Answer:
0
Step-by-step explanation:
The t-intercept here is what's khown as the x-intercept wich is given by C(t)=0
● C(t) = 2t^4-8t^3+6t^2
● 0 = 2t^4-8t^3+6t^2
Factor using t
● t(2t^3-8t^2+6t^1) = 0
Wich means that t=0
About 9% of the population has a particular genetic mutation. 600 people are randomly selected.
Find the standard deviation for the number of people with the genetic mutation in such groups of 600.
Answer:
The mean for all such groups randomly selected is 0.09*800=72.
Step-by-step explanation:
The value of the standard deviation is 7.
What is the standard deviation?Standard deviation is defined as the amount of variation or the deviation of the numbers from each other.
The standard deviation is calculated by using the formula,
[tex]\sigma = \sqrt{Npq}[/tex]
N = 600
p = 9%= 0.09
q = 1 - p= 1 - 0.09= 0.91
Put the values in the formulas.
[tex]\sigma = \sqrt{Npq}[/tex]
[tex]\sigma = \sqrt{600 \times 0.09\times 0.91}[/tex]
[tex]\sigma[/tex] = 7
Therefore, the value of the standard deviation is 7.
To know more about standard deviation follow
https://brainly.com/question/475676
#SPJ2
At the city museum, child admission is $ 5.30 and adult admission is $ 9.40 . On Sunday, three times as many adult tickets as child tickets were sold, for a total sales of $ 1206.00 . How many child tickets were sold that day?
Answer:
36 tickets
Step-by-step explanation:
At a city museum, child tickets are sold for $5.30, and adult tickets are sold for $9.40
The total sales that were made are $1206
Let x represent the number of child tickets that were sold
Let y represent the number of adult tickets that was sold
5.30x +9.40y= 1206
The number of adult tickets sold was three times greater than the child tickets
y= 3x
Substitute 3x for y in the equation
5.30x + 9.40y= 1206
5.30x + 9.40(3x)= 1206
5.30x + 28.2x= 1206
33.5x= 1206
Divide both sides by the coefficient of x which is 33.5
33.5x/33.5= 1206/33.5
x = 36
Hence the number of child tickets that were sold that day is 36 tickets
Solve for x in the equation X^2-16^x=0
Answer:
-1/2
Step-by-step explanation:
x^2- 16^x = 0x^2 = 16^xx^2 = 4^2xx = 4^xlogx = xlog41/x×logx = log4log(x^1/x) = log4x^(1/x) = 4At this point you can guess and try. And it seems that x = -1/2, lets check:
(-1/2)^(1 /-1/2)= (-1/2)^-2= 2^2= 4So, this is correct: x= -1/2
Which point is a solution to the inequality shown in this graph?
Answer: A, (0, -3)
Step-by-step explanation:
Inequalities, once graphed, take the form of the image you attached:
Linear inequalities are straight lines, sometimes dotted and sometimes solid, with shading on one side of the line.
Any point in the shading is a correct solution to the inequality.
When the line is solid, any point on the line is a solution to the inequality.When the line is dotted, only the shaded area past the line includes solutions - points on the line are not solutions.In this case, the line is solid, so any point on the line is a solution to the inequality.
Looking at answer choice A: (0, -3), it lies on the line as the y-intercept.
The correct choice is A.
The ratio of boys to girls in Jamal's class is 3:2. If four more girls join the class, there will be the same number of boys and girls. What is the number of boys in the class?
Answer:
4 boys
Step-by-step explanation:
Let x represent boys and y represent girls
Hence, x : y = 3 : 2
x/y = 3/2
2x = 3y ------ (1)
x/y + 4 = 3/3
3x = 3(y + 4)
3x = 3y + 12 --------- (2)
From (1): x = 3y/2
Substitute x into (2) we have:
9y/2 = 3y + 12
9y = 6y + 24
9y - 6y = 24
3y = 24
∴ y = 8
From (2) : 3x = 24 - 12 = 12
∴ x = 4
Hence there Four boys
I need answers for 1 , 2, 4
Answer:
(3) x ≥ -3
(4) 2.5 gallons
(4) -12x + 36
Step-by-step explanation:
Hey there!
1)
Well its a solid dot meaning it will be equal to.
So we can cross out 1 and 2.
And it's going to the right meaning x is greater than or equal to -3.
(3) x ≥ -3
2)
Well if each milk container has 1 quart then there is 10 quarts.
And there is 4 quarts in a gallon, meaning there is 2.5 gallons of milk.
(4) 2.5 gallons
4)
16 - 4(3x - 5)
16 - 12x + 20
-12x + 36
(4) -12x + 36
Hope this helps :)
(SAT Prep) In the given figure, a║b. What is the value of x? A. 70° B. 45° C. 80° D. 65° I NEED THIS FAST PLZZZZZZ!!!!!!!!!!!!
Answer:
70
Step-by-step explanation:
You have to find the vertical of x. To the right of the vertical, we see that there is an angle of 25 (since the 25 up top corresponds to that blank angle). Once you add 25 + 85 + x = 180 (since this is a straight line), we see that x is 70, and its vertical is also 70.
The tee for the sixth hole on a golf course is 400 yards from the tee. On that hole, Marsha hooked her ball to the left, as sketched below. Find the distance between Marsha’s ball and the hole to the nearest tenth of a yard. Answer any time! :D
Answer:
181.8 yd
Step-by-step explanation:
The law of cosines is good for this. It tells you for triangle sides 'a' and 'b' and included angle C, the length of 'c' is given by ...
c^2 = a^2 +b^2 -2ab·cos(C)
For the given geometry, this is ...
c^2 = 400^2 +240^2 -2(400)(240)cos(16°) ≈ 33,037.75
c ≈ √33037.75 ≈ 181.8 . . . yards
Marsha's ball is about 181.8 yards from the hole.
Answer:
181.8 yds
Step-by-step explanation:
I got it correct on founders edtell
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below 15 and 39
Answer:
36
Step-by-step explanation:
You did not attach a picture, so I just assumed where the lengths of 15 and 39 were.
Consider two consecutive positive integers such that the square of the second integer added to 3 times the first is equal to 105
Answer:
8 and 9
Step-by-step explanation:
If x is the smaller integer, and x + 1 is the larger integer, then:
(x + 1)² + 3x = 105
x² + 2x + 1 + 3x = 105
x² + 5x − 104 = 0
(x + 13) (x − 8) = 0
x = -13 or 8
Since x is positive, x = 8. So the two integers are 8 and 9.
Solving exponential functions
Answer:
approximately 30Step-by-step explanation:
[tex]f(x) = 4 {e}^{x} [/tex]
[tex]f(2) = 4 {e}^{2} [/tex]
[tex]f(2) = 4 \times 7.389[/tex]
[tex]f(2) = 29.6[/tex]
( Approximately 30)
Hope this helps..
Good luck on your assignment..
Answer:
approximately 30
Step-by-step explanation:
[tex]f(x)=4e^x[/tex]
Put x as 2 and evaluate.
[tex]f(2)=4e^2[/tex]
[tex]f(2)=4(2.718282)^2[/tex]
[tex]f(2)= 29.556224 \approx 30[/tex]
Calculate the side lengths a and b to two decimal places
A. a= 10.92 b=14.52 <--- My answer
B. a= 11 b= 15
C. a=4.18 b=3.15
D. a= 11.40 b=13.38
Answer:
Option (D)
Step-by-step explanation:
In the picture attached,
An obtuse angle triangle ABC has been given.
By applying Sine rule in the triangle,
[tex]\frac{\text{SinB}}{b}=\frac{\text{SinA}}{a}=\frac{\text{SinC}}{c}[/tex]
Since, m∠A + m∠B + m∠C = 180°
45° + 110° + m∠C = 180°
m∠C = 180°- 155° = 25°
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=\frac{\text{Sin25}}{7}[/tex]
[tex]\frac{\text{Sin110}}{b}=\frac{\text{Sin45}}{a}=0.060374[/tex]
[tex]\frac{\text{Sin110}}{b}=0.060374[/tex]
b = [tex]\frac{\text{Sin110}}{0.060374}[/tex]
b = 15.56
b ≈ 15.56
[tex]\frac{\text{Sin45}}{a}=0.060374[/tex]
a = [tex]\frac{\text{Sin45}}{0.060374}[/tex]
a = 11.712
a = 11.71
Therefore, Option (D) will be the answer.
A table of values of a linear function is shown below. Find the output when the input is N. Type your answer in the space provide
Answer:
[tex] -3n - 7 [/tex]
Step-by-step explanation:
Considering the linear function represented in the table above, to find what output an input "n" would give, we need to first find an equation that defines the linear function.
Using the slope-intercept formula, y = mx + b, let's find the equation.
Where,
m = the increase in output ÷ increase in input = [tex] \frac{-13 - (-10)}{2 - 1} [/tex]
[tex] m = \frac{-13 + 10}{1} [/tex]
[tex] m = \frac{-3}{1} [/tex]
[tex] m = -3 [/tex]
Using any if the given pairs, i.e., (1, -10), plug in the values as x and y in the equation formula to solve for b, which is the y-intercept
[tex] y = mx + b [/tex]
[tex] -10 = -3(1) + b [/tex]
[tex] -10 = -3 + b [/tex]
Add 3 to both sides:
[tex] -10 + 3 = -3 + b + 3 [/tex]
[tex] -7 = b [/tex]
[tex] b = -7 [/tex]
The equation of the given linear function can be written as:
[tex] y = -3x - 7 [/tex]
Or
[tex] f(x) = -3x - 7 [/tex]
Therefore, if the input is n, the output would be:
[tex] f(n) = -3n - 7 [/tex]
The radius of a right circular cone is increasing at a rate of 1.1 in/s while its height is decreasing at a rate of 2.4 in/s. At what rate is the volume of the cone changing when the radius is 109 in. and the height is 198 in.
Answer:
[tex]79591.8872 in^3/s[/tex]
Step-by-step explanation:
we know that the volume of a right circular cone is give as
[tex]V(r,h)= \frac{1}{3} \pi r^2h\\\\[/tex]
Therefore differentiating partially with respect to r and h we have
[tex]\frac{dV}{dt} = \frac{1}{3}\pi [2rh\frac{dr}{dt} +r^2\frac{dh}{dt}][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [218*198*1.1+109^2*2.4][/tex]
[tex]\frac{dV}{dt} = \frac{\pi}{3} [47480.4+28514.4]\\\\\frac{dV}{dt} = \frac{\pi}{3} [75994.8]\\\\ \frac{dV}{dt} = 3.142 [25331.6]\\\\ \frac{dV}{dt} =79591.8872 in^3/s[/tex]
Please answer this correctly without making mistakes
Answer:
3/11
Step-by-step explanation:
There are eleven equal parts.
So the denominator is 11.
He copies 8 parts on Sunday.
11-8=3.
He copied 3 parts on Saturday.
Hope this helps ;) ❤❤❤
Find the value of a A.130 B.86 C.58 D.65
Answer:
Option (B)
Step-by-step explanation:
If two chords intersect inside a circle, measure of angle formed is one half the sum of the arcs intercepted by the vertical angles.
Therefore, 86° = [tex]\frac{1}{2}(a+c)[/tex]
a + c = 172°
Since the chords intercepting arcs a and c are of the same length, measures of the intercepted arcs by these chords will be same.
Therefore, a = c
⇒ a = c = 86°
Therefore, a = 86°
Option (B) will be the answer.
2x + 3 + 7x = – 24, what is the value of x?
14x + 3 = - 24
theeeeen I get stuck, HELP!
Answer:
-3
Step-by-step explanation:
2x + 3 +7x = -24
Add the X together
9x +3 = -24
Bring over the +3. [when you bring over change the sign]
9x = -24 -3
9x = -27
-27 divide by 9 to find X
therefore answer is
x= -3.
Hope this helps
Answer:
x = -3
Step-by-step explanation:
question is
2x + 3 + 7x = -24
First you combine the like terms
2x and 7x you can add them so it will be 9x
so it will then it will be like this:
9x + 3 = -24
now you take the 3 and send it to the other side, and right now the 3 is positive so when it goes to the other side it will turn into -3
so
9x = -24 -3
again now you combine the like terms
-24 -3 = - 27
now you have
9x = -27
now just divide each side by 9
x = -27/9
x = -3
Sorry if this doesnt help
17. What is the most likely outcome of decreasing the wavelength of incident light on a diffraction grating? A. lines become narrower B. distance between lines increases C. lines become thicker D. distance between lines decreases
When the wavelength of a diffraction grating is decreased, the distance between lines decreases.
What is a diffraction grating?The diffraction grating is used to carry out interference experiments. It consists of a number of small lines that are constructed to be close to each other and produce an interference pattern.
The outcome of decreasing the wavelength of incident light on a diffraction grating is that the distance between lines decreases.
Learn more about diffraction grating:https://brainly.com/question/13902808
#SPJ1
how do you find the x- and y-intersepts of an equation
Answer:
To find the x-intercept, simply plug in the value y = 0 into your equation and then solve for x. To find the y-intercept, plug in x = 0 and solve for y.
Daniels freezer is set to 0degrees Fahrenheit he places a load of bread that was at a temperature of 78 degrees Fahrenheit in the freezer the bread cooled at a rate of 11 degrees Fahrenheit per hour write and graph an equation that models the temperature t of the bread
Answer:
it took 7 hours for the bread to drop at a constent rate
Step-by-step explanation:
What are the expressions for length, width, and height?
Volume = length width height
V = _____ _____ _____
For odyyseyware
Answer:
[tex]\boxed{V=lwh}[/tex]
Step-by-step explanation:
The formula for volume of a cuboid is:
[tex]V=lwh[/tex]
[tex]volume = length \times width \times height[/tex]
Answer:
V = l w h
Step-by-step explanation:
Volume of a Cuboid = Length × Width × Height
Where l = length, w = width and h = height
I need to know if the following questions are true or false
Answer:
False
Step-by-step explanation:
To find <A, we can do 5x - 80 = 3x + 20.
As we simplify, we will get 2x = 100, which is x = 50
Therefore, <A will be 50 degrees and not 45 degrees.
Also, if you need y, you can do:
3y - 7 = y + 7
2y = 14
y = 7
Which graph shows the solution to the system of linear inequalities? y ≥ 2x + 1 y ≤ 2x – 2
The graph which shows the solution to the system of inequalities is attached in the picture below :
Given the inequalities :
y ≥ 2x + 1
y ≤ 2x - 2
From y ≥ 2x + 1 ;
Since the inequality sign is ≥, a solid line is used to draw the straight line graph of y ≥ 2x + 1
From :
y = mx + c
Where, m = slope ; c = intercept
Hence, a straight line graph with ;
Intercept, c = 1 (where the line crosses the y-intercept)
Slope, m = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality :
0 ≥ 2(0) + 1
0 ≥ 0 + 1
0 ≥ 1
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
From : y ≤ 2x - 2
Since the inequality sign is ≤, a solid line is used to draw the straight line graph of y ≤ 2x - 2
Graph the line y ≤ 2x - 2, with ;
Intercept, c = - 2
Slope = 2
Consider a point, which isn't on the line ;
Take point (0,0) and use it to test the inequality y ≤ 2x - 2:
0 ≤ 2(0) - 2
0 ≤ 0 - 2
0 ≤ - 2
This is false, hence, the portion of the graph which does not contain (0, 0) is shaded.
Learn more : https://brainly.com/question/19670553
Answer:
Its graph B on edge 2022
Step-by-step explanation:
If C(x) is the cost of producing x units of a commodity, then the average cost per unit is c(x) = C(x)/x. Consider the cost function C(x) given below. C(x) = 54,000 + 130x + 4x3/2 (a) Find the total cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ (b) Find the average cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (c) Find the marginal cost at a production level of 1000 units. (Round your answer to the nearest cent.) $ per unit (d) Find the production level that will minimize the average cost. (Round your answer to the nearest whole number.) units (e) What is the minimum average cost? (Round your answer to the nearest dollar.) $ per unit
Answer:
Step-by-step explanation:
Given that:
If C(x) = the cost of producing x units of a commodity
Then;
then the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
We are to consider a given function:
[tex]C(x) = 54,000 + 130x + 4x^{3/2}[/tex]
And the objectives are to determine the following:
a) the total cost at a production level of 1000 units.
So;
If C(1000) = the cost of producing 1000 units of a commodity
[tex]C(1000) = 54,000 + 130(1000) + 4(1000)^{3/2}[/tex]
[tex]C(1000) = 54,000 + 130000 + 4( \sqrt[2]{1000^3} )[/tex]
[tex]C(1000) = 54,000 + 130000 + 4(31622.7766)[/tex]
[tex]C(1000) = 54,000 + 130000 + 126491.1064[/tex]
[tex]C(1000) = $310491.1064[/tex]
[tex]\mathbf{C(1000) \approx $310491.11 }[/tex]
(b) Find the average cost at a production level of 1000 units.
Recall that :
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
SO;
[tex]c(x) =\dfrac{(54,000 + 130x + 4x^{3/2})}{x}[/tex]
Using the law of indices
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
[tex]c(1000) = \dfrac{54000}{1000}+ 130 + {4(1000)^{1/2}}[/tex]
c(1000) =$ 310.49 per unit
(c) Find the marginal cost at a production level of 1000 units.
The marginal cost is C'(x)
Differentiating C(x) = 54,000 + 130x + 4x^{3/2} to get C'(x) ; we Have:
[tex]C'(x) = 0 + 130 + 4 \times \dfrac{3}{2} \ x^{\dfrac{3}{2}-1}[/tex]
[tex]C'(x) = 0 + 130 + 2 \times \ {3} \ x^{\frac{1}{2}}[/tex]
[tex]C'(x) = 0 + 130 + \ {6}\ x^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 0 + 130 + \ {6} \ (1000)^{\frac{1}{2}}[/tex]
[tex]C'(1000) = 319.7366596[/tex]
[tex]\mathbf{C'(1000) = \$319.74 \ per \ unit}[/tex]
(d) Find the production level that will minimize the average cost.
the average cost per unit is c(x) = [tex]\dfrac{C(x)}{x}[/tex]
[tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex]
the production level that will minimize the average cost is c'(x)
differentiating [tex]c(x) =\dfrac{54000}{x} + 130 + 4x^{1/2}[/tex] to get c'(x); we have
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{4}{2 \sqrt{x} }[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + 0+ \dfrac{2}{ \sqrt{x} }[/tex]
Also
[tex]c''(x)= \dfrac{108000}{x^3} -x^{-3/2}[/tex]
[tex]c'(x)= \dfrac{54000}{x^2} + \dfrac{4}{2 \sqrt{x} } = 0[/tex]
[tex]x^2 = 27000\sqrt{x}[/tex]
[tex]\sqrt{x} (x^{3/2} - 27000) =0[/tex]
x= 0; or [tex]x= (27000)^{2/3}[/tex] = [tex]\sqrt[3]{27000^2}[/tex] = 30² = 900
Since production cost can never be zero; then the production cost = 900 units
(e) What is the minimum average cost?
the minimum average cost of c(900) is
[tex]c(900) =\dfrac{54000}{900} + 130 + 4(900)^{1/2}[/tex]
c(900) = 60 + 130 + 4(30)
c(900) = 60 +130 + 120
c(900) = $310 per unit
Kirsten has 9 syrup containers from a local cafe. There are 6 milliliters of syrup per container.
Answer: 54 mL
Step-by-step explanation:
Simply do 9(number of containers)*6(Syrup per container) to get 54 mL of syrup.
Hope it helps <3
odd function definition
Perform the indicated operation. kyz * 1/kyz answer choices is 0 1 and k^2 y^2 z^2
Answer:
1
Step-by-step explanation:
[tex]\frac{kyz}{1}*\frac{1}{kyz} =\frac{kyz}{kyz}=1[/tex]
An oil company is interested in estimating the true proportion of female truck drivers based in five southern states. A statistician hired by the oil company must determine the sample size needed in order to make the estimate accurate to within 2% of the true proportion with 99% confidence. What is the minimum number of truck drivers that the statistician should sample in these southern states in order to achieve the desired accuracy?
Answer: n = 2401
Step-by-step explanation:
Given;
Confidence level = 2% - 99%
n = ? ( which is the sample size is unknown ).
Solution:
Where;
n = [z/E]^2*pq
Since no known value for ( p ) estimate is given, the "least biased" estimate is p = 1/2
Substituting the given data into the formula.
n = [1.96/0.02]^2(1/2)(1/2)
n = 2401
The minimum number of truck drivers the statistician needs to sample for an accurate result is 2401
You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth
Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
how to simplify this expression ?
Answer:
[tex]\large \boxed{\sf \ \ \dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{2x+1}{x^2(x+1)} \ \ }[/tex]
Step-by-step explanation:
Hello,
This is the same method as computing for instance:
[tex]\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{3+2}{2*3}=\dfrac{5}{6}[/tex]
We need to find the same denominator.
Let's do it !
For any x real different from 0, we can write:
[tex]\dfrac{1}{x^2}+\dfrac{1}{x^2+x}=\dfrac{1}{x^2}+\dfrac{1}{x(x+1)}\\\\=\dfrac{x+1+x}{x^2(x+1)}=\dfrac{2x+1}{x^2(x+1)}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you