (alternative hypothesis)
The p-value was determined to be 0.001.
a significance level of 5%
Since the p value (0.001) is less than the significance level (0.05), we will reject the null hypothesis and then we would conclude that the proportion of students that are nursing majors is greater than 0.4.
Answer:
p value= 0.131
Step-by-step explanation:
Since we have calculated the test statistic, we can now proceed to find the p-value for this hypothesis test.Using the test statistic and since the hypothesis test is a left tailed test, the p-value will then be the area under the standard normal curve to the left of the test statistic of -1.12.Using the Standard Normal table given above, the area under the standard normal curve to the left of the test statistic of -1.12 is 0.131 (rounded to 3 decimal places.Thus the p-value = 0.131.
The random variable x is the number of houses sold by a realtor in a single month at the Sendsom's Real Estate office. Its probability distribution is as follows:
Houses Sold (x) Probability P(x)
0 0.24
1 0.01
2 0.12
3 0.16
4 0.01
5 0.14
6 0.11
7 0.21
Find the mean of the given probability distribution.
A. μ = 3.35
B. μ = 3.50
C. μ = 3.60
D. μ = 3.40
Answer:
C. μ = 3.60
Step-by-step explanation:
Two tables have been attached to this response.
One of the tables contains the given data and distribution with two columns: Houses Sold and Probability
The other table contains the analysis of the data with additional columns: Frequency and Fx
=> The Frequency(F) column is derived from the product of the probability of each item in the Houses sold column and the total number of houses sold (which is 28). For example,
When the number of houses sold = 0
F = P(0) x Total number of houses sold
F = 0.24 x 28 = 6.72
When the number of houses sold = 1
F = P(1) x Total number of houses sold
F = 0.01 x 28 = 0.28
=> The Fx column is found by multiplying the Frequency column by the Houses Sold column. For example,
When the number of houses sold = 0
Fx = F * x
F = 6.72 x 0 = 0
Now to get the mean, μ we use the relation;
μ = ∑Fx / ∑F
Where;
∑Fx = summation of the items in the Fx column = 100.8
∑F = summation of the items in the Frequency column = 28
μ = 100.8 / 28
μ = 3.60
Therefore, the mean of the given probability distribution is 3.60
The mean of the discrete probability distribution is given by:
C. μ = 3.60
What is the mean of a discrete distribution?The expected value of a discrete distribution is given by the sum of each outcome multiplied by it's respective probability.
In this problem, the table x - P(x) gives each outcome and their respective probabilities, hence, the mean is:
[tex]E(X) = 0(0.24) + 1(0.01) + 2(0.12) + 3(0.16) + 4(0.01) + 5(0.14) + 6(0.11) + 7(0.21) = 3.6[/tex]
Hence option C is correct.
More can be learned about the mean of discrete distributions at https://brainly.com/question/24855677
calculate the value of angle A to one decimal place. Picture Attached
Answer:
[tex] A = 50.7 [/tex] (to nearest tenth)
Step-by-step explanation:
Use the Law of Cosines to find the value of angle A as follows:
[tex] cos(A) = \frac{b^2 + c^2 - a^2}{2*b*c} [/tex]
Where,
a = 7 in
b = 5 in
c = 9 in
Plug in the values into the formula
[tex] cos(A) = \frac{5^2 + 9^2 - 7^2}{2*5*9} [/tex]
[tex] cos(A) = \frac{57}{90} [/tex]
[tex] cos(A) = 0.6333 [/tex]
[tex] A = cos^{-1}(0.6333) [/tex]
[tex] A = 50.7 [/tex] (to nearest tenth)